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ABSTRACT
In this paper, we present ROAD, a general framework to
evaluate Location-Dependent Spatial Queries (LDSQ)s that
searches for spatial objects on road networks. By exploiting
search space pruning technique and providing a dynamic ob-
ject mapping mechanism, ROAD is very efficient and flexible
for various types of queries, namely, range search and near-
est neighbor search, on objects over large-scale networks.
ROAD is named after its two components, namely, Route
Overlay and Association Directory, designed to address the
network traversal and object access aspects of the frame-
work. In ROAD, a large road network is organized as a hier-
archy of interconnected regional sub-networks (called Rnets)
augmented with 1) shortcuts for accelerating network traver-
sals; and 2) object abstracts for guiding traversals. In this pa-
per, we present (i) the Rnet hierarchy and several properties
useful to construct Rnet hierarchy, (ii) the design and im-
plementation of the ROAD framework, (iii) efficient object
search algorithms for various queries, and (iv) incremental
update techniques for framework maintenance in presence
of object and network changes. We conducted extensive ex-
periments with real road networks to evaluate ROAD. The
experiment result shows the superiority of ROAD over the
state-of-the-art approaches.

General Terms
Spatial Search, Road Network, Index and Algorithm

1. INTRODUCTION
The proliferation of mobile devices, along with broad de-

ployment of wireless communication networks and high pre-
cision geo-positioning technology, has stimulate the growth
of location-based services (LBSs) during the past decade. As
one of the core components, a LBS server maintains location-
dependent information to answer user queries with respect
to user-specified locations. We refer the location dependent
information and user queries to as spatial objects (or object,
for short) and location-dependent spatial queries (LDSQs),
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Figure 1: Spatial objects tagged on digital map

respectively. To many location-related applications, LDSQs
often serve as fundamental data access operations. For ex-
ample, for a conference event, LDSQs can help an attendee
in travel planning, e.g., Q1: find the nearest bus station to
the conference venue, Q2: find hotels within 10-minute walk
from the conference venue.

As objects and user trajectories are constrained by road
networks, search of spatial objects should be based on net-
work distances. In recent years, a trend for LBS deploy-
ment has been growing quickly on the Web. Spatial ob-
jects from content providers (e.g., stores, average users etc)
and digital maps from map service providers (e.g., Google
Map, MapQuest, MS Virtual Earth, Yahoo! Map1) are cou-
pled to quickly deploy LBSs on the fly. Figure 1 shows a
map from Google Map on which a bus station and a confer-
ence site (as spatial objects) are tagged by the conference
webmaster (i.e., a content provider). In this model, con-
tent providers and map service providers do not necessarily
maintain data from each other. This technological trend al-
lows dynamic combination of contents and map services to
facilitate content-rich LBSs.

Although existing applications based on this model can
display objects tagged on a map and point-to-point direc-
tions search, common LDSQs like finding the nearest book-
stores from a given location based on network distance or
current traffic condition have not yet been supported. To
meet the enormous Web and mobile user needs for LBSs,
the support for efficient LDSQ processing is needed. Thus,
there is a great demand on a system framework that can
i) flexibly and efficiently accommodate diverse objects (in
terms of contents, types, and formats) on maps, ii) efficiently
support various LDSQs, and iii) effectively support different
distance metrics such as road network distance, travel time,
toll, etc to be considered for LDSQs.

However, all existing techniques proposed for processing
LDSQs in spatial network databases, including network ex-

1http://maps.google.com, http://www.mapquest.com,
http://maps.live.com, http://map.yahoo.com.



pansion based, Euclidean distance bound based, and solu-
tion based approaches [2, 6, 9, 13, 16, 19], do not pro-
vide the desired features. The network expansion based
approaches, though supporting various types of queries, ob-
jects and distance metrics, are not efficient due to expensive
network traversal involved in network distance computation.
The Euclidean distance bound based approaches (which rely
on heuristics derived from the physical properties of Eu-
clidean distance) are not always applicable since Euclidean
distance cannot be used to estimate some distance metrics
(e.g., trip time, travel cost etc). Solution based approaches
that pre-compute search results for specific queries to boost
the search efficiency suffer from expensive costs of result
pre-computation and storage. Besides, they adapt poorly to
other query types, and to object and network changes.

In this paper, we propose a novel and efficient system
framework, called ROAD for processing LDSQs on road net-
works. As we analyzed, there are two basic operations in-
volved in processing LDSQs on a road network, namely, net-
work traversal and object lookup. Network traversal visits
network nodes and edges with network distance as a criteria,
while object lookup accesses and checks objects at traversed
nodes or edges based on object attributes and search crite-
ria. Objects collected during the course of a traversal are
the answer objects and the search result. For a search that
covers a large portion of a network, the overhead incurred
by traversals and objects lookups would significantly dete-
riorate the overall search performance and thus need to be
optimized.
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Figure 2: Basic idea behind ROAD framework

Figure 2 illustrates the problems and provides an overview
of our basic ideas. As shown, o1 and o2 are two objects on a
network. If an NN query is issued far away from these two
objects, say at nq, the search cost is expected to be higher
than the same query issued somewhere close to the objects.
As traversals from a query point towards the searched ob-
jects and the placements of objects are constrained by the
network topology, nodes and edges (i.e., the entire network)
logically form an object search space. Observing that some
subspaces (i.e., small portions of the network) with no ob-
jects can be skipped from detailed examination during a
search, we strategically formulate a network as a collection
of regional subnets (called Rnets). As such, each of the Rnets
captures a search subspace. The idea, aiming at exploiting
search space pruning, i.e., an effective techniques to speed up
the search performance, is to avoid detailed traversal and ob-
ject lookup within Rnets and thus allow the bypass of those
Rnet that do not contain objects of interest. To enable the
bypass of Rnets during traversal, two pieces of additional in-
formation are required: (i) information about selective (i.e.,
shortest) paths across an Rnet that allow traversals to con-
tinue at other sides of the Rnet, and (ii) information about
the contents of objects that are inside Rnets to provide quick
search guideline. These two requirements lead to the notions
of shortcuts and object abstract, respectively, in the paper.

As shown in the figure, with the aid of shortcuts and an ob-
ject abstract for Rnet R, a search from nq can bypass R and
continue on the other side of the network to find objects, as
R is found not containing any object.

To realize the ROAD framework, two novel index struc-
tures, namely, Route Overlay and Association Directory,
have been proposed. The ROAD framework is named af-
ter these two key components. The former naturally man-
ages the physical network structure and the shortcuts, while
the latter associates objects and object abstracts with the
road network. This design of ROAD offers many advan-
tages. First, it provides a clean separation between network
and objects. In practice, map service providers may provide
shortcuts for Rnets, while content providers may map ob-
jects to the nodes, edges and Rnets on the fly. Meanwhile,
flexible object and network updates can be facilitated. Ad-
ditionally, diverse object types can be supported upon the
same network. Second, as both network traversal and object
lookup are seamlessly supported by ROAD, various LDSQs
can be efficiently processed. Third, various shortcuts can be
customized for different distance metrics as needed by appli-
cations. In this paper, we detail the design, implementation
and evaluation of ROAD and provide a holistic solution to
several important research issues, including organization of
Rnets, search algorithms for LDSQs, and maintenance of
the ROAD framework. Notice that the concepts of Rnets,
shortcuts, object abstracts introduced for road networks in
this paper are also applicable to other spatial networks like
airline networks. In summary, this paper presents the fol-
lowing significant contributions:

1. We present ROAD, a system framework to support
efficient processing of LDSQs on road networks. It
clearly separates network and objects, exploits search
space pruning technique, and supports object search
based on different distance metrics.

2. We develop Rnet hierarchy and employ its nice prop-
erties to reduce index overhead, improve query perfor-
mance, and facilitate incremental framework mainte-
nance.

3. We devise efficient search algorithms for range queries
and nearest neighbor queries, i.e., two of the most com-
mon types of LDSQs, upon ROAD framework. Our al-
gorithms significantly reduce the traversal overheads,
thereby rendering fast search performance.

4. We develop efficient ROAD maintenance schemes to
handle object and network changes.

5. We conduct an extensive performance evaluation on
ROAD. The result shows the superiority of ROAD over
the state-of-the-art approaches.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 presents the core concept
behind ROAD and details the ROAD framework, such as
the properties of shortcuts and object abstracts, the organi-
zation of Rnets and ROAD implementation. Section 4 and
Section 5 detail the query processing algorithms and ROAD
framework maintenances, respectively. Section 6 reports the
performance evaluations of ROAD in comparison with ex-
isting works. Section 7 concludes this paper.

2. RELATED WORK
In this section, we first discuss existing works that can be

categorized into network expansion based approaches, Eu-
clidean distance bound approaches and solution based ap-
proaches, on processing LDSQs on road networks. Then,



we review related works on hierarchical road networks that
aim at facilitating shortest path search.

Network expansion based approaches. Network ex-
pansion gradually expands the search space in a network
by forming a spanning tree rooted at a query point. It is
applicable for object search and shortest path search like
Dijkstra’s algorithm [4]. Iteratively, it examines the next
closest unexplored node that guarantees the expansion to be
minimal each time until all the nodes and edges that satisfy
search criteria are visited [9, 16]. Objects of interest located
on the visited nodes and edges are the result objects and the
paths from the root to those objects are the shortest paths.
Although the network expansion is useful for many LDSQs,
it is inefficient due to an almost blind scan over the entire
search space and slow node-by-node expansion towards all
directions. For a large search space, this deficiency seriously
deteriorates the search performance.

Euclidean distance bound approaches. Euclidean dis-
tance is always the lower bound of network distance. Eu-
clidean distance bound approaches [16, 19] employ this prop-
erty as a heuristic to identify candidate objects whose Eu-
clidean distances are not greater than a certain threshold
distance. Then, false candidates whose network distances
that can be determined by shortest path algorithms (e.g.
A* algorithm [3]) or materialized distances (e.g. HEPV [10],
HiTi [11]) are greater than the threshold are eliminated.
However, the heuristic is not applicable to other network
distance metrics, such as travel time or cost. It is also not
very effective when paths between objects and query points
are not in straight lines. As studied in [16], these approaches
perform worse than network expansion for the same LDSQs.

Solution based approaches. By pre-computing and main-
taining query results for potential access in the future, so-
lution based approaches such as VN3 [13], UNICONS [2],
SPIE [7] and Distance Index [6], optimize the search perfor-
mance for a given type of queries. VN3 [13] employs the con-
cept of Voronoi diagram for nearest neighbor (NN) queries
on road networks. For each object, a geometric polygon is
formed based on network distances from other neighboring
objects and indexed in a spatial index. All points within a
polygon should have the enclosed object as their NNs. With
VN3, NN search is transformed to a point enclosure problem.
UNICONS [2] pre-computes kNN objects for some selected
nodes. SPIE [7] organizes a network as a set of spanning
trees and pre-computes NN results on nodes in the span-
ning trees. NN queries can be answered by accessing pre-
computed results maintained at some of the closest nodes.

Distance Index [6] pre-computes for all nodes the object
distances and pointers to next nodes towards individual ob-
jects, and encodes them as distance signatures. Directed by
the signatures, both range and NN queries are supported.
Instead of precise distances, distance ranges are adopted
such that narrow (wide) distance ranges are used to indi-
cate objects nearby (faraway). To determine the precise dis-
tances of objects, a search chases the next pointers of nodes
to reach some nodes closer to the objects, as signatures there
provide more precise distance ranges of the objects. Based
on the more precise distances, objects may be collected as
a query result. Figure 3 illustrates the distance signatures
on objects o1 and o2 stored at nq and nq′ . However, we
can see both distance ranges for objects are identical, that
implies redundant storage. In other words, it incurs exces-

sive storage and pre-computation overheads. Our evaluation
also shows that it is completely impractical due to extremely
high preprocessing and storage costs.
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Figure 3: Distance Index

The common pitfalls of solution based approaches are
their extremely high overheads incurred in result storage,
pre-computation and maintenance. More importantly, they
adapt very poorly to other types of queries, and to objects
and network updates.

Hierarchical road networks. Although some existing
works such as HEPV [10] and HiTi[11] structure a road net-
work in a hierarchy, ROAD is totally different from them in
terms of objectives, designs and implementations. All those
existing works focus on shortest path search over a large net-
work. To alleviate memory consumption of storing all-pair
shortest paths over a network, they divide a network and
materialize shortest paths between the boundaries of parti-
tions and between nodes inside each partition. By concate-
nating shortest paths from a source to a partition boundary
node, to another partition boundary node, and so on until
the destination is reasched, the shortest path between source
and destination is determined. For completeness, all those
shortest paths must be maintained and are organized in a
tree of sub-networks. Differently, our ROAD divides a net-
work in order to facilitate search space pruning for efficient
LDSQ processing. Rather than storing sub-networks in a
hierarchy, we maintain a network in a flattened structure as
will be discussed in next section to speed up the network ex-
pansion. Besides, some shortcuts within Rnets are not kept
to save memory and maintenance cost. Furthermore, within
the smallest Rnets, no precalculated shortest paths between
nodes are needed.

3. THE ROAD FRAMEWORK
In this section, we present the concept, design and im-

plementation of our ROAD framework. We first introduce
Rnets, shortcuts and object abstracts, i.e., the key design in
support of search space pruning in ROAD, and then dis-
cuss Rnet hierarchy formation. More, we present Route
Overlay and Association Directory, the two core components
in ROAD implementation.

3.1 Preliminaries
Formally, a road network can be modeled as a weighted

graph N consisting of a set of nodes N and edges E, i.e.,
N = (N, E). A node n ∈ N represents a road intersection
and an edge (n, n′) ∈ E represents a road segment con-
necting nodes n and n′. |n, n′| denotes the edge distance,
which can represent the travel distance, trip time or toll of
the corresponding road segment, and its value is positive.
We simply use distance in the rest of the paper. A path
P (u, v) stands for a set of edges connecting nodes u and v
and its distance |P (u, v)| =

∑
(n,n′)∈P (u,v) |n, n′|. Among

all possible paths connecting node u and node v, the one



with the shortest distance is referred to as the shortest path,
denoted by SP (u, v). The network distance ||u, v|| between
u and v is the distance of their shortest path SP (u, v), i.e.,
||u, v|| = |SP (u, v)|. For simplicity, we assume that objects
reside on edges (i.e., road segments) in a network. Objects
at nodes (i.e., road intersections) can be treated as they are
located at the end of the edges. We denote a set of objects
on edge (n, n′) by O(n, n′) and the distance from an object
o ∈ O(n, n′) to the nodes n and n′ by δ(o, n) and δ(o, n′), re-
spectively. Also, we assume LDSQs to be initiated at nodes
for simplicity. Each LDSQ is specified with a distance con-
dition D and attribute predicate A. Given a set of objects
in a network, an object, o, is collected as the answer of an
LDSQ if (1) its distance from a query node, nq, denoted by
||nq, o|| = min(||nq, n||+ δ(o, n), ||nq, n

′||+ δ(o, n′)) satisfies
D (e.g., ||nq, o|| ≤ 100) and (2) its attribute denoted by o.a
satisfies A (e.g., restaurant o.type = ‘seafood’). As shown,
we single out the conditions of network distance from other
attributes due to its importance and focus of this work.

3.2 Rnets, Shortcuts and Object Abstracts
To find objects in terms of their network distances and

attributes, a search algorithm may implicitly form a search
tree originated at the query node. Following the topology
of the network, the portion of the network covered by a
search tree conceptually represents a search space. Scanning
an entire search space incurs significant traversal overheads.
Skipping some search subspaces that do not contain objects
of interest from detailed examinations presents an optimiza-
tion opportunity. This search space pruning technique is
expected to be very effective in road networks because spa-
tial objects are often clustered and concentrated in some
areas, e.g., hotels and resorts are likely to be in business
and scenic areas, respectively. Thus, many subspaces do
not contain objects of interest and can be pruned. Though
well received in various database searches, to the best of our
knowledge, the idea of search space pruning has not been
exploited in the context of object search on road networks.
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n5

shortcut
nq
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(a) Closed path
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Figure 4: Closed path and Rnet

Figure 4(a) explains how search space pruning can be re-
alized in a road network. Suppose a search tree grows from
a node, nq, to reach a node n1. Assume that the path cover-
ing edges (n1, n2), (n2, n3), (n3, n4), and (n4, n5) represents
a closed path, i.e., a path that has no nodes connecting to
other parts of the network besides the two ending nodes (i.e.,
n1 and n5). If no object of interest presents in the closed
path, a detailed traversal on the path can be skipped and
the traversal has to continue at n5 in order to explore ob-
jects thereafter. Considering this closed path as a subspace,
we need to have (1) a hint about whether or what objects
are on the path; and (2) an artifact at n1 connecting n5,
the other end of the path. Accordingly, we introduce ob-
ject abstracts and shortcuts. As such, when a closed path is
reached and no object of interest is indicated in an object
abstract, a search can bypass the entire path via a shortcut

to the other end directly. A shortcut between two ending
nodes is the shortest path between them.

In road networks, closed paths are usually short; thus the
performance gained by bypassing closed paths is rather lim-
ited. We, therefore, introduce a notion of Rnets, regional
sub-networks, in a road network. Each Rnet encloses a sub-
set of edges and it is bounded by a set of border nodes. Each
border node is the entrance and exit of an Rnet. The for-
mal definition of Rnet is stated in Definition 1. In an Rnet
R, nodes with edges not belonging to R are border nodes.
Based on Rnets, the concepts of shortcuts and object ab-
stracts are developed and formally stated in Definition 2
and 3, respectively.

Definition 1. Rnet. In a network N = (N, E), an
Rnet R = (NR, ER, BR) represents a search subspace, where
NR, ER and BR stand for nodes, edges and border nodes in
R, and
(1) ER ⊆ E,
(2) NR = {n|(n, n′) ∈ ER ∨ (n′, n) ∈ ER}, and
(3) BR = NR ∩ {n|(n, n′) ∈ E′ ∨ (n′, n) ∈ E′}, where
E′=E − ER. �

Definition 2. Object Abstract. The object abstract
of an Rnet R, O(R), represents all the objects residing on
edges in ER, i.e., O(R) =

⋃

e∈ER
O(e). �

Definition 3. Shortcut. The shortcut, S(b, b′), between
border nodes b and b′ (∈ BR) of an Rnet R bears the shortest
path SP(b,b’) and its distance ||b, b′||. It is noteworthy that
the edges that contribute to SP (b, b′) might not necessarily
be included in ER. �

Figure 4(b) depicts an Rnet, R, where n1, n5 and n6 are
the border nodes. When a search reaches n1, the entire Rnet
can be bypassed with shortcuts S(n1, n5) to n5 or S(n1, n6)
to n6 if the corresponding object abstract O(R) indicates no
object of interest.

3.3 Rnet Hierarchy
In ROAD, we structure a road network as a hierarchy of

Rnets where large Rnets at the upper levels enclose smaller
Rnets at lower levels. At each level, a network can be viewed
as a layer of interconnected Rnets. This structure benefits
various search scenarios. For objects located far away from
a query node, a search range can be quickly expanded with
long shortcuts in large Rnets. For objects that are close
to query nodes, shortcuts in moderate-sized Rnets or even
physical edges can be used to reach the answer objects.

To derive an Rnet hierarchy, we first treat the entire road
network as a single Rnet that does not have border node and
partition it into p1 partitioned Rnets. Definition 4 states the
formal definition of Rnet partitioning. We refer the original
Rnet as the level-0 Rnet. The partitioned Rnets are the chil-
dren of the Rnet they partitioned from. At each subsequent
level i, we partition each Rnet into pi child Rnets. As a re-
sult, at a level x (∈ [0, l]), the entire network is fully covered

by
x∏

i=1

pi interconnected Rnets. For an Rnet hierarchy of l

levels, there is
l∑

h=0

h∏

i=1

pi Rnets.

Definition 4. Rnet partitioning. Partitioning of an
Rnet R = (N, E, B) where N , E, B are a set of nodes,



edges and border nodes and B ⊆ N , forms p child Rnets,
R1, R2, · · · Rp where p > 1 and Ri = (Ni, Ei, Bi). Here,
N =

⋃

1≤i≤p

Ni, E =
⋃

1≤i≤p

Ei, B ⊆ ⋃

1≤i≤p

Bi. Also, the

following three conditions must hold.

1. Edges of all child Rnets are disjointed, i.e., ∀i∀ji �=
j ⇒ Ei ∩ Ej = ∅.

2. Nodes in an Rnet are connected by edges in the same
Rnet, i.e., ∀i∀(n, n′) ∈ Ei, n ∈ Ni ∧ n′ ∈ Ni.

3. Border nodes in an Rnet are common to its parent
Rnet and some of its sibling Rnets, i.e., Bi = Ni ∩
(B ∪ ⋃

j∈([1,p]−{i})
Nj). �

As illustrated in Figure 5, a network N is first partitioned
into three Rnets, namely, R1, R2 and R3, each of which is
then partitioned into 2 smaller Rnets, Ria and Rib, i ∈ [1, 3].
Consequently, R1, R2 and R3 form the first-level Rnets, and
R1a, R1b, R2a, R2b, R3a, and R3b form the second-level
Rnets. In the figure, n3 is common to both R2 and R3 and
hence it is a border node corresponding to the level-1 Rnets.
Meanwhile, it is shared by both R2b and R3a and is a border
node of level-2 Rnets.
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Figure 5: Example Rnet hierarchy

An ideal network partitioning should generate equal-sized
Rnets and minimize the number of border nodes which in
turn minimizes the number of shortcuts formed and main-
tained. However, this ideal network partitioning is known
as NP-complete [15]. In this study, we adopt geometric ap-
proach [8] and Kernighan-Lin algorithm (KL algorithm) [12].
The geometric approach first coarsely partitions a network
into two by dividing a set of edges spatially such that these
two result subnets have equal numbers of edges. KL algo-
rithm is then used to fine tune the two result Rnets by ex-
changing edges between them until further exchanges do not
reduce the number of border nodes. We set pi to be power of
2 (i.e., pi = 2x, for x being a positive integer) and recursively
apply this binary partitioning until pi Rnets are formed.
This network partitioning approach is also used in [10]. Al-
ternatively, partitioning can be based on network seman-
tics. For instance, a country-wide road network can be par-
titioned into levels of states, counties, cities, and townships.
Further, the network partitioning could be based on the dis-
tributed objects. Since ROAD is a general-purpose frame-
work to support searches on various objects to be mapped
onto the same spatial network at the query time, our current
network partitioning is performed independently of objects.
We will study the object-based network partitioning in our
future work.

After an Rnet hierarchy is formed, object abstracts and
shortcuts are constructed in a bottom-up fashion. As edges

in child Rnets are fully covered by their parent Rnet (see
Definition 4), object abstracts of an Rnet can therefore be
constructed recursively from their child Rnets. Lemma 1
states this property. On the other hand, the shortcuts of a
border node can be determined by adopting Dijkstra’s algo-
rithm [4] to explore paths for all other border nodes in the
same Rnet. To speed up shortcut computations, shortcuts
in Rnets at level i can be calculated based on those in Rnets
at level i+1 (as stated in Lemma 2). Further, the repre-
sentation of shortcuts can be based on those shortcuts in
child level Rnets. Referring to our example Rnet hierarchy
as shown in Figure 5, the shortcut from n1 and n3, S(n1, n3)
can be represented as (S(n1, nd), S(nd, n3)). To determine
a detailed shortest path for this shortcut, S(n1, nd) and
S(nd, n3) can be explored at nodes n1 and nd, respectively.

Lemma 1. The object abstract of a parent Rnet R fully
covers those of all its child Rnets R1, · · ·Rp, i.e., O(R) =⋃

1≤i≤p

O(Ri). Meanwhile, the object abstract of a finest Rnet

R (= (N, E, B)) is
⋃

(n,n′)∈E

O(n, n′). �

Proof. The proof is straightforward and is omitted. �

Lemma 2. Given an Rnet hierarchy, a shortcut S(b, b′)
between two border nodes of a level i Rnet R can be derived
based on those shortcuts of level i+1 Rnets. �

Proof. Suppose node b and b′ are inside the level i+1 Rnets
Rb, and Rb′ , respectively. If Rb = Rb′ , S(b, b′) must be the
same as the shortcut linking b to b′ of Rnet Rb. Otherwise,
Rb �= Rb′ . If Rb and Rb′ are not adjacent, there must be at
least one level i+1 Rnet R that bridges Rb to Rb′ . Conse-
quently, the shortcut S(b, b′) starts at Rb, passes through R,
and reaches Rb′ . As the border nodes are the only entrances
to/exits from Rnets, S(b, b′) must go through border nodes
of Rb, R, and Rb′ . Consequently, the shortcuts which link
border nodes must be taken. On the other hand, if Rb and
Rb′ are adjacent, there should be at least one border node in
common. Through a border node, shortcuts in both Rnets
are connected. For all those cases, S(b, b′) of a level i Rnet
can be constructed by shortcuts in level i+1 Rnets and the
proof completes. �

Besides, explored shortcuts in Rnets can be used to de-
termine other shortcuts of Rnets in the same level as in-
dicated in Lemma 3. Lemma 2 and Lemma 3 can help
efficiently compute and update shortcuts (as will be dis-
cussed later). To alleviate the storage cost for shortcuts,
some shortcuts S(b, b′) that are composed of other short-
cuts in the same Rnets can be safely ignored, as stated in
Lemma 4. Hence, when a search reaches b, it can transitively
reach b′ through other shortcuts in the same Rnet. Similarly,
for cases that a shortcut S(n, n′) covers completely a reverse
path of S(n′, n), the detail of either one can be omitted for
storage space saving and the distances of those shortcuts can
be retained.

Lemma 3. Given Rnets R and R′ at the same level in an
Rnet hierarchy, if a shortcut S of R covers an edge (n, n′)
of R′, there must be a shortcut S′ corresponding to R′ that
covers (n, n′) and S must include S′. �

Proof. Without loss of generality, we assume that a short-
cut S(a, b) reaches Rnet R′ at node n1 and leaves it at node
n2, and the path P between n1 and n2 inside R′ passes



by edge (n, n′). We prove this lemma by contradiction.
Assume that i) no shortcut of R′ passes by edge (n, n′),
and ii) S passes by edge (n, n′) but not any shortcut of
Rnet R′. As S reaches Rnet R′, and the border nodes
are the only entrance to/exits from an Rnet, nodes n1 and
n2 must be border nodes. As S is a shortcut, its distance
||a, b|| = ||a, n1||+ |P |+ ||n2, b|| must be minimized. Conse-
quently, |P | = ||n1, n2|| which means P must be the shortest
path between n1 and n2, i.e., the shortcut. This violates
both assumptions i) and ii), and the proof is completed. �

Lemma 4. Within an Rnet, a shortcut S(b, b′′) can be
safely discarded if it covers S(b, b′) and S(b′, b′′) in the same
Rnet. �

Proof. We omit the proof to save space. �

3.4 Route Overlay and Association Directory
To facilitate network traversals that explore a network in

a node-by-node fashion, we adopt a node-oriented storage
scheme that associates nodes with edges and their corre-
sponding distances to their neighboring nodes. As the net-
work is formulated as a hierarchy of Rnets, one straight-
forward storage scheme is to store all Rnets where border
nodes and shortcuts are nodes and edges as separate net-
works in addition to the original network as suggested in [10,
11]. This implementation, however, has to maintain separate
structures and thus may complicate the search traversals,
since search mechanisms need to switch between different
networks. Based on Definition 4 that the border nodes in
parent Rnets are always the border nodes in some of their
child Rnets, our novel index structure, namely Route Over-
lay, that naturally flattens a hierarchical network into a plain
network can effectively avoid all the shortcomings of the sep-
arate network implementation.

In Route Overlay, nodes are indexed by a B+-tree with
unique node IDs as search keys2. Each leaf entry of B+-
tree points to a node, together with a shortcut tree, i.e.,
a specialized tree index structure that organizes shortcuts
and edges to facilitate search traversals. The structure of a
shortcut tree is generally similar to N -ary tree [17] except
that non-leaf nodes that represent Rnets are associated with
shortcuts and number of branches associated with any node
(i.e., the number of child Rnets) that dependent on the num-
ber of child Rnets is not fixed. If a given node n is a border
node, every non-leaf entry in n’s shortcut tree maintains all
the shortcuts from n to other border nodes, corresponding
to one Rnet, for which n serves as a border node. Also, in
a shortcut tree, parent Rnets are stored immediately above
their child Rnets. A leaf entry stores all the edges to its
neighboring nodes. The shortcut tree for a non-border node
has only one leaf node containing edges to its neighboring
nodes.

Figure 6 shows a Route Overlay for our network presented
in Figure 5. Take nq (a non-border node) as an example.
Its shortcut tree has only one leaf node that contains edges
to nq’s neighboring nodes, e.g., na and n′

q. For na (a border
node of Rnets R1a and R1b), its shortcut tree has two levels.
The first level points to Rnets R1a and R1b, together with
shortcuts to other border nodes, e.g., n1 and n2. The second
level keeps the edges to neighboring nodes, i.e., nb, nc, nq

and n′
q.

2Besides B+-tree, alternatives such as Hash index can be
used.
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Figure 6: Route Overlay

Next, our proposed efficient object lookup mechanism in
ROAD, called Association Directory also adopts B+-tree
with unique node IDs or Rnet IDs as the search key. Associ-
ated with node n (n′) is an object o in O(n, n′) together with
its distances δ(o, n) (δ(o, n′)). Similarly, associated with R is
the object abstract of an Rnet R. As an Rnet may contain a
number of objects, techniques such as aggregated attribute
values [20], bloom filter [1], signature [5] can be used to
represent an object abstract with fewer storage overheads.
Besides, those nodes and Rnets that do not have objects are
not kept in the B+-tree to further reduce the storage cost.
If the search cannot find a node (Rnet) in an B+-tree, no
object is implied for the node (Rnet).

B+-tree

nf ng

o1:  (o1,nf) o1:  (o1,ng)

R3 R3b

{o1,o2} {o1,o2}

(on node IDs and Rnet IDs)

Figure 7: Association Directory

Figure 7 depicts an Association Directory for objects o1

and o2 in our example. In the index, an object o1 on edge
(nf , ng) is pointed by the nodes nf and ng. Moreover, ob-
jects o1 and o2 in Rnet R3b and its parent Rnet R3 are
associated as {o1, o2} with the Rnets in the Association Di-
rectory. Depending on application needs, other objects, say
oa, ob, oc can be placed into the same Association Direc-
tory or in a separate Association Directory. This provides
flexibility to map various objects on the same road network.
Moreover, up to the application needs, multiple Association
Directories that carry different types of objects can be ac-
cessed simultaneously.

4. SEARCH ALGORITHMS
While ROAD is designed to support different types of LD-

SQs, we, in this paper, focus on k-nearest neighbor (kNN)
queries and range queries. A kNN query (e.g., Q2 in Sec-
tion 1) returns the k objects of interest closest to nq. A
range query (e.g., Q1 in Section 1) sets a distance range and
retrieves all objects of interest with their distances from nq

within the range. Our algorithms based on the idea of net-
work expansion upon ROAD can perform searches efficiently
since it navigate Rnets in detail only if they contain objects
of interest; otherwise it bypasses them.

We first discuss the evaluation of kNN query. At the first
place, we illustrate the basic idea with a simple network that
consists of a chain of nodes in Figure 8. The network is par-
titioned into 3 Rnets and each of them is further divided
into two smaller Rnets. On this network, an NN query is
issued at n2, and two objects o1 and o2 are located on edges
(n11, n12) and (n12, n13), respectively. Also, in this network,



nodes n3, n5, n7 and n9 are border nodes. The search first
expands from n2 to n1 and n3 inside R1a. The expansion
is shown as a sequence of annotated arrows (arranged verti-
cally) in the figure. Instead of following the physical edges to
the right side of the network for objects, a shortcut S(n3, n5)
at n3, i.e., the border node of Rnets R1a and R1b, can be
taken to bypass R1b (as no object is indicated by the corre-
sponding object abstract) to reach n5.

n2

o2o1

R1a R1b R2a R2b R3a R3b

R3

local edges 
inside R1a

S(n3,n5), 
bypass R1b

n1 n4 n5 n7 n9n3 n6 n8 n10 n12n11 n13

S(n5,n9), 
bypass R2

S(n9,n11),
bypass R3a

reach o1 on 
edge (n11,n12)

q S(n3,n5)
S(n5,n9) S(n9,n11)

R2R1

(n1,n2)

Figure 8: Example 1NN query

Next, a longer shortcut S(n5, n9) at n5 is taken to skip R2

from detailed traversal. Further, the search at n9 reaches n11

via S(n9, n11). Now, as R3b contains objects, the traversal
follows the physical edges and the object o1 is found after
exploring n11. From the figure, we can see the search only
takes three jumps from n3 to n11, that significantly saves
the traversal cost, compared with traversing physical edges
between the query node and the objects.

With the logic of network expansion as the basis, our Al-
gorithm kNNSearch (outlined in Figure 9) incorporates
shortcuts in Route Overlay and object abstracts in Asso-
ciation Directory to speed up the search. In general, it iter-
atively expands the search in a network from nq by visiting
the closest unexplored node. This gradual expansion guar-
antees the first k objects satisfying search condition to be
the kNN objects to the query point. We maintain a priority
queue P to sort pending entries in the non-descending dis-
tance order from nq. Each entry (ε, d) in P records a node
or an object (ε) and its distance (d) from nq.

Algorithm kNNSearch(RO, AD, nq , k)
Input. Route Overlay (RO), Associate Directory (AD),

query node (nq) and the number of NNs (k)
Local. Priority queue (P )
Output. Result set (Res)
Begin
1. enqueue(P ,(nq, 0)); Res = ∅;
2. while (P is not empty AND |Res| < k) do
3. (ε, d)← dequeue(P );
4. if (ε is marked “visited”) then goto 2;
5. if (ε is a node) then
6. O ← SearchObject(AD, ε); // look up AD
7. foreach (o, δ(o, ε)) ∈ O do
8. enqueue(P ,(o, d + δ(o, ε)));
9. ChoosePath(RO,AD,P , ε, d); // see Figure 10

10. else // ε is an object.
11. Res← Res ∪ {ε}; // ε is one of result objects.
12. mark ε visited; // this indicates ε visited.
13. output Res;
End.

Figure 9: Algorithm kNNSearch

The algorithm takes a Route Overlay (RO), an Associate
Directory (AD), a query node (nq), and a desired number
of NNs (k) as inputs, and has all nodes and objects marked
“unvisited”. To start, P is initialized with (nq, 0) (line 1).
Then, the algorithm repeatedly examines the head entry

(ε, d) from P until k answer objects are retrieved or the
network is completely traversed (lines 2-12). Since nodes
and objects could be reached more than once via different
paths, ε already marked with “visited” is discarded from ex-
ploring (line 4). Otherwise, if ε refers to a node, two tasks
need to be performed. SearchObject is first called to look
up AD for objects o associated with the node ε and put
them as (o, d+δ(o, ε)) to P for later examination (lines 6-8).
Next, Algorithm ChoosePath is invoked to decide subse-
quent nodes from ε to continue the network expansion (line
9) that will be discussed next. When ε is an object, it is
collected into a result set Res (lines 10-11). Thereafter, ε is
marked “visited” (line 12). Finally, the answer objects are
output and the search completes (line 13).

With shortcut trees organizing shortcuts and edges in ac-
cordance with the Rnet hierarchy, Algorithm ChoosePath
(depicted in Figure 10) can quickly identify appropriate short-
cuts and edges to expand the search from a node n. In brief,
it examines the shortcut tree of n loaded from Route Over-
lay in a depth-first traversal manner (lines 2-12). For every
non-leaf level, an Rnet R is checked against Association Di-
rectory. If no object of interest is found, R, together with
all its child Rnets, are bypassed. The border nodes reach-
able by the shortcuts are enqueued to P . Otherwise (i.e., R
contains objects of interest), the lookup goes down to the
next lower level to examine its child Rnets in a similar fash-
ion (lines 9-10). Once the search reaches the leaf level of
the shortcut tree, all neighboring nodes connected by edges
are collected (lines 11-12). If n is a non-border node, its
shortcut tree contains only edges and all the corresponding
neighboring nodes are put into P .

Algorithm ChoosePath(RO, AD, P , n, d)
Input. Route Overlay (RO), Associate Directory (AD),

a priority queue (P ), a node (n), distance (d);
Local. Stack (S)
Begin
1. T ← LoadShortcutTree(RO,n);
2. push(S, T.root);
3. while (S is not empty) do // search in shortcut tree.
4. s← pop(S);
5. if (s is not leaf) then
6. foreach R of s do
7. if (SearchObject(AD,R) has no object) then
8. enqueue(P , (b, d+||n, b||)) for all S(n, b) of R;
9. else

10. push all s’s children to S;
11. else // leaf node.
12. enqueue(P , (n′, d + |n, n′|)) for all edges (n, n′) in s;
End.

Figure 10: Algorithm ChoosePath

To visualize Algorithm kNNSearch based on ROAD in
comparison with other existing approaches, Figure 11 shows
the evaluation of a 3NN query on 5 objects based upon Cal-
ifornia road network [14] (see Section 6 for details). As in-
dicated, our algorithm takes the shortest search time and
the lowest I/O costs as it quickly expands the search range
and reaches the objects via shortcuts. It outperforms other
existing works that include network expansion based ap-
proaches, Euclidean distance bound approach and distance
index. Network expansion based approaches span a very
large network area. Euclidean distance bound approaches
include false candidate objects. Distance Index incurs a high
I/O cost and long search time due to loading a large number
of distance signatures, although it has pre-computed paths
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Figure 11: Illustrations on 3NN query

towards the answer objects. Our algorithm constantly out-
performs all those representative approaches, as evaluated
in extensive experiments to be presented in Section 6.

Algorithm RangeSearch that supports range query is
pretty similar to Algorithm kNNSearch with a slight dif-
ference that the search ends upon a portion of a network
within a distance bound is completely traversed, instead of
a specified number of objects having been found. All visited
objects are the answer objects. To save space, we omit the
detail discussion of the algorithm.

5. ROAD FRAMEWORK MAINTENANCE
In this section, we present the ROAD maintenance in pres-

ence of updates that include object changes and network
changes. Owning to its clear separation between the objects
and network, ROAD handles these two aspects of updates
efficiently. We present the update mechanisms below.

5.1 Object Update
Object changes are handled in Association Directory, in-

dependently of Route Overlay. To insert an object located
on a certain edge (n, n′) enclosed by an Rnet R, we asso-
ciate the object to the nodes n and n′ and update the object
abstracts of corresponding Rnet R and its ancestor Rnets in
an Association Directory. For object deletion, we can sim-
ply remove the association of the objects from corresponding
nodes and from the object abstracts of corresponding Rnets
in an Association Directory. On the other hand, for the
changes of object attributes, we update the object abstract
associated with nodes and Rnets.

5.2 Network Update
Road condition and road network structure change over

time. Instead of immediately rebuilding a Route Overlay
upon changes that is expensive, we propose several tech-
niques to incrementally update Route Overlay for edge dis-
tance changes, and network structure changes.

5.2.1 Change of Edge Distance
In ROAD, when the distance of an edge that represents

the travel distance, trip time or cost of a road segment
changes (increases or decreases), some shortcuts that rep-
resent shortest paths might become invalid and have to be
updated. Here, these updates only affect Route Overlay but
not objects. To save unnecessary shortcut re-computations,
ROAD adopts a filtering-and-refreshing approach that con-
sists of two steps. In the “filtering” step, shortcuts that
may be affected by the change are identified. The identified
shortcuts are then updated in the “refreshing” step. Accord-

ing to Lemma 2 defined in Section 3, the update of shortcuts
related to level i Rnets in an Rnet hierarchy is not neces-
sary unless shortcuts related to level i+1 Rnets are updated.
Thus, in the following, we only explain how to re-compute
shortcuts in the bottom level. The same idea can be applied
to upper levels. Also, based on Lemma 3, an edge, which is
not covered by shortcuts in its own Rnet, is definitely not
covered by shortcuts in other Rnets at the same level. There-
fore, we examine the shortcuts in an Rnet that encloses the
changed edge first. If no shortcut update is incurred, the
update can be safely terminated. Suppose an edge changes
its distance |n, n′| from d to d′, detailed update procedure
is discussed below.

Edge distance increased (i.e, d < d′). When the distance
of an edge (n, n′) in an Rnet R is increased from d to d′, only
those shortcuts that cover (n, n′) might become invalid and
need to be refreshed. In the filter step, we identify shortcuts
that pass through (n, n′). Observing that a shortcut S(b, b′)
covering (n, n′) should have ||b, b′|| equal to ||b, n||+ |n, n′|+
||n′, b′|| (where we consider |n, n′| before update, i.e., d),
we search affected shortcuts by finding the shortest paths
from each of end nodes (n and n′) to the border nodes in R
and then identifying shortcuts whose distances are equal to
the path passing through (n, n′). In the second phase, all
the identified shortcuts are re-evaluated. If no shortcuts are
refreshed, the update terminates. Otherwise, the update is
propagated up to the parent level, with border nodes and
shortcuts at the current level treated as nodes and edges,
respectively.

n n'

|n,n'| = d'
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Rnet R
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Figure 12: Network changes

Edge distance decreased (i.e., d > d′). When the dis-
tance of an edge (n, n′) in an Rnet R is decreased from
d to d′, it may contribute to paths shorter than some ex-
isting shortcuts. In this case, those shortcuts need to be
identified and refreshed. In the first filtering step, we test
if the distance of a path from border node b via (n, n′) to
another border node b′ (with |n, n′| = d′, the new edge dis-
tance) is shorter than the distance of the shortcut S(b, b′).



Here we expand from n and n′ to reach border nodes and
to determine the distances as shown in Figure 12(a). Once
||b, n|| + |n, n′| + ||n′, b′|| < ||b, b′||, S(b, b′) between border
node b and b′ are identified to be affected. In the second
phase, those identified paths are replaced by the new paths
passing by edge (n, n′). Again, the update process will be
propagated to the parent level if there are shortcuts updated.

5.2.2 Change of Network Structure
When new roads are constructed or existing roads are

closed, the corresponding network topology is changed. We
model these changes as addition or deletion of nodes and
edges. As changes of nodes result in changes of edges, we
treat changes of nodes as special cases of changes of edges,
and only consider addition and deletion of edges below. Again,
we update the network at the bottom level first and propa-
gate the updates to the parent levels if necessary.

Addition of a new edge. A newly added edge (n, n′)
directly connects two nodes n and n′, assuming that n and
n′ belong to Rnet R and R′, respectively. There are two
possible cases: (1) R = R′ and (2) R �= R′. We handle
them in the following.

• Case 1: R = R′ (i.e., both nodes are located inside
the same Rnet). Adding an edge connecting two nodes
(e.g., (na, nb) in Figure 12(b)) can be treated as chang-
ing the distance of an edge from infinity to the edge
distance. The previously discussed edge distance up-
date mechanism can be applied here. Accordingly, the
Route Overlay is updated as well to store the new edge
and the new nodes (if any).

• Case 2: R �= R′ (i.e., nodes are located in different
Rnets). Since an edge can only be included by one
Rnet (say R), the node n′ which does not belong to
R, has to be promoted to a border node between R
and R′. In Figure 12(b), the introduction of (nc, nd)
to R1 gets nd prompted to the border node. Also,
the new edge (n, n′) might affect some shortcut. The
update approach for the change of edge distance can
be applied here. As a new border node is introduced,
new shortcuts linking the new border node to other
border nodes in the same Rnet have to be created.

Deletion of an existing edge. Deleting an edge (n, n′)
breaks the link between two nodes n and n′. Consider delet-
ing (ne, nf ) in R2 in Figure 12(b). Its deletion can be man-
aged as handling the change of its edge distance to infinity
and updating affected shortcuts. In addition, it is possible
that one of the end nodes of a deleted edge is a border node.
If all the edges of n are within one Rnet after the deletion of
edge (n, n′), n is no longer a border node. As shown in Fig-
ure 12(b), after deleting (nf , ng), ng becomes a non-border
node. Then, the shortcut trees of n and other border nodes
in related Rnets in Route Overlay have to be updated.

6. PERFORMANCE EVALUATION
This section evaluates our proposed ROAD framework

in terms of indexing overhead, maintenance overhead, and
query performance. We applied ROAD (labeled as ROAD,
hereafter) on three real road networks, namely, CA, NA and
SF obtained from [14]. CA and NA consist of highways
in California, USA and North America, respectively. SF is
composed of streets and roads in San Francisco. In this eval-
uation, we simulate one type of objects based on which all

the queries are evaluated, while ROAD can handle diverse
objects. Objects, with number varying from 10 to 1000, are
evenly distributed over those road networks3. The fewer the
number of objects is in the network, the larger the search
subspaces that contain no objects can be pruned. Thus, an
efficient approach should be able to return the search result
quickly when a small number of objects is experimented.
Table 1 summarizes the evaluation parameters, their values
and defaults used in the experiments.

In addition to ROAD, we implement network expansion [16],
Euclidean-based approach [16, 19] and Distance Index [6]
(labeled as NetExp, Euclidean, and DistIdx, respectively), in
GNU C++ for comparisons. We adopt CCAM [18] to or-
ganize network nodes in storage for all the approaches. For
NetExp, objects are stored with network nodes. For Euclidean,
objects are indexed by an R-tree and A* algorithm [3] is
used to determine objects’ network distances from query
nodes. For DistIdx, distance signatures are stored with net-
work nodes. We adopt exact object distances in the distance
signature to provide the optimal search performance.

Parameter Value (∗=default)

Network CA∗ (21,048 nodes, 21,693 edges)
NA (175,813 nodes, 179,179 edges)
SF (174,956 nodes, 223,001 edges)

No. of objects (|O|) 10, 50, 100∗, 500, 1000
Partition factor (p) 4∗
No. of levels (l) 2, 3, 4∗, 5, 6 for CA, and

6, 7, 8∗, 9, 10 for NA and SF
Query kNN query∗ and range query
No. of NNs (k) 1, 5∗, 10
Search range (r) 0.05, 0.1∗, 0.2 of network diameter

Table 1: Evaluation parameters

We measure the performance of all the approaches accord-
ing to four commonly used performance metrics, namely,

• Index construction time. This measures the elapsed
time to construct an index.

• Index size. This measures storage consumed to store
an index.

• Index update time. This measures the time spent on
updating an index in presence of object and network
changes.

• Processing time. This represents the time duration
from the time when the query is initiated to the time
that a complete result is obtained.

All indices are stored on disk. In our disk storage, the page
size is fixed at 4KB. We also employ a memory cache of
50 pages with LRU replacement scheme to buffer loaded
pages. In every run, a query is initialized with an empty
cache. All experiments were conducted upon Linux 2.6.9
servers with Intel Xeon 3.2GHz CPU. In what follows, we
evaluate the index overhead, index maintenance overhead,
query performance followed by Rnet hierarchy settings.

6.1 Indexing Overhead
The first set of experiments evaluates the index construc-

tion time and index sizes of all the approaches for various
number of objects and networks. We consider NetExp that
has no index on objects as the baseline in this evaluation.
Because of various network sizes, we fix p to 4 for all the
networks, while l’s for NA and SF are set to 8 and that for

3ROAD can benefit more from uneven object distribution
that more empty subspaces can be pruned.



CA is set to 4. We shall study the impacts of the settings
of Rnet hierarchy level (l) later. Figure 13 shows the index
construction time (in second) and index sizes (in metabyte)
of varying number of objects on CA (in log scale). As shown
in the figure, NetExp, Euclidean, and ROAD incur almost con-
stant index construction time (in a few minutes) and index
size (in a few MBs) while DistIdx increases drastically in both
construction time and index size. For 1,000 objects, DistIdx

takes more than 240MB for index storage and nearly half an
hour to build an index! The trend keeps increasing with the
increase of the number of objects. This finding reveals that
DistIdx is not practical for use in realistic applications.
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Figure 14 shows the index construction time and index
size for different networks with the number of objects fixed
at 100. As shown in the figure, NetExp and Euclidean incur
very short index construction times and take less storage.
Both DistIdx and ROAD vary with networks. However, they
differ a lot. DistIdx takes more than 4 hours to build and
more than 210MB to store an index for NA and SF. ROAD

incurs considerably shorter construction time (about 1 hour)
and less storage space (<100MB). For SF, ROAD is about
∼ 25% of indexing time and ∼ 33% of index size of DistIdx.
Recall that the cost of DistIdx increases if more objects are
included. However, the index construction cost for ROAD

is only attributed to the formation of Route Overlay, which
is totally independent of the number of objects included.
This cost is independent of the number of objects added
to the system. Also, ROAD is designed to support diverse
objects. For a large system that maintains a huge amount of
different types of objects, this index construction time and
index storage can be amortized. As to be shown next, ROAD

is very efficient for updates and query processing.
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Figure 14: Index on various network

6.2 Maintenance Overhead
Next, we evaluate the index update time for object changes

and network changes. We first evaluate the update time for
object changes. In this experiment, we delete one randomly
picked object from a network and then add it back at a ran-
dom location. We repeat deletion/insertion for 100 times.
The average performances of insertions and deletions are
presented in Figure 15. DistIdx incurs several orders of mag-
nitude higher update costs than others. For NA and SF, it

takes about 2 minutes to finish one object deletion or addi-
tion. This is because it has to traverse entire networks to
update all distance signatures. In contrast, NetExp, Euclidean

and ROAD can handle update within 0.1 second for all the
networks.
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Figure 15: Object update
Similarly, we perform network change by randomly re-

moving one edge by setting its edge distance to infinity and
adding it back by recovering its original distance. The aver-
age performance of 100 trials is presented in Figure 16. The
edge change almost has unobservable impact on NetExp and
Euclidean. However, for DistIdx, distance signatures of many
nodes have to be reexamined and updated that involves a lot
of disk-write operations. Differently, ROAD only needs to up-
date affected shortcuts between some border nodes. Thus,
it has considerably lower update costs than DistIdx and it
takes < 2 seconds for NA and SF. NetExp and Euclidean are
very update-efficient. However, they are not query efficient
as to be evaluated next.
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Figure 16: Network update

6.3 Query Performance
Further, we measure the query performance of all the ap-

proaches over different numbers of objects, networks and
query types. Here, we evaluate 100 queries issued at random
positions and report the average performances in terms of
processing time.
Evaluation based on kNN query. Our first experi-
ment evaluates the query performance based on kNN query
against different factors, namely, the query parameter k, the
number of objects in the network and different networks.
We first evaluate the query parameter k varying from 1 to
5 and to 10 while the network and the number of objects
are fixed at CA and 100, respectively. The results for all
approaches are plotted in Figure 17(a). From the figure, we
can see that Euclidean takes the longest processing time for
all evaluated k’s as it suffers from false hits and incurs re-
dundant shortest path searches over the same portion of the
network. DistIdx performs slightly better than NetExp since
DistIdx has distance signatures to guide the search towards
result objects that saves network traversal overhead, but on
the other hand, these bulky distance signatures incur higher
I/O that outweighs the performance gain. For all evaluated
k’s, ROAD performs constantly the best, attributed to the
effectiveness of search space pruning.
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Figure 18: Query performance based on range query
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Figure 19: Impact of Rnet hierarchy level (l)

Figure 17(b) plots the results obtained by varying the ob-
ject cardinality from 10 up to 1, 000 while both network and
k are fixed at CA and 5. In general, increases of object car-
dinalities will reduce the average distance of objects from
a query point; thus the search range is reduced. As a re-
sult, performance (i.e., processing time) is improved (short-
ened). However, as shown in the figure, the performance for
Euclidean and DistIdx increase initially and then drop. For
Euclidean, this is because of an increase of false hit. For Dis-

tIdx, it is caused by the increased size of distance signatures.
On the other hand, the performance for both NetExp and
ROAD improves continuously as we expected. It is notewor-
thy that the difference between them narrows since ROAD

is also expansion-based; when the objects are close to query
points, objects are likely to be found within the same Rnets
where query points are located.

Finally, we evaluate kNN query on different approaches
upon various networks where k and |O| are fixed at 5 and
100, respectively. The result is depicted in Figure 17(c).
As observed from the results with CA, Euclidean performs
the worst. It is noteworthy that NA and SF have different
numbers of edges though similar numbers of network nodes,
approximation of Euclidean distance to network distance is
more appropriate for SF than NA. DistIdx perform slightly
better than NetExp. Last, ROAD performs the best.
Evaluation based on range query. Our second evalu-
ation is on range query against different approaches. We
first evaluate the query parameter, r, that represents the
search range. Figure 18(a) shows the results obtained by
varying r from 0.05 up to 0.2 of the network diameter while

we use CA and fix |O| at 100. In general, processing times
of all approaches increase when r increases. Among all the
approaches, ROAD consistently performs better than all the
others. DistIdx takes shorter processing time when small r is
used. However, when r is increased, due to the high cost of
loading of a number of distance signatures, the performance
of DistIdx drops. At last, Euclidean performs the worst.

Next, we evaluate the impact of object cardinality (|O|)
that ranges from 10 up to 1,000. The result is plot in Fig-
ure 18(b). Due to fixed range (r = 0.1), the network traver-
sal cost is reasonably fixed. Thus, we can see that NetExp

aligns with our expectation. However, due to different rea-
sons, all the other approaches have their processing time in-
creased. The processing time of Euclidean is caused by false
hits and that of DistIdx is attributed to the increased size
of distance signatures. Finally ROAD gains performance im-
provement by exploiting search space pruning. When object
cardinality increases, the performance of ROAD gets closer
to NetExp as ROAD performs almost the same as network ex-
pansion. Finally, the results based on various network are
plotted in Figure 18(c). In general, the observation is pretty
much the same as what obtained from experiments on kNN
query and it can be explained similarly.

6.4 Evaluation of Rnet hierarchy
Last, we evaluate the impact of the number of levels (l)

on the index overhead and query processing time. In this
evaluation, we vary l for CA from 2 to 6 and that for both
NA and SF from 6 to 10. To be specific, we measure the
index construction time and processing time for kNN query



(k = 5) while the numbers of objects for all the networks
are fixed at 100 and p is fixed at 4. The results are shown
in Figure 19. With the increase of Rnet hierarchy levels,
the index time increases and query processing time drops
exponentially. Although there are no optimal points found,
we can see a significant drop in query performance when
l = 4 for CA and l = 8 for NA and SF that we used as
default Rnet hierarchy levels in our experiments.

7. CONCLUSION
The rapid growth of LBSs fosters a need of efficient search

algorithms for LDSQs. In the mean time, the on-going trend
of web-based LBSs demands a system framework that can
flexibly accommodate diverse objects, provide efficient pro-
cessing of various LDSQs, and support different distance
metrics. To meet those needs, we propose ROAD, a system
framework for efficient LDSQ processing, in this paper. The
design of ROAD achieves a clean separation between objects
and network for better system flexibility and extensibility.
It exploits search space pruning, an effective and powerful
technique for object search. Upon the framework, efficient
search algorithms for common LDSQs, namely, range and
kNN queries, are devised and incremental framework main-
tenance techniques are developed. Via comprehensive exper-
iments on real road networks, ROAD is shown to outperform
the state-of-the-art techniques. As our future direction, we
are going to derive an analytical model of ROAD and to de-
velop a prototype to further evaluate its performance of the
framework as well as to devise algorithms to support LDSQs
other than those discussed in the paper.
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