
COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 105

Unrestricted mobility adds a new dimension to data access methodology—
one that must be addressed before true ubiquity can be realized.

By Baihua Zheng and Dik Lun Lee

INFORMATION
DISSEMINATION

via Wireless Broadcast

T
he advent of sensor, wireless, and
portable device technologies will
soon enable us to embed comput-
ing technologies transparently in
the environment to provide unin-

terrupted services for our daily life. With tem-
perature and location sensors and wireless access
points embedded in an environment, a person
entering an environment can be automatically
connected to the environment. All of his or her
personal computing devices will then be adapted
to the context, making all important informa-
tion readily available for the user to tackle the
tasks at hand. An important step toward the real-
ization of this pervasive environment is to be
able to disseminate timely and relevant informa-
tion to the user anytime, anywhere. Here, we
provide an overview of current research on ubiq-
uitous data access and dissemination on wireless
networks, emphasizing the differences between
the traditional database and mobile environ-
ments, and describing some recent research on
data broadcast on wireless channels.

Today, many wireless technologies such as
Bluetooth, WiFi (802.11), and 3G global com-
munication networks are available. Although
these technologies vary in many aspects, we can
look at them as an abstract cellular model where
users access information through access points.
The abstract model consists of a base station, a
number of clients, and a number of channels. A
client can acquire an uplink channel to send a
request to the base station and receive the result
from a downlink channel. While we assume that
many users can listen to the same downlink
channel to achieve broadcasting from the base
station, an uplink channel is dedicated to one
client for transmission at any time.

There are two basic approaches to disseminat-
ing data to mobile clients. In on-demand access,
a mobile client submits a request to the server,
which then returns the results to the mobile
client directly via point-to-point connection. In
periodic broadcast, data is broadcast periodically
on a wireless channel. A mobile client listens to
the broadcast channel and downloads the

�

106 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

desired data from the channel according to a query
issued from the user or a stored profile of interest on
the client.

In on-demand access, the client is actively pulling
data from the server. The server is responsible for pro-
cessing the query and returning the answer directly to
the client. On the other hand, periodic broadcast is
equivalent to the server actively pushing data to the
clients. The server determines what data should be
broadcast and its schedule on the channel. The client
listens to the channel and decides what should be
retrieved.

In a lightly loaded system, where the number of
queries generated from the clients is relatively small,
on-demand access provides fast service because the
waiting time for available channel is small. However,
its performance deteriorates rapidly as the system
workload increases because of the contention for
bandwidth among the clients.

Data broadcast is an attractive alternative to on-
demand access because it can broadcast data simulta-
neously to a large number of clients at a fixed cost. It
is suitable for location-based services, which exhibit
strong temporal and spatial locality in that clients
within the vicinity and a certain time period tend to
seek the same kind of information. For example, a
museum may broadcast its hours or current attrac-
tions to its visitors [2], whereas on-demand, point-to-
point access is used only for fulfilling occasional, ad
hoc requests.

A
broadcast system can be further classi-
fied as pure broadcast or on-demand
broadcast. Clients in pure broadcast do
not transmit any query to the server,
instead they listen passively to the chan-

nel for the interesting data items. This works in a
closed data space such as a stock quote system or
when a profile of user interest is known in advance.
Microsoft’s DirectBand Network, a low-bandwidth
broadcast built on FM stations, is a pure broadcast
system for subscribers who express their interests
through a Web site [3]. On-demand broadcast allows
the user to transmit a query as in the on-demand
access, but the result to the query is broadcast
together with results from other queries on the same
channel. The client must filter out the designated
result.

The mobile computing environment has a few
characteristics that distinguish it from the traditional
wired network. In addition to the traditional access
latency, mobile clients have limited energy power. As
a result, access techniques must take energy con-
sumption into consideration.

In on-demand access, power consumption is dom-
inated by the number of request transmissions
because all the client must do is transmit the query
and wait for the result, leaving all processing work to
the server. In this regard, effective caching methods
are vital in the reduction of the number of queries
needed. For broadcast, since the client must scan the
channel for the interested data item, its power con-
sumption can be considered as directly proportional
to the time it is listening actively to the channel,
which is referred to as tuning time.

On-Disk versus On-Air Indexing
Portable devices have limited power resources due to
their small size. It is inefficient in terms of power
consumption for the client to retrieve data by con-
tinuously listening to the channels until the desired
data arrives. Imagine a client monitoring the price of
a stock. The device must actively listen to thousands
of stock symbols on the broadcast just to pick up
one of them to display. Indexing can be used to
guide the client in the listening process so it will
activate only when the data arrives, thus reducing
power consumption. To contrast, while a traditional
database index maps a key to where the key value is
stored in memory, an index for broadcast data maps
a key to the time when the key value is broadcast.

In traditional database indexes, data is stored on
disks or in main memories. The data is always avail-
able and can be accessed randomly. However, in wire-
less broadcast, data is available “on air” in the sense it
is available on the wireless channel only transiently
and must be accessed sequentially as dictated by the
broadcast program. Search algorithms and index
methods for wireless broadcast channels should avoid
back-tracking. Existing database indexes were obvi-
ously not designed to meet this requirement and
hence perform poorly on broadcast data.

When indexing is used, the broadcast cycle contains
the index together with the actual data. When the
client is looking for information, it tunes to the chan-
nel to locate the index for the broadcast cycle, from
which it can obtain the broadcast time of the infor-
mation and sleeps until it arrives. Compared to the
total size of the data records, the index only contains
the key names and thus is relatively small. It achieves
the objective of reducing power consumption without
significantly increasing the access latency.

Location-based Services
Research on data broadcast is typically concerned
with scheduling, indexing, and caching. In general,
broadcast data is assumed to be location indepen-
dent. For example, the price of a stock is time

dependent but generally not location dependent.
That is, no matter where the data is stored and where
the user is located, the answer to a query on stock
price is the same. However, in mobile computing
where users move around, location becomes an
important dimension of data. The answer to a query
depends not only on the data values but also on the
location where the query was issued. These queries
are called location-dependent queries (LDQs). The
data involved in answering LDQs is called location-
dependent data (LDD). Here, we examine three types
of LDQs:

• Nearest-Neighbor Queries: Where is the nearest
restaurant?

• k-Nearest-Neighbor Queries: Where are the 10
nearest restaurants?

• Window Queries: Where are the hotels within this
county?

LDQs can be regarded as spatial queries, where
location conditions are derived from the location of
the user. For example, the location constraint for near-

est-neighbor queries is the current location of the user
and that for window queries is a rectangular region
bound the country.

Spatial queries have been studied for quite a while. It
is natural to assume that traditional solutions to spatial
queries can be well applied to broadcast data. Unfortu-
nately, this is not the case, as we will demonstrate.

Valid Scopes
For LDQs, a data item has different data values in
different geographic regions known as the Valid
Scopes (VSs) of the data item. Take ZIP codes, for
example. For the query “Give me the ZIP code of my
current location,” clients in Princeton will receive NJ
08544–2087 while those in UCLA will get CA
90095–1361. A ZIP code can be regarded as a LDD
item, and its VS is defined by the ZIP code bound-
ary map (see Figure 1(a)).

VSs can be defined differently for different types of

applications. The VS of ZIP code is defined by the
postal office, whereas the VS of nearest-neighbor
queries is defined by the Voronoi Diagram (VD) [1].
Figure 1(b) shows two international airports in New
Jersey. The state is partitioned into two parts by the
VD. For this simple example, it is the perpendicular
bisector between the two airports. For clients in the
region above the dashed line, Newark airport is the
nearest one, while the Atlantic City airport is the near-
est one for the clients below the dashed line.

VSs can also be defined symbolically. For example,
when users move across cells in a cellular system, they
must find out which cell they are in. The VS for this
type of query is the radio coverage of the cells, as
shown in Figure 1(c).

In general, VS does not have to be a contiguous
geographical region. For example, when a user asks for
the temperature at his or her current location, the
answer may be 40ºF. The VS for this answer could
consist of disjoint regions, in which the temperatures
are all 40ºF (shadowed parts of Figure 1(d)).

We can see that some applications require the VSs
to be known (for example, in the ZIP code and tem-

perature examples), whereas some
applications are primarily inter-
ested in object locations (for exam-
ple, the locations of the airports or
base stations). In the latter, queries
can be computed purely based on
the object locations. However, the
major benefit of knowing the VS is
twofold. First, it leads to the devel-
opment of fast indexing and query
processing algorithms, which we
describe later. Second, once a
query is answered, the client does
not need to ask the same query
again as long as he stays within the
VS. This can be used as a spatial

caching scheme to significantly reduce the number of
queries submitted and is mandatory for the support of
continuous queries [6, 7].

Object versus VS Indexing
Indexing methods for LDD can be divided into two
categories, namely, object-based and solution-based
indexes. An object-based index is built on object
locations, like a traditional R-tree, which records the
coordinates of each object in the tree. An object-
based index can be used to answer a broad range of
queries, including NN, kNN, and window queries,
since it records the raw location information about
the objects, thus supporting any spatial queries.

A solution-based index is built for a specific type of

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 107

NJ 07102-1982

(a) ZIP Code (b) Nearest neighbors (c) Wireless cells (d) Temperatures

Newark
International Airport

A B 36F

45F

36F

D E
C

G H

JI

F

Atlantic City
International Airport

NJ 08544-2087

NJ 08401-0000

40F

38F

40F

Figure 1. Examples
of valid scope (New
Jersey).

queries. A precomputed
solution space is first
obtained for the type of
query. Then, an index is
built on the solution
space. For the LDQs dis-
cussed here, the solution
space is the VS, as illus-
trated in Figure 1.
A solution-based index
essentially indexes the
boundaries of the VSs so
that given a query point, it can identify the VS contain-
ing the query point and return the associated data (for
example, the ZIP code information or temperature).

We can see that LDQs require an index to map a
query point into one of the VSs and return the associ-
ated data of the VS. Since the VS of a query can be
viewed as a set of polygons, the index essentially maps
a query point to one of the polygons. Besides meeting
the linear search requirement of wireless broadcast, the
index must be small so it won’t lengthen the broadcast
cycle, and thus the access latency. Most spatial indexes
were developed for the traditional disk-based environ-
ment and, as such, are not optimized for any of these
requirements.

A D-tree is a design
motivated by the consid-
erations noted here [5].
The basic idea is to index
VSs based on the divi-
sions that form VSs’
boundaries. For a space
containing a set of VSs
that are disjoint and com-
plementary, it recursively
partitions the space into
two subspaces having a
similar number of VSs until each space only contains
one VS. Figure 2(a) shows a VD for fours objects.
Polyline pl(v2,, v3, v4, v6) partitions the original space
into P5 and P6, and pl(v1, v3) and pl(v4, v5) further par-
tition P5 into P1 and P2, and P6 into P3 and P4, respec-
tively. Each node of the D-tree contains some header
information (for example, partition dimension), the
pointers to the children, and the partition in the form
of a polyline. The search algorithm starts from the
root, and recursively follows either the left or right
pointer according to the partition and the query point
until a data pointer is reached. The D-tree has been
shown to have a much better performance than the
traditional indexes in terms of tuning time and access
latency [5].

We can also see that a D-tree’s storage requirement

is minimal in the sense
the polylines are the
minimum information
needed for the recon-
struction of the VS. Fur-
thermore, given a query
point, the search from the
root node to the target
leaf node is fixed and tra-
verses only one branch,
making it suitable for the
linear broadcasting envi-
ronment.

Hybrid index for NN
queries. In principle, an

LDQ can always be answered using a solution-based
approach because for any type of query a solution
space must exist and can be precomputed if we don’t
consider the construction, update, and storage costs.
However, the storage cost of a solution-based
approach is definitely larger than that of an object-
based approach. This is because a VS typically has
many edges. It requires much more space to index the
polygons than the objects, thus leading to poor search
speed and high update cost if the index structure is
not designed appropriately.

The grid-partition
index is an efficient
index for NN queries.
Given a VD, the grid-
partition index first par-
titions it into disjoint
grid cells. For each grid
cell, it identifies and
stores the objects that
are potential NNs of any
query point that falls
into the grid cell. In
Figure 2(b), the VD is
partitioned into grid
cells of equal size,

namely G1 to G4. Take G1 as an example, a query
point within G1 can only have two potential NNs,
namely, O1 and O2. As such, this association, <G1, O1,
O2 > can be kept in the index.

The next problem for the realization of the grid-
partition index is to identify the potential NNs for a
grid cell. For NN search, each subspace in a VD
defines the VS of that object. Hence, only the objects
whose VSs overlap with that grid cell can be a poten-
tial nearest neighbor to a query point in that cell.
However, this method requires the VD to be first
constructed, which is expensive to create and main-
tain. To avoid the use of VD, a new algorithm was

108 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

P3

P4o4

o3

o1

o2

V4

V5

P6
V2

V3

P1

P2

V6

V1

P5

(a) (b)

G1

SY

Sx

G2 G3 G4

o1

gy

gx

o3

o4
o2

Figure 2. (a) D-tree and (b)
Grid-partitioned indexes.

1 2

0 3

(a) Order 1

q4 8

13 122

1 14 150
a b

3

5 6 9 10

11

(b) Order 2

Figure 3. Window query and kNN
search based on Hilbert Curve.

developed to find all potential NNs to a grid cell using
the Delaunay Triangulation (DT), the straight-line
dual of VDs [1]. The Delaunay Graph has the objects
as vertices and edges connect two objects if and only
if their VSs are adjacent. It has some nice properties:
it can be computed without first obtaining the VD,
thus avoiding the high cost of constructing the VD; it
can be computed incrementally, thus lending itself to
efficient updates.

The grid-partition index can be considered as a
hybrid index, combining the advantages of solution-
based and object-based indexes. It is a solution-based
index because it indexes the VS of a query. However,
instead of storing the boundaries of the VS, it stores
the object locations. As a result, it is both fast and
storage efficient.

General special queries. Although work has been
done in finding VSs for kNN and window queries [6],
the overheads in computing and broadcasting the VSs
for different query types could be expensive. Here, we
look at a different approach based on object indexing.
Since VSs are not precomputed, it can support both
kNN and window queries at the same time.

Since most spatial queries incur searching on objects
close to each other, we can apply space-filling curves to
arrange objects so that spatially near objects are put
together on the broadcast. Figure 3 shows the basic
Hilbert Curve of order 1 and 2. To derive a curve of
order i, each vertex of the basic curve is replaced by an
order (i – 1) curve, which may be strategically rotated
and/or reflected to fit the new curve.

The numeric labels represent the positions of the
objects on the Hilbert Curve. For example, point (1,
1) has the index value 2 in the order 2 curve shown in
Figure 3(b). After the Hilbert Curve is obtained, an
index (for example, a B+-tree) is built on the labels
and serves as the index of the broadcast objects.

Given a query window, we can identify the first
and last point within the window that the Hilbert
Curve visits [4]. In the example shown in Figure 3(b),

the rectangle in the dotted line is the query window,
and points a and b are, respectively, the first and last
point within the query window visited by the Hilbert
Curve. We can conclude that points lying before a
and after b along the Hilbert Curve are not inside the
query window. Consequently, the client need only
check the objects between a and b inclusive on the
curve (that is, points between 2 and 13 inclusive),
compute their actual Euclidean distances, and elimi-
nate those not lying within the window (that is,
objects 10, 11, and 12).

To answer a kNN query, we can first determine the
smallest possible window containing the k nearest
neighbors. Then, we can check the objects within the
window to find the actual k nearest neighbors. This
method requires scanning the Hilbert Curve twice. In
the first scan, we identify the k objects around the
query point on the Hilbert Curve. Based on these
objects, we can determine the smallest window cen-
tered at q that encloses these k objects. This window
is guaranteed to contain the kNN objects of q in the
Euclidean space. The window approximates the
search range within which further search can be done
to obtain the actual answers.

I
n the second scan, the objects within the win-
dow are fetched and their Euclidean distances
from the query point are computed to obtain
the k nearest neighbors. The example in Figure
3(b) shows a 4NN query issued at point q. The

first scan returns objects 5, 6, 8, and 9, which are the
immediate objects before and after q on the Hilbert
Curve. However, it is clear they are not actually the
four nearest objects to the query point in the 2D-
Euclidean space, but can be used to approximate the
search range containing the results (see the dotted
square circle centered at q in Figure 3(b)). The second
scan will return all the objects within the search win-
dow. This is similar to the window query described
earlier, but in this case the client checks the Euclidean

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 109

Glossary
Voronoi Diagram. Based on n given point objects, the Voronoi Diagram partitions the space into n subspaces,
with each subspace containing exact one object. For any point within a subspace, the corresponding object is its
nearest neighbor.

Delaunay Triangulation is the dual graph of the Voronoi Diagram. The objects in Voronoi Diagram are the
vertexes, and any two objects whose corresponding subspaces are adjacent are connected using a segment.

Hilbert Curve is one kind of space-filling curve, which visits all the objects in an n-dimensional space only once
without crossing itself. The basic curve is depicted in Figure 3(a) with order 1. To derive a curve of order i, each
vertex of the basic curve is replaced by an order (i – 1) curve, which may be strategically rotated and/or
reflected to fit the new curve.

distances to find out the four actual nearest objects
(that is, objects 2, 4, 6, and 8 within the dashed circle).

We can see that space filling curves can answer
these common spatial queries efficiently and are suit-
able for broadcast data. kNN queries require navigat-
ing the index information twice. This can be done by
broadcasting the index twice within a broadcast cycle.

Conclusion
Wireless networking and portable digital devices pro-
vide people with unrestricted mobility. Conse-
quently, location becomes a very important property
of data and introduces a new dimension to the design
of data access methods. Traditional data access meth-
ods are not suitable for the mobile environment since
they were designed for a wired environment where
users do not usually move around. Here, we have
analyzed the differences between data access methods
in these two environments and provide an overview
of recent research in dealing with spatial queries in
the mobile environment with a particular emphasis
on broadcast data. The combination of wireless
broadcast, sensor networks, data/user mobility and
context awareness will surely open up many interest-
ing research issues toward the realization of pervasive
computing environments.

References
1. Berg, M., Kreveld, M., Overmars, M., and Schwarzkopf, O. Computa-

tional Geometry: Algorithms and Applications. Springer-Verlag, New
York, 1996.

2. Cheverst, K., Mitchell, K., and Davies, N. The role of adaptive hyper-
media in a context-aware tourist guide. Commun. ACM 45, 5 (May
2002), 47–51.

3. Microsoft Corp. What is the DirectBand Network? 2003;
www.microsoft.com/resources/spot/direct.mspx.

4. Moore, D. Hilbert curve; www.caam.rice.edu/dougm/twiddle/Hilbert.
5. Xu, J., Zheng, B., Lee, W-C, and Lee, D.L.. Energy efficient index for

querying location-dependent data in mobile broadcast environments. In
Proceedings of the 19th IEEE International Conference on Data Engineer-
ing. (Bangalore, India, Mar. 2003), 239–250.

6. Zhang, J., Zhu, M., Papadias, D., Tao, Y., and Lee, D. Location-based
spatial queries. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. (San Diego, CA, 2003).

7. Zheng, B. and Lee, D.L. Semantic caching in location-dependent query
processing. In Proceedings of the 7th International Symposium on Spatial
and Temporal Databases. (Los Angeles, CA, July 2001), 97–116.

Baihua Zheng (bhzheng@smu.edu.sg) is an assistant professor at
the School of Information Systems, Singapore Management University.
Dik Lun Lee (dlee@cs.ust.hk) is a professor in the Department of
Computer Science, Hong Kong University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2005 ACM 0001-0782/05/0500 $5.00c

110 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

