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Abstract. Owing to the advent of wireless networking and personal digital devices, information systems in the era of mobile computing
are expected to be able to handle a tremendous amount of traffic and service requests from the users. Wireless data broadcast, thanks to its
high scalability, is particularly suitable for meeting such a challenge. Indexing techniques have been developed for wireless data broadcast
systems in order to conserve the scarce power resources in mobile clients. However, most of the previous studies do not take into account
the impact of location information of users. In this paper, we address the issues of supporting spatial queries (including window queries
and kNN queries) of location-dependent information via wireless data broadcast. A linear index structure based on the Hilbert curve and
corresponding search algorithms are proposed to answer spatial queries on air. Experiments are conducted to evaluate the performance of
the proposed indexing technique. Results show that the proposed index and its enhancement outperform existing algorithms significantly.
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1. Introduction

As envisaged by Mark Weiser a decade ago, pervasive com-
puting has gradually become an essential part of our daily
lives. Various research and engineering effort on communica-
tions, services, infrastructures, and devices has been put forth
to bring this vision of pervasive computing towards a reality.
While engineers and researchers around the world continue
chip away various technical obstacles to this vision, there are
still a lot of challenges to be overcome [28]. Among those,
scalability is one of the most important issues because of a
dramatic increase in the number of users and applications in-
volved.

Context-awareness has been seen as a critical element of
pervasive computing, which refers to the special capability of
an information infrastructure to recognize and react to real-
world context. Context refers to information that describes
conditions or situations where computation may adapt ac-
cordingly [1]. Location is an intuitive but important class
of context information. Thus, location-awareness is natu-
rally the first step to facilitate context-awareness. In pervasive
computing environments, the mobility of users, applications,
and data objects brings in another dimension of complexity to
query processing in information systems. For example, an en-
quiry regarding to traffic condition should be answered based
on the current location of the user (i.e., the query issuer). Be-
cause of the fact that a user may move, many existing tech-
niques for processing spatial data and queries may no longer
be efficient or workable since they are mostly based on the
assumptions of fixed data and query points. Thus, scalability

and mobility issues represent two primary challenges for the
information systems in the pervasive computing era.

In this paper, we explore the scalability and mobility issues
of supporting location-dependent spatial queries (LDSQs)
in pervasive computing environments. Wireless broadcast,
which has long been used for radio and TV signal trans-
mission, is a natural solution to address the scalability issue.
The smart personal objects technology (SPOT), recently an-
nounced by Microsoft at 2003 International Consumer Elec-
tronics Show (CES), has further exploited the feasibility of
using wireless data broadcast in the pervasive computing
era [24]. With a continuous broadcast network (called Direct-
Band Network) using FM radio subcarrier frequencies, SPOT-
based devices such as watches and alarms, can continuously
receive timely, location-aware, personalized information.

There are studies in the literature showing that wireless
data broadcast is an efficient approach to disseminating in-
formation to an arbitrarily large number of mobile informa-
tion consumers [2,8,9]. However, most of the previous stud-
ies only addressed the dissemination via wireless broadcast
without taking into account the impact caused by location in-
formation. In this paper, as a first step towards this direction,
we address the issues of supporting LDSQs in wireless broad-
cast systems. We assume that information objects with spatial
properties (i.e., location) are disseminated on wireless data
channels (similar to radio or TV channels). Information con-
sumers (e.g., devices or applications) retrieve information ob-
jects from the wireless data channels to answer queries from
their users. To simplify our discussions, in the context of this
paper, we consider only the mobile devices as the informa-
tion consumers and assume that the mobile devices know their
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current locations.1 Thus, LDSQs can be processed locally at
the devices, without submitting the location information to
the server.

As we will detail later in the paper, the specific character-
istics of LDSQs and broadcast systems introduce many new
challenges that make it impossible to directly employ exist-
ing techniques. For example, the answer to a query may be
sensitive to the location where the query is issued. Thus, it
may not always be valid to the same query issued from a dif-
ferent location. Moreover, instead of being always available
when stored in disks or memories, the index information is
only available when it is on broadcast. In a previous work,
we have exploited some aspects of location-dependent query
processing. Grid-partition index focuses on nearest-neighbor
search in wireless broadcast environments [36], while D-tree
is aiming at supporting point queries in a non-overlapped spa-
tial solution space [34]. In a recent paper [35], we propose
a general indexing structure for provisioning the most com-
mon spatial queries, including window queries and k nearest
neighbor queries. This represents the first effort on support-
ing spatial queries in a wireless broadcast environment. In
this paper, we extend the previous work. Our contributions
are four-fold:

• A new research direction of provisioning spatial informa-
tion and supporting spatial queries in the wireless data
broadcast systems is identified and studied. Particularly,
the location-dependencies of query results to their users
are exploited.

• A new index structure based on the Hilbert curve is pro-
posed.

• A cost model is developed to measure the performance of
the proposed index and to provide technical insights.

• A simulation is conducted to compare our proposal with
state-of-the-art indexes, using both synthetical data and
real data.

The rest of this paper is organized as follows. A brief
review of the broadcast-based and traditional solutions for
spatial queries is provided in section 2. In section 3, we an-
alyze the requirements for supporting spatial queries in wire-
less data broadcast systems. Based on these requirements and
our analysis, a new index structure based on the Hilbert curve,
a space filling curve, is proposed. A simulation based per-
formance evaluation is conducted in section 4. Finally, we
conclude this paper in section 5.

2. Preliminary and related work

To the best of our knowledge, this is the first work on sup-
porting general location-dependent spatial queries in wireless
data broadcast environments. In the following, we briefly re-
view the existing work related to location-dependent spatial
queries and wireless data broadcast.

1 With rapid technical advances and cost reduction of GPS and network tri-
angulation technologies, this is a reasonable assumption.

2.1. Location-dependent spatial queries

Due to the mobility of users in pervasive computing environ-
ments, the answer to a spatial query may be dependent on
the location of its consumer (i.e., the mobile device). Thus,
we term this kind of queries as location-dependent spatial
queries. In this paper, we concentrate on two common classes
of spatial queries, namely, window queries and k-nearest-
neighbor (kNN) search. We assume that the data objects are
represented as points in the spatial space. Window queries
find the objects that are located within a given window, which
is a rectangle in a 2-dimensional space. kNN queries, as the
term indicates, return k objects in the spatial space (which
contains n objects where n � k) closest to a given query
point.

R-tree [12] and its variants, such as R+-tree [31] and R∗-
tree [4], provide a good solution to window queries in tradi-
tional disk-based spatial databases. Based on certain heuris-
tics, the objects close to each other are grouped into leaf
nodes of the trees. Internal nodes use the minimal-bounding
rectangles (MBRs) to represent areas that cover all the sub-
areas represented by their children nodes. Therefore, a win-
dow query is processed by visiting the tree nodes that overlap
with the query window. If the objects are available a priori,
some packing algorithms can be employed to build R-tree to
achieve a better search performance.

kNN search, a well-known problem in computational
geometry, was first formulated by Minsky and Papert in
1969 [25]. In the 1990s, researchers in spatial databases
became interested in this problem [27,30] and gradually ex-
tended it into a high-dimensional space, such as image sim-
ilarity comparison and content-based retrieval in multimedia
applications [5,13]. In addition, some studies have developed
approximation algorithms for the problem [10]. Based on the
the number of scans on a dataset, the kNN algorithms can be
classified into two categories: single-step search and multi-
step search.

Single-step search. This category of algorithms searches an-
swers based on associated index structures. They scan the
dataset, D, only once. Several different approaches are de-
scribed in the literature. Branch-and-bound algorithms use
distance-based heuristics to determine the next node to visit
and to prune branches that would never be visited, and the
variants mainly differ in searching orders and the metrics
used to prune the branches [7,15,27]. Incremental algorithms
report the qualified spatial objects one by one to facilitate
pipelined query processing, especially for complex queries
involving proximity [14]. Some approaches directly use the
Voronoi-Diagrams, which provide the solution space of kNN
search for a fixed k [3].

Multi-step search. There are situations in practice where a
complex similarity distance between two spatial objects is
very expensive to obtain. To address this issue, multi-step
algorithms have been proposed to use cheaper filter distance
functions to first obtain candidate sets (in the filter steps) for
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Figure 1. Data and index organization on the broadcast channel using the (1,m) interleaving technique.

exact evaluation later in the refinement steps. Korn et al. pro-
posed an adapted algorithm [21]. First, a set of k primary
candidates was selected based on stored statistics to obtain the
upper bound dmax, which can guarantee that there are at least
k objects within the distance dmax from the query point q .
Next, a range query was executed on the dataset to retrieve
the final candidates. An extended version of this algorithm
was proposed in [30] in which dmax was adapted every time a
candidate object was checked.

Given a spatial query, such as a kNN query, a naive way of
finding the answer set is to use brute force by checking each
object and choosing those that satisfy the conditions to form
the final answer set. However, this kind of naive solution in-
curs a large search space, resulting in a long search time. In
order to answer spatial queries more efficiently, algorithms
are usually designed according to two common objectives:
(1) reducing the size of retrieved data set; and (2) optimizing
the representation of data objects. The former is realized by
intelligent filtering algorithms that can detect nearly all the
not-qualified objects, and the latter is achieved by an efficient
representation scheme to use less bits to represent the basic
information of the objects. In general, various methods have
been employed to achieve these objectives [10]. For example,
heuristic distance information can help to prune the impossi-
ble nodes in order to reduce the number of visited nodes [27],
and the hashing strategy is used in [33] to limit the search
space.

2.2. Wireless data broadcast

Generally speaking, there are two basic approaches to deliv-
ering information to mobile clients: (1) On-demand access.
A mobile client issues a request to the server. The server lo-
cates the appropriate data and returns it to the mobile client.
(2) Broadcast. Data are broadcast on one or more wireless
channels open to the public. After a mobile client receives
a query from its user, it tunes into the broadcast channel and
receives data in accordance with specified query conditions.
Hybrid approaches that combine the above two have also been
configured [16].

Compared to on-demand access, broadcast has the advan-
tage of scaling up to serve an arbitrary number of clients with-
out incurring additional cost at the server site. Hence, it is a
promising and desirable dissemination method for the future
pervasive computing environment where the client base is ex-
pected to be huge.

To facilitate information services on wireless broadcast
channels, index information is typically broadcast along with
the data objects. Studies show that interleaving index infor-
mation with data objects may assist mobile clients to filter
out unwanted information during query processing and re-
duce consumption of mobile clients’ battery power [18,22].
By looking up the index, the mobile client is able to pre-
dict the arrival time of the desired data and only needs to
tune into the broadcast channel when the requested data ar-
rives. Broadcast organizations that properly interleave index
and data objects on the broadcast channel can significantly
improve energy efficiency at the minimal expense of access
efficiency. Figure 1 illustrates a well-known broadcast orga-
nization called (1,m) interleaving technique [18]. As shown,
the whole index is broadcasted preceding every 1/m fraction
of the broadcast cycle, the period of time when a complete
set of data objects is disseminated. By replicating the index
for m times, the waiting time for reaching the root node of
a forthcoming index segment can be reduced. To further re-
duce the power consumption, each index node (except for the
root) and each data object maintains a pointer to the root of
the next index. The access protocol for receiving information
off a broadcast channel involves the following steps:

Initial probe. The client tunes into the broadcast channel
and determines when the next index will be broadcast. It
then turns into the power saving mode until the next index
arrives.

Index search. The client searches the index. It follows a
sequence of index nodes (by selectively tuning into the
broadcast channel) to locate the desired data objects and
to determine when to tune into the broadcast channel to re-
ceive them. It waits for the arrival of the data in the power
saving mode.

Data retrieval. The client tunes into the channel when the
desired data arrives and downloads the data.

In wireless communications, a bit stream is normally de-
livered in the unit of packet (or frame), for the purposes such
as error-detecting, error-correction, and synchronization [18].
For example, in the GPRS network a packet can contain the
data of up to 1600 bytes [6]. As a result, data are accessed
by clients also in the unit of packet, similar to the concept of
page in traditional databases. In the following description, we
use page, rather than packet (frame), for its generosity.
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(a) (b)

Figure 2. Linear access on wireless broadcast channel. (a) R-tree index. (b) Branch-and-Bound search.

2.3. Observations

There are some factors making access to location-dependent
spatial information in wireless broadcast systems different
from that in traditional databases. These differences introduce
new research challenges and motivate our work and they are
summarized below.

Resource constraints. Due to their portability, mobile de-
vices have various inherited limitations, such as small user-
interfaces, limited storage spaces, and scarce battery power.
Among these, power supply is particularly important since
it keeps the devices and applications running. Hence, algo-
rithms designed to run on mobile devices should cater to all
these limitations.

Mobility. The unlimited mobility of clients makes the ac-
cess to location-dependent information a new and challenging
topic, especially when a client issues a LDSQ associated with
her position. Existing query processing strategies in tradi-
tional databases have not taken into consideration this mobil-
ity and changing location issues. Therefore, new information
access and dissemination schemes need to be devised.

On air index. An important characteristic of wireless data
broadcast is that the index information is on air. Index in-
formation is available to the clients only when it is currently
being broadcast. Hence, when an algorithm traverses the in-
dex packets in an order different from the broadcast sequence,
it has to wait for the next time the packet is broadcast. In
contrast, the index for traditional databases is stored in res-
ident storages, such as memories and disks. Consequently,
it is available anytime. Since nearly all the existing index
structures and algorithms devised for traditional databases do
not consider the time-series characteristics of the air index,
they cannot be easily deployed in wireless broadcast environ-
ments. An example of the well-known R-tree index is given
in figure 2. Assuming that the query processing algorithm
first visits the node R2 and then R1, and that the server first
broadcasts node R1 then node R2, the access latency is signif-
icantly extended since the node R1 is not available until the
next cycle.

As a conclusion, a good index structure and associated al-
gorithms serving spatial queries in a wireless broadcast en-
vironment should incur small space cost, take linear broad-
cast order into account, and perform the search efficiently (in
terms of power and access).

Regarding the performance metrics, tuning time and ac-
cess latency are employed in this study. The former is the time
spent by a client listening to the broadcast channels, logically
representing the client’s power consumption. It includes the
time to search in the index and the time to download the de-
sired data. Since the time used to download data is fixed for
a given environment, we only measure the index search time
for this metric. The latter is the time duration from the point
that the client requests some data to the point that the desired
data is received. Both the tuning time and the access latency
are measured in terms of number of page accesses [17,18].

3. Hilbert-curve index structure

In wireless data broadcast, data packets are sequentially de-
livered on the broadcast channel. Thus, organizing data in a
way such that the users can efficiently retrieve data is criti-
cal. In response to the linear property of wireless broadcast
channels, we propose a new index structure, based on a space-
filling curve, to facilitate the processing of LDSQs by linear
scanning of the dataset (rather than random traversal of the
index nodes in accordance with some heuristics). A space-
filling curve is a continuous path that visits every point in a
k-dimensional grid exactly once without crossing itself. Well-
known space filling curves, including the z-curve, the Gray-
coded curve, and the Peano curve, are different in the order
in which the points in the grid space are visited. The Hilbert
curve, due to its optimal locality [11], is chosen in this pa-
per to build an index for LDSQs. In this section, we first
explain the basic idea of using the Hilbert curve for wireless
data broadcast. We then go into the details of the proposed
algorithms for answering LDSQs.

Like many other space-filling curves, the Hilbert curve
maps points from a multi-dimensional space to a one-
dimensional space. Locality is an important metric for choos-
ing space-filling curves. A mapping from n dimensions to m

dimensions (where m < n) is considered to have good locality
if points that are close to each other in original n-dimensional
space are also close to each other after being mapped onto
an m-dimensional space. Considering the nearest neighbors
along the grid axes only, each grid point has 2n nearest neigh-
bors in the original space. However, it will only have 2m

nearest neighbors after being mapped onto an m-dimensional
space. Therefore, for a mapping from n dimensions to one di-
mension, such as the Hilbert curve, the best that we can hope
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(a) H1

(b) H2

(c) H3

Figure 3. Hilbert curves of order 1, 2 and 3.

for is to have two of the 2n nearest neighbors remain as near-
est neighbors in the one-dimensional space. This subjective
criteria is met by the Hilbert curve, which guarantees a good
locality feature.

Figure 3(a) shows the basic Hilbert curve of order 1. To
derive a curve of order i, each vertex of the basic curve is re-
placed by a curve of order i−1, which may be strategically ro-
tated and/or reflected to fit the new curve. The Hilbert curves
of orders 2 and 3 are depicted in figures 3(b) and 3(c), respec-
tively. The number, called index value in this paper, repre-
sents the order of visits at different points in the Hilbert curve.
For example, point (1, 1) has the index value 2 in curve H2.

To address the issue of denoting the nodes, the Hilbert
curve needs to allocate sufficient number of bits to represent
the index values in order to guarantee that each of the point in
the original space has a distinct value. Let ci be the number
of bits used for a coordinate in the ith dimension of the tar-
geted m-dimensional space. A total of

∑m
i=1 ci bits need to

be allocated to represent an index value in the m-dimensional
space. As such, each point in the original space can be prop-
erly represented in the new space.

Given the mapping function of the Hilbert curve, it is easy
for a client to perform a conversion between coordinates and
Hilbert-curve index values. Let n be the number of bits as-
signed to represent a coordinate, the expected time for the
conversion is O(n2). Since n is a pre-set system constant, the
conversion can be done in a constant time. Readers who are

interested in the details of a conversion algorithm may refer
to [26].

Even though the Hilbert curve has been previously em-
ployed in spatial indexes [19,20], what we propose in this
paper is fundamentally different from existing ones. First,
while geometrical information, such as MBRs of spatial ob-
jects, is maintained in those previously proposed indexes, we
only consider the pure linear index value. Second, the search
algorithms in the previous studies are typically based on geo-
metrical distribution and certain heuristics derived from the
index (e.g., R-tree). As we pointed out earlier, this strategy
may not be applicable in a wireless broadcast environment.
In this paper, we use index values to guide searches and only
use geometric information for filtering in the final step.

The Hilbert curve facilitates the linear scan of objects in a
multi-dimensional space. Thus, the problem is reduced to a
question of how to answer LDSQs based on data broadcast in
the order of the Hilbert curve. In the next two sub-sections,
we answer this question by proposing two algorithms for win-
dow queries and kNN queries, two of the most important
classes of LDSQs.

3.1. Window queries

To process a window query based on Hilbert-curve index, the
basic idea is to decide a candidate set of points along the
Hilbert curve which includes all the points fallen within the
query window. These points are retrieved to filter out those
fallen outside the window. There is an existing algorithm that
can determine the first or last point lying on the boundary of
a box visited by the Hilbert curve, with a time complexity of
O(nd) [26]. Here, n is the number of bits used to represent
a coordinate in one dimension and d is the dimensionality of
the search space. As in figure 6(a), regarding the dashed-line
rectangle as the bounding box, the first point is point a and
the last point is b, sorted according to their occurring orders
on the Hilbert curve. If this dashed-line rectangle is the query
window, all the points inside this query window should lie
on the Hilbert curve segmented by points a and b. In other
words, the values of points a and b bound the Hilbert curve
values of all the candidate points.

In the following, we prove that the set of points bounded
by the largest and the smallest Hilbert-curve index values on
the query window contains all the points satisfying the query.

Claim 1. For a given window, the point p inside the query
window that has the largest Hilbert-curve index value must
be lying on the bounding box of the query window.

Proof. Assume that there is a point p′ inside the query win-
dow which has a larger index value than p. Since the Hilbert
curve is a continuous path to visit every point in the search
space, there must be a point p′′ outside of the query win-
dow, having a larger index value than p′.2 Considering a

2 Otherwise, p′ is the last point of the Hilbert curve and must be on the
boundary of the original search space, therefore it cannot be inside the given
window.
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Algorithm 1 (Window queries).
Input: a query window w, sorted objects’ indexes.
Output: objects within query window.
Procedure:
1: w = overlap (w, search space); result = ∅;
2: compute_bounding_points(w, first, last);

//first and last mean the smallest and largest index value;
3: for any object whose index value v within the range [first, last] do
4: p = index_to_coor(v);
5: if within_window(w,p) == 1 then
6: result = result ∪ {p};
7: end if
8: end for
9: return result;

line connecting p′ and p′′, it must intersect the bounding
box on point q . Since the index values of the points on the
Hilbert curve are monotonously increasing, the index value of
q which is between p′ and p′′ must be larger than that of p′.
Consequently, the index value of q is larger than p, which
has the biggest value according to our statement. Hence, the
previous assumption fails and the point p having the largest
value should be on the bounding box. Therefore, our claim is
proven. �

Similarly, the point within the query window that has the
smallest index value is guaranteed to be on the boundary. The
detailed algorithm for processing window query is presented
in algorithm 1. In order to simplify our discussion, a two-
dimensional space is assumed and the derived conclusion can
be easily extended to a high-dimensional space.

In summary, for a given window query, the intersection of
the query window and the whole search space serves as the
real query window. Taking the query window bounded by the
dashed line in figure 6(a) as an example, the steps employed
to answer a window query are illustrated as follows. First, the
first and last points on the bounding box are detected whose
values bound the range of all the candidate objects along the
Hilbert curve, i.e., point a and point b. Second, all the objects
having value between 9 and 54 are detected. Finally, a filter-
ing mechanism is employed to find the objects belonging to
the real answer set, via checking the coordinates of the object
with the query window.

3.2. kNN queries

A general strategy employed by any kNN algorithm is to de-
termine a search space that is not too small to lose any correct
answer and not too big to perform any unnecessary search. It
is ideal to know the exact distance between the query point q

and its kth nearest neighbor ok (dis(q, ok)), because the cir-
cle having q as the center and dis(q, ok) as the radius bounds
the necessary and sufficient search space that contains all the
answers. However, it is difficult to obtain the exact distance
dis(q, ok) and an alternative is to estimate the distance. As de-
scribed in section 2, some optimistic algorithms use tight pre-
diction to avoid any unnecessary search and some pessimistic
ones use a loose estimation to avoid any loss of the requested

Algorithm 2 (kNN queries).
Input: a query point q, sorted objects’ indexes.
Output: k nearest neighbors.
Procedure:
1: indexq = coor_to_index(q);
2: locate the ith object oi who has the nearest index value (indexi ) to

indexq ;
3: begin = max(0, i − k/2);
4: for j = begin, rad = 0; j =< (begin + k); j + + do
5: p = index_to_coor(indexj ); rad = max(rad, distance(p, q));
6: end for
7: let squ be the bounding square centered at q and having 2rad as

side length;
8: result_set = window_query(squ); answer_set = ∅; max_dis = 0;
9: for each object op in the result_set do

10: dis = distance(op, q)

11: if (answer_set is not full) then
12: answer_set = answer_set ∪ {op}; max_dis = max(max_dis, dis);
13: else
14: if dis < max_dis then
15: replace the farthest object in the answer_set with op and update

max_dis correspondingly;
16: end if
17: end if
18: end for
19: return answer_set;

Figure 4. An example for kNN search.

objects. In our algorithm, a range estimation algorithm is pro-
posed based on the locality property of the Hilbert curve. The
pseudo-code is given in algorithm 2.

As the first step, the k nearest objects to the query point
along the Hilbert curve are found and a minimal circle cen-
tered at query point and containing all those k objects is con-
structed. The MBR of that circle, having at least k objects
and definitely causing no loss, serves as the search range. As
the example depicted in figure 4, the query point q wants to
find its 4 nearest neighbors. Locating q at the Hilbert curve,
the 4 nearest objects along the Hilbert curve can be detected,
which are objects having values of 5, 6, 8, and 9, respectively.
According to those four objects, a bounding circle denoted by
dashed-line can de determined that is guaranteed to contain at
least those 4 objects inside. Based on that circle, a window
query, denoted by the dotted-line square, is issued to find all
the candidate objects, whose number is at least 4. Finally, the
real 4 nearest objects can be found by comparing the distance.

One question left is whether the range returned by search-
ing the Hilbert curve is too loose, since a loose range results in
the unnecessary search and a poor performance. Thanks to the
fact that the Hilbert curve is close to optimal locality [11], the
kNN objects should lie near the query point along the Hilbert



SPATIAL QUERIES IN WIRELESS BROADCAST SYSTEMS 729

Figure 5. B+-tree of Hilbert curve values.

curve. Consequently, we assume that the bounding rectangle
only introduces limited extra search. Later simulation results
provide evidences for this assumption.

The other problem of this search algorithm is that the in-
dexing information has to be replicated in the broadcast pro-
gram to enable twice-scanning. For the first scanning, the
values of objects along the Hilbert curve are broadcast to en-
able the query point to decide the search range according to
its location and requested k. In the second part, the similar
information is broadcast again to allow the clients to retrieve
answers based on the search range. In the later experiment
section, we can find that duplication results in a larger index
storage cost, which has a direct impact on clients’ access la-
tency.

3.3. Search improvement

The locality of the Hilbert curve is a major factor to decide
the performance of our algorithms. If the nearby points in
the original search space have big differences among their in-
dex values, the window query will have to check much more
points than necessary. A motivating example is depicted in
figure 6(a) in which the dashed rectangle represents a query
window. Employing our original algorithm, all the points
whose index values between 9 and 54 should be checked. Ob-
viously, this range actually contains many points outside the
window.

It can be observed from the Hilbert curve that the order i

curve is derived from order i − 1 curve. If a query window
crosses several order i − 1 curves, it has a higher probability
to contain many more points than necessary due to the low
locality of the points near the boundary of the (i − 1) curves.
Therefore, one solution is to partition the whole space into
several disjoint grids and each grid has its own Hilbert curve.
For a 4-grid partition, each grid only needs an order i − 1
curve, rather than a part of order i curve for the whole search
space. Figure 6(b) shows that, after partitioning, the candidate
set contains much fewer objects. We only need to check the
points whose index values are between 0 and 2 for the grid in
quadrant 1, and points whose values are between 14 and 15
for the grid in quadrant 2, and so on.

Besides this advantage, the partition can also reduce the
representation size. If the original space needs n bits to repre-
sent the index value of an object, it only requires n−2 bits for
4-grid partition in a two-dimensional space. In order to make
a full use of this kind of reduction, we partition the space into

(a)

(b)

(c)

Figure 6. Improvement introduced by search space partition. (a) Before par-
tition. (b) After partition. (c) Extra index after partition.

the number that is powered by 2. The improvement over that
based on original un-partitioned Hilbert curve is clear and its
advantage will be further shown in later simulation results.

After partitioning, the original space is divided into sev-
eral disjoint sub-grids and the detailed partition information
is attached to the upper-level index. In other words, the
server first broadcasts the span of the sub-grid of the origi-
nal space. In our example shown in figure 6(b), the values
of x and y are broadcast. As shown in figure 6(c), there are
also 4 pointers following the pair of (x, y), which point to
the corresponding sub-grids. Assuming the covered area of
the original space is ((0, 0), (spanx, spany)), and let numx =
�spanx/x� and numy = �spany/y�, the ith sub-grid can be
decided by its lower left vertex vll and upper right vertex vur,
with vll being (x × (i%numx), y × �i/numy�) and vur being
(x × (i%numx + 1), y × (�i/numy� + 1)).

For a window query, the original query window should be
partitioned into several disjoint sub-rectangles. For each grid,
the overlapping between the query window and the grid pro-
duces the sub-rectangle. The revised algorithm for window
query is given in algorithm 3.

We can observe that the larger the number of partitions, the
fewer the number of objects checked, since the partition itself
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Algorithm 3 (Revised window queries).
Input: a query window w, sorted objects’ indexes.
Output: objects within the query window.
Procedure:
1: result = ∅; //initialization;
2: for each grid having bounding box b do
3: w′ = overlap(w, b);
4: if w′ �= ∅ then
5: result = result ∪ window_query(w′, sorted indexes of objects

within b);
6: end if
7: end for
8: return result;

Table 1
Definition of notations.

Notation Definition

n The number of bits assigned to a coordinate in one dimension
px,y The query issued at the position (x, y)

hifirst The first value of Hilbert-curve index to search
hilast The last value of Hilbert-curve index to search
vi The ith index value of the sorted Hilbert-curve index
loc(x, y) The position of point q (x, y) in the sorted Hilbert-curve index
cost(v1, v2) The number of nodes visited in a B+-tree to retrieve data rang-

ing from v1 to v2
tr The time used to obtain the approximated search range
to The time used to retrieve the objects whose Hilbert curve values

are within a given range

preserves the objects’ locality. However, as mentioned before,
objects in broadcast environments are accessed in the unit of
pages, rather than by objects themselves. Hence, a smaller
number of objects searched does not necessary result in a
smaller number of pages accessed, which depends on the pag-
ing strategy employed to organize index information. The
other fact is that the client has to perform multiple window
searches, while it only processes one window query in the
original space without any partition.

3.4. Cost model

Tuning time and access latency are the two basic measures
for an index. Considering the access latency, it can be theo-
retically obtained by the well-known (1,m) organization al-
gorithm presented in [18]. It only depends on the index size
which can be easily obtained when an index is built. This
sub-section derives the tuning time performance for various
kinds of spatial queries based on the Hilbert-curve index we
propose. In order to facilitate the description, some notations
are defined in table 1.

In our implementation, a B+-tree is used to store the in-
dex value. The leaf level contains the sorted Hilbert-curve
index of all the objects, and each object is represented by its
index value and a pointer pointing to the next broadcast time
of the page containing the real information of that object. As
shown in leaf level of figure 5, the object having value of 0
is denoted by 0 and a pointer pointing to the real data bucket
containing information of that object. According to the tradi-
tional bottom-up construction method, B+-tree can be easily

built based on the given leaf nodes. The fan-out of the node
is decided by the page capacity. Assume that the leaf nodes
containing all the objects in figure 4 and the fan-out of a node
is 3, the corresponding B+-tree is shown in figure 5.

In a two-dimensional space, px,y denotes the query point
of a kNN query or the lowerleft vertex of a query window.
Since n is dependent on the span of the query space, 2n limits
the possible largest coordinate along one dimension. Consid-
ering the index search time, it includes the time to obtain the
approximated search range of index values and the time to
retrieve the objects whose index values are within that range:

T = Tr + To =
2n∑

y=1

2n∑
x=1

px,y(tr + to); (1)

tr =



0, a window query,
cost(vi−k/2, vi+k/2) a kNN query issued

at px,y & ı = loc(x, y);
(2)

to = cost(hifirst, hilast). (3)

For a window query, the client itself can decide the search
range for a given query window and no tr is required to obtain
the range. For a kNN query, the client first checks the sorted
Hilbert-curve index according to the value of the query point
to decide the necessary search range. Secondly, it navigates
the dataset again to obtain the final results. In equation (3),
hifirst and hilast bound the index values of the requested search
range. In the cost model, the position that a query issued is
assumed to be uniformly distributed and px,y can be approx-
imated by 2−2n in a 2-dimensional space.

In addition to predicting the performance for a given
dataset, the cost model can also be employed to provide some
guidance for choosing a suitable partition of the search space.
As we explained in section 3.3, partitioning the search space
actually is a tradeoff between the reduced tuning time and in-
creased computation cost at clients. For a window query, it
will be turned to multiple sub-window queries and the client
has to compute the search range for each sub-window query.
Whether the reduced tuning time deserves the enhanced com-
putation burden is application-oriented, since different appli-
cations have their own concerns and various devices have di-
verse limitations. Therefore, a cost function can be employed
to choose a suitable partition, which is defined in equation (4).

costi = α
ti

t0
+ ci

c0
. (4)

Notations ti and ci represent the tuning time and compu-
tation burden of a specific partition Pi , respectively, and P0
means no partition. Parameter α is to assign different weights
to those two factors, according to concerns of real applica-
tions. The partition has the smallest cost serves as the best
choice for a given application.

A greedy algorithm can be used to obtain a good partition
for a given search space.3 Let ρi equal ci/c0, ρi will definitely
increase when the number of sub-grids, i, becomes larger. It
can be expected that once i reaches some value, ρi will be

3 This greedy algorithm is not the only choice.
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larger than the currently smallest value, costj , for some j ,
1 � j < i. Since costk is larger than ρi for any k bigger
than i, the greedy hunting can be stopped and partitioning the
space into j × j is the best choice according to our imple-
mentation. Hence, the algorithm is guaranteed to return the
optimal decision after a limited number of searching.

4. Performance evaluation

This section evaluates the performance of the proposed
Hilbert-curve index by comparing it to that of traditional in-
dexes. Two datasets are used in the evaluation, as shown
in figure 7. In the first dataset (UNIFORM), 10, 000 points
are uniformly generated in a square Euclidean space. The
second dataset (REAL) contains 5848 cities and villages of
Greece, which is extracted from the point dataset available
from [32]. A discrete-event based simulation package, CSIM
[29], is used to implement the model.

For the existing index, we evaluate the search algorithm
based on R-tree. Since the objects are available a priori, the
STR packing scheme is employed to build R-tree (denoted as
STR R-tree in the later presentation) in order to provide a fair
performance comparison [23]. To achieve a better search per-
formance for kNN queries, the original R-tree based search
algorithms first sort the MBRs according to the query loca-
tion [15,27]. As explained in section 2, such an algorithm
is not suitable for air indexing, since it causes an extremely
large access latency. We make the following revision. No
matter where the query location is, the MBRs are accessed
sequentially, while impossible branches are pruned according
to the mindist and minmaxdist based heuristics as in the orig-
inal algorithms (see [27] for details). R-tree is broadcast in
a depth-first order to facilitate rollback operations. A pack-
ing algorithm using Hilbert curve for R-tree is available [19].
It is also implemented in our simulation in order to evaluate
the impact introduced by the Hilbert curve on R-tree which is
denoted as Hilbert-curve R-tree.

The system model in the simulation consists of a base sta-
tion, lots of clients, and a public channel for broadcast. Win-
SideRatio defines the ratio of the query window’s side length
to the side length of the whole search space. The available
bandwidth is denoted as BroadcastBand, and the fixed size of
a page is denoted as Capacity. The size of a data instance is
DataSize. Two floating-point numbers are used to represent a

Figure 7. Datasets for performance evaluation. (a) UNIFORM. (b) REAL.

Table 2
Configuration parameters of the execution model.

Parameter Description Setting

WinSideRatio Ratio of average side length of a query 0.1
window to that of the search space

BroadcastBand Bandwidth of the broadcast channel 1000 Kbps
Capacity The fixed size of the access unit 26–212

DataSize Size of a data instance 1024 bytes
FloatSize Size of a floating-point number 4 bytes

two-dimensional coordinate, the same amount of bits are for
an index value on the Hilbert curve. The size of a floating-
point number is FloatSize. Table 2 summarizes the config-
uration parameters of the system model and also the default
settings.

While scalability is a major strength of wireless broad-
cast systems, we only simulate the action of a client since
the number of clients does not affect the system performance.
1,000,000 queries are issued randomly in our simulation. The
figures depict the average performance. The results are pre-
sented in the following sub-sections in details.

4.1. Improvement of partitioning the search space

As mentioned above, the search performance is dependent a
lot on the locality of the Hilbert curve. From the observation,
partitioning the search space into smaller grids can reduce the
probability that two nearby points have a large difference be-
tween their index values. The performance improvement ob-
tained by partitioning the UNIFORM dataset is depicted in
figures 8(a) and (b). As explained before, one advantage of
partition is to reduce the representation size. Consequently,
we partition the space into pi sub-partitions along ith dimen-
sion, given pi equals to 2qi . Hence, the representation size
for the index value of the Hilbert curve can be decreased by
the summation of qi ; that is,

∑m
i=1 qi , for an m-dimensional

space. The number following the word “Partition” is qi . In
current implementation, all the dimensions are partitioned
into the same number of sub-partitions, therefore qi is same
for all different i. For instance, Partition 1 means that the
original two-dimensional space is divided into 21 × 21 grids.
Without explicit specification, Partition 2 services as the de-
fault setting in later simulations.

From the result, we can observe that the performance (in
terms of tuning time) is increased a lot due to the partition.
However, the computational overhead on clients are increased
since it has to determine the boundary index values for multi-
ple sub-query windows, rather than for a single query window
in the original situation. Setting the tuning time of Partition 0
as the baseline for performance comparison, Partitions 1, 2,
and 3 outperform Partition 0 on UNIFORM dataset by 66%,
86%, and 93%, respectively. The result of the REAL dataset
is similar, which is omitted due to space limitation. The other
observation is that the improvement is more significant for
smaller page capacity. For large pages, although the number
of objects visited is large without any partition, the number of
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(a)

(b)

Figure 8. Tuning time and its variance of UNIFORM dataset based on
Hilbert-curve index. (a) Tuning time. (b) Variance of tuning time.

pages accessed is not necessarily large since the data access
is in the unit of page.

The performance improvement obtained by employing
partitioning does not only occur in terms of the average tun-
ing time but also in terms of the variance of tuning time. It
means that partitioning improves the stability of system per-
formance, which is desirable since the user may lose patience
if the response time of a query is beyond the average that he
expects from his experience of using the system.

4.2. Window queries

As described before, window query is a common and im-
portant query type in spatial databases, which is frequently
used to evaluate the performance of spatial indexing struc-
tures. In this sub-section, the performance of the newly pro-
posed Hilbert-curve index, compared with various traditional
methods, is presented. By fixing the size of query windows
and varying page capacity from 64 to 2,048 bytes, figure 9
shows the comparisons. Figure 10 shows the performance
under fixed Capacity and varying WinSideRatio.

The most obvious observation obtained is that Hilbert-
curve index with Partition 2 has the best performance, and it
outperforms the other two methods significantly. For UNI-
FORM dataset, the improvement in terms of tuning time
is about 69.5% and 67.2% over STR R-tree and Hilbert-
curve R-tree, respectively. For REAL dataset, the advantage
of Hilbert-curve index is also dramatic. Compared to STR
R-tree and Hilbert-curve R-tree, the improvement is 53.4%
and 55.6% in terms of the tuning time. As mentioned previ-

(a)

(b)

Figure 9. Tuning time of datasets for fixed-size window queries. (a) UNI-
FORM dataset. (b) REAL dataset.

ously, partitioning the space does improve the search perfor-
mance, while it requires multiple sub-window queries which
will increase the computation complicity at clients site. How-
ever, this kind of overhead is very limited. Take the win-
dow query with WinSideRatio set to 0.1 as an example, the
average number of sub-window queries issued by a client is
1.78 for the UNIFORM dataset, and it is 1.75 for the REAL
dataset. The reason is that only when a query window passes
the partition lines, the window needs to be partitioned into
sub-window. Especially the window size is usually very small
compared with the size of the search space.

In order to provide a comprehensive evaluation, the sim-
ulation results obtained based on varied query window size
are also included. The value of parameter WinSideRatio is
changed from 0.05, to 0.1, to 0.2, and finally to 0.5. As ex-
pected, the Hilbert-curve index structure with Partition 2 has
the best performance. The performance gain becomes more
obvious as the size of the query window increases. Here,
the page capacity is set to 256 bytes. The difference of the
window size affects the performance of R-tree based indexes
more distinctively. The tuning time changes from 16 to 185
for STR R-tree, and from 18 to 187 for Hilbert-curve R-tree.
For the Hilbert-curve index of Partition 2, it changes from 10
to 66 for Partition 2. All the comparison information above
is based on the REAL dataset. The result on the UNIFORM
dataset is similar. Therefore, we may conclude that the size
of the query window has less impact on the performance of
the Hilbert-curve index than that of the others and that the
Hilbert-curve index provides a more stable performance for
window queries.
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(a)

(b)

Figure 10. Tuning time of various-size window queries. (a) UNIFORM
dataset. (b) REAL dataset.

4.3. kNN queries

kNN query is one of the most representative spatial queries.
It returns k objects that are nearest to the query point. When
k is set to 1, it is the famous nearest neighbor search. In this
section, the performance of different indexing structures for
kNN search is compared. First, we evaluate their performance
for traditional NN problem, then for fixed k, and finally for
various settings of k.

The storage cost is not a big issue in the traditional disk-
index environment, with the enlargement of the disk capacity
and reduction of its price. However, in broadcast systems,
all the index information has to occupy some bandwidth for
transformation and therefore affects the access latency of the
clients. Consequently, the index size is preferred to be small.
Since our algorithm devised to solve kNN queries should scan
the index value twice, with the first time to decide the neces-
sary search boundary and the second time to obtain the can-
didate objects, its index size will be larger than that of R-tree.
Hence, the expected access time of clients is checked first to
guarantee that the Hilbert-curve index does not introduce too
long latency and its performance is depicted in figure 11. The
famous (1,m) index organization algorithm is employed here
to achieve the optimal access latency [18]. Assuming the ac-
cess latency of the scheme having no index information as 1,
R-tree introduces the access latency about 1.23 and Hilbert-
curve index incurs the latency about 1.30 for the UNIFORM
dataset. For the REAL dataset, the result is nearly the same.
Hence, we can make the conclusion that the index overhead

(a)

(b)

Figure 11. Access latency of different indexing structures for kNN queries.
(a) UNIFORM dataset. (b) REAL dataset.

caused by Hilbert-curve index is acceptable and similar as it
of other existing ones.

4.3.1. Nearest-neighbor queries (k = 1)
Nearest-neighbor search is a special case of kNN queries. It
has been frequently used as a test case to evaluate the perfor-
mance of index structures proposed for kNN problems. Fig-
ure 12 depicts its performance for both UNIFORM and REAL
datasets.

Obviously, Hilbert-curve index can provide a better per-
formance when partitioned into several sub-grids. It outper-
forms STR R-tree and Hilbert-curve R-tree for about 66.4%
and 64.5%, respectively, on UNIFORM dataset. While the
outperformance for REAL dataset is not so significant, only
18.7% and 46.0% respectively. Figure 13 depicts a compar-
ison of the variance of the tuning time. Hilbert-curve index
with partitioning outperforms others significantly.

4.3.2. k nearest neighbor queries
For the general kNN search, Figure 14 shows the performance
of various methods by setting k to 10 for both datasets. Fig-
ure 15 depicts the simulation results of kNN queries with var-
ious values of k and page capacity set to 256 bytes for both
datasets.

Considering the kNN query, with a fixed value of k or
varying values of k, the Hilbert-curve index with partition
performs the best in nearly all the cases. The first observa-
tion is that Hilbert-curve index with partition always achieves
the best performance for UNIFORM dataset, while it some-
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(a)

(b)

Figure 12. Tuning time of nearest-neighbor queries. (a) UNIFORM dataset.
(b) REAL dataset.

(a)

(b)

Figure 13. Variance of tuning time of nearest-neighbor queries. (a) UNI-
FORM dataset. (b) REAL dataset.

(a)

(b)

Figure 14. Tuning time of kNN (k = 10) queries. (a) UNIFORM dataset.
(b) REAL dataset.

(a)

(b)

Figure 15. Tuning time of kNN queries having various k. (a) UNIFORM
dataset. (b) REAL dataset.
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how performs a little bit worse than STR R-tree in the REAL
dataset, especially for the small page capacity or large value
of the request k. The second observation is that for the com-
parison between STR R-tree and Hilbert-curve R-tree, the for-
mer works better for the REAL dataset and the latter makes
some gain in the performance of the UNIFORM dataset. The
reason causing these two behaviors is that the Hilbert curve
has a better location locality for the dataset that uniformly
distributed, compared to the skew distributed dataset. From
the previous simulation result, Hilbert-curve index always
achieves a much better performance for the window query
for both datasets. Therefore, the only reason that it works
worse than STR R-tree for kNN search is that the approxi-
mated range window is larger than necessary which results in
a worse performance due to that superfluous search.

5. Conclusion

With the advent of wireless networks and the popularity of
mobile devices, the pervasive computing era will soon arrive.
Wireless data broadcast, which allows simultaneous access
by an arbitrary number of clients, is a very efficient and scal-
able information dissemination method. This paper addresses
the problem of answering location-dependent spatial queries
via broadcast channels. We first discuss the specific charac-
teristics of broadcast environments and conclude that existing
indexing structures are unsuitable for this new environment.
Then a new index structure based on a space-filling curve,
the Hilbert curve, is proposed to enable a linear broadcast
(and later scanning) of objects in a multi-dimensional space.
We devise exactly matching algorithms to answer window
queries and kNN queries, along with a cost model. A simu-
lation model is implemented to study the performance of our
proposed indexing structure and compare it with some exist-
ing methods. The result shows that the performance of ex-
act match based on the proposed structure outperforms other
methods significantly in terms of tuning time, for both the
synthetical dataset and the real dataset. However, its access
latency is a little bit longer than that of some existing R-tree
based indexes.

In this paper, we assume a centralized server which has
full knowledge of all the objects. In a global environment,
the coverage of a server is limited. Thus, some qualified data
objects may located outside the coverage. We are looking
into this problem by considering some cooperation strategies
amongst the broadcast servers. As an immediate next step of
the current work, we are investigating other kinds of LDSQs,
e.g., continuous nearest-neighbor query. In addition, we are
considering approximation functions to efficiently obtain the
search range and to reduce the index size.
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