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Abstract—A continuous nearest neighbor (CNN) search, which retrieves the nearest neighbors corresponding to every point in a given

query line segment, is important for location-based services such as vehicular navigation and tourist guides. It is infeasible to answer a

CNN search by issuing a traditional nearest neighbor query at every point of the line segment due to the large number of queries

generated and the overhead on bandwidth. Algorithms have been proposed recently to support CNN search in the traditional client-

server systems but not in the environment of wireless data broadcast, where uplink communication channels from mobile devices to

the server are not available. In this paper, we develop a generalized search algorithm for continuous k-nearest neighbors based on

Hilbert Curve Index in wireless data broadcast systems. A performance evaluation is conducted to compare the proposed search

algorithms with an algorithm based on R-tree Air Index. The result shows that the Hilbert Curve Index-based algorithm is more energy

efficient than the R-tree-based algorithm.

Index Terms—Continuous nearest neighbor search, broadcast, indexing, location-based services.
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1 INTRODUCTION

WITH the widespread deployment of wireless networks
and the fast growing popularity of smart mobile

devices, there has been an increasing interest in wireless
data services from both industrial and academic commu-
nities in recent years. There are two primary approaches for
delivering wireless data services: point-to-point and broadcast
(or point-to-multipoint) systems [1], [2]. Point-to-point access
employs a basic client-server model, where the server is
responsible for processing a query and returning the result
to the client via a dedicated point-to-point channel. Wireless
data broadcast systems, usually without an uplink channel
available to the clients, have the server actively pushing
data to the clients. The server determines the data and its
schedule to be broadcast. A client, without sending any
request to the server, simply listens to a broadcast channel
to retrieve data based on her queries and, thus, is
responsible for query processing.

The point-to-point data access approach is particularly
suitable for light-loaded systems where contention for
wireless bandwidth and server resources is not severe.
However, the overall system performance can deteriorate
quickly as the number of users and the system workload
increase. Compared with point-to-point access, broadcast
is a very attractive alternative [3], [4], [5]. It allows

simultaneous access by an arbitrary number of mobile
clients without causing interreceiver interference and, thus,
can achieve an efficient usage of the server resource and
scarce wireless bandwidth. Moreover, clients can retrieve
desirable information from the broadcast channel without
revealing to the server their operations and intentions and,
thus, it preserves user privacy.

Wireless data broadcast services have been available as
commercial products for many years, e.g., StarBand
(www.starband.com) and Hughes Network (www.direcpc.
com). Recently, there has been a push for such systems from
the industry and various standard bodies. One example is
the MSN Direct Service (www.msndirect.com), based on the
smart personal objects technology (SPOT) and the Direct-
Band Network. With a continuous broadcast network using
FM radio subcarrier frequencies, mobile devices (e.g., smart
watches and PDAs) can continuously receive timely
information such as stock quotes, airline schedules, local
news, weather, and traffic information.

In this paper, we focus on location-based data services via
wireless broadcast. Indeed, among the various envisaged
wireless data services, location-based services are consid-
ered the most important ones. While data (or information) is
important to users, it is only valuable when available at the
right time, right place. The demand for location-based data
(LBD), e.g., pollution index, local traffic conditions, restau-
rant locations, navigation maps, weather condition, etc., is
tremendous due to the broad application base.

As in many real applications, mobile clients prefer
issuing queries while they are moving. Consequently,
continuous processing for different queries becomes a more
and more important issue. Among them, the Continuous
Nearest Neighbor (CNN) search is a new and important class
of queries that find a set of nearest neighbors corresponding
to every point in a given query line segment. Every object o in
the answer set dominates a part of the given line segment,
i.e., o is the nearest neighbor to any query point lying on
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that part of line segment. An illustrative example is given in
Fig. 1, in which the answer set to the query line se contains
three objects, namely, O1, O2, and O4. O1 dominates the
shadowed line segment sp1, while O2 dominates p1p2 and
O4 dominates p2e. Those partial line segments (we call them
valid scopes) and their corresponding nearest data objects are
returned as the answer set. p1 and p2 are called split points
since they are the points at which the nearest objects along
the line segment change [6]. Examples of CNN search are
everywhere in our daily life. For example, a visitor touring
in Manhattan may want to find all the nearest Chinese
restaurants along Fifth Avenue from her current position to
Central Park. A wildlife observer in Yellow Stone National
Park may issue a query via a wireless mobile device to find
the nearest observation points where she can most likely see
wolves along the trail she is hiking.1

Due to the mobility of users and their devices, the query
submission point may change continuously, which makes
retrieval of location-based data a challenge. This issue of
query continuity is particularly important for navigation
and tour guide applications. Continuously issuing nearest
neighbor queries while moving is obviously not a feasible
strategy. Thus, efficient algorithms for processing CNN
queries are required. As energy conservation is one of the
most critical issues for mobile clients, our solution aims at
reducing a mobile client’s energy consumption when it
accesses the data for query processing, i.e., improving
energy consumption with comparable access latency
performance.2

There are some existing studies on CNN search in the
traditional client-server systems [6], [7], [8], [13]. However,
these algorithms have the following constraints: 1) they
require an uplink channel from a mobile client to the server
and, hence, are not applicable to wireless data broadcast
systems, and 2) they do not address the important issue of
energy conservation. This paper, to the best of the authors’
knowledge, presents the first study on enabling energy
efficient continuous search of k-nearest neighbors (CkNN) in
wireless data broadcast systems.3 The primary contribu-
tions of this study cover the following aspects:

. An energy-efficient search algorithm based on the
Hilbert Curve (HC) index is developed to support
CkNN queries for wireless data broadcast systems.

. A set of heuristics and claims that serve as the core
of our CkNN search algorithm are identified and
formally proven.

. A theoretical analysis is performed to estimate the
performances of the proposed CkNN search algo-
rithm under different index organizations.

. An extensive simulation is conducted to evaluate the
performance of the proposed CkNN search algo-
rithm using both synthetic and real data sets.

The rest of this paper is organized as follows: Section 2
presents background, system model, and related work to
our study. Section 3 describes the proposed CkNN search
algorithm based on the Hilbert Curve index. Implementa-
tion issues on query partitioning and index organization
are discussed in Section 4. Section 5 evaluates performance
of the proposed CkNN search algorithm and another
algorithm modified from an existing work [6]. Finally,
Section 6 concludes this paper and points out directions of
the future work.

2 SUPPORT LOCATION-BASED QUERIES VIA

WIRELESS BROADCAST

Location-based query processing plays a key role in
supporting location-based services. As described earlier,
CkNN search is an important class of location-based
queries. To facilitate our discussion of the CkNN search
problem in wireless data broadcast systems, in this section,
we first describe the general system model, assumptions,
and constraints of wireless data broadcast systems. Next,
we discuss the issues faced by adopting a spatial air index
in wireless data broadcast systems and review some
related work.

2.1 System Model

A wireless data broadcast system consists of three parts:
1) the communication mechanism, 2) the broadcast server,
and 3) the mobile clients. Fig. 2 shows a high-level overview
of the system model. Broadcast channels are the main
communication mechanism. Without loss of generality, we
assume that only one broadcast channel with limited
bandwidth is allocated for the applications in our study
and there is no uplink channel for clients to send requests or
feedback to the server. In addition, all the information is
disseminated to the clients in the unit of pages. The
broadcast server is interfaced with other data sources via
high speed networks and, thus, can be considered as a
logical data source for all the mobile users in the system.
The server is responsible for determining and scheduling
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1. While a trail may not be a straight line, it can be decomposed into
multiple line segments.

Fig. 1. Example of CNN search.

2. Access latency is also very important. Since there is no approach
which can optimize both at the same time, we focus on energy efficiency in
this paper. In the simulation section, BOTH the tuning time performance
and access latency will be presented, which gives readers a full picture of
the relative trade-offs between them so readers can decide what is the best
for their applications.

3. A preliminary report of this study appeared in [17].

Fig. 2. A wireless data broadcast system.



the data for broadcast. Thus, we assume that the server has
full knowledge of all the data objects under broadcast. It
periodically disseminates data objects to its clients via the
shared broadcast channel. A data object consists of a set of
searchable attributes and a content body. Since we are
focusing on location-based queries in this paper, we simply
assume the searchable attributes consist of geospatial
coordinates. A complete broadcast of data objects is called
a broadcast cycle. From the viewpoint of users, wireless
broadcast is perceived as a linear stream of data objects
flowing along the time axis. Logically, there are no specific
start and end objects for a broadcast cycle, which may start
at any data object and end at the next appearance of the
same data object. Content updates to the data objects are
reflected between successive broadcast cycles.

The mobile clients, usually having limited power supply
and storage space, also play an important role in the system
due to the client-side processing. Each client has to
continuously monitor the broadcast channel to receive the
data objects of interests (as specified by user queries).
Blindly checking every data object broadcast on air
obviously consumes a lot of energy of mobile clients. To
address this issue, air indexing techniques have been
proposed [4], [5]. The basic idea is to provide auxiliary
index information that annotates the broadcast data objects.
Based on index information (on indexed attribute values,
arrival schedule, length of data items, etc.) broadcast along
with data objects, mobile clients are able to selectively skip
unauthorized or unwanted objects by slipping into doze
mode and switching back to active mode only when the data
of desire arrives. This technique, alleviating the workload of
the server and reducing energy consumption of mobile
clients, is particularly important for wireless data broadcast.

Existing studies suggest that the air index information
should be interleaved with the data objects in order to reach
a good performance [4], [5]. Thus, in this paper, we adopt
the (1, m) interleaving scheme, where an optimal m
partition of the data set in a broadcast cycle can be derived
[4]. As shown in Fig. 3, index information is interleaved
with the m data partitions (called segments). Some existing
work proposed replicating the frequently accessed data
objects based on user access patterns, but that is out of the
scope of our study. We focus on the general design of search
algorithms based on air index structures which do not
assume specific knowledge of access patterns. Thus, we
assume a flat broadcast (i.e., a data object is broadcast only
once in a cycle) in this paper.

This study, similar to the existing work in the literature,
uses access latency and tuning time as the primary perfor-
mance metrics.4 The former is the time elapsed between the
moment when a query is issued to the moment when all the
requested data are received. The latter represents the period
of time a client has to be active in order to finish one query.

Most existing work assumes that the setup time for tuning
into the broadcast channel and switching into the doze
mode is negligible [4]. Therefore, the tuning time can be
regarded as the major metric to evaluate power consump-
tion. However, as pointed out in [9], mobile devices do
require a nonnegligible overhead in terms of time and
energy dissipation to go from doze mode to active mode
and vice versa. Therefore, frequent on/off switching
actually incurs significant power consumption. We also
extend our evaluation to count the average number of
switches incurred by a query and the energy consumed by
switch operations in our evaluation.5

2.2 Location-Based Query Processing

To facilitate access of location-based data in mobile
computing, we assume that positioning technology (e.g.,
GPS) is available for the clients to obtain their own
positions. Based on client location and other available
information (e.g., moving speed, direction, and cached
query results), location-based applications such as naviga-
tion can estimate the frequency and timing for reissuing
queries. Thus, in this paper, we focus only on the query
processing algorithms. To simplify our discussion, we
consider only one homogeneous data type in this study,
i.e., the data objects broadcast on air have the same data
type as an ATM. In other words, the channel is assumed to
continuously broadcast information related to different
ATMs and the clients are issuing queries like “Where are
the nearest ATMs on my way to JFK airport along I-678?”
Since a wireless broadcast channel can be logically divided
into multiple subchannels, data objects of other data types
(e.g., restaurants or hospitals) can be broadcast in other
allocated subchannels. While complicated applications may
issue complex queries that involve multiple data types, our
study represents an initial step toward this direction.
Finally, we assume that the locations of data objects seldom
change.

To support location-based queries such as CkNN in
wireless data broadcast systems, index information on
location attributes of data objects is broadcast to facilitate
client-side query processing. Thus, well-known spatial
indices (e.g., R-trees) are candidates for air indexing.
However, the unique characteristics of wireless data broad-
cast make the adoption of existing spatial indices inefficient
(if not impossible). Specifically, traditional spatial indices
are designed to cluster data objects with spatial locality.
They usually assume resident storage (such as disk and
memory) and adopt search strategies that minimize I/O
cost. This is achieved by backtracking index nodes during the
search. However, the broadcast order (and, thus, the access
order) of index nodes is extremely important in wireless
broadcast systems because the data and index are only
available to the client when they are broadcast on air.
Clients cannot randomly access a specific data object or
index node but have to wait until the next time it is
broadcast. As a result, each backtracking operation extends
the access latency by one more cycle and, hence, becomes a
constraint in wireless broadcast scenarios.

Fig. 4 depicts an example. Assume that a nearest
neighbor search algorithm based on R-tree [10] first visits
the root node, then node R2, and, finally, R1, while the
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4. Since data objects are typically measured in terms of pages, we use it as
the unit of tuning time. Thus, the channel capacity and transmission rate do
not need to be considered in this study.

5. Both a transition from active mode to doze mode and vice versa are
counted as a switch.

Fig. 3. (1, m) interleaving scheme.



server broadcasts nodes in the order of the root, R1, and R2.
If a client wants to backtrack to node R1 after it retrieves R2,
it will have to wait until the next cycle because R1 has
already been broadcast. This significantly extends the access
latency and it occurs every time a navigation order is
different from the broadcast order.

2.3 Related Work

Several CkNN search algorithms for client-server systems
have appeared in the literature [6], [7], [11]. In [11], a
sampling technique is employed to perform normal kNN
searches at some predefined sampling points and then
approximate a range to bound all the possible right answers.
However, its accuracy depends pretty much on the
predefined sampling points. In order to enable an exact
search, Tao and Papadias devised two search algorithms for
CkNN queries based on the R-tree. The first algorithm is
based on the concept of time-parameterized (TP) queries,
which treat a query line segment as the moving trajectory of a
query point [7]. Therefore, the k nearest objects to the moving
query point are valid only for a limited duration and a new
TP query is issued to retrieve new nearest objects once the
valid time of the current query expires, i.e., when a split
point is reached. While the TP approach avoids the draw-
backs of sampling, it is an incremental algorithm that needs
to issue nkNN queries in order to obtain the final answer set,
where n is the number of split points along the query line
segment. The second algorithm, proposed later in [6],
navigates R-tree based on certain heuristics. The whole
answer set is obtained within one single navigation of R-tree.

More recently, the continuous window (CW) algorithm
has been proposed to solve the CkNN problem of moving
objects with update [12]. Their focus was on minimizing the
update cost caused by the objects continuously changing
their positions. Observing that window queries are easier to
maintain on moving objects than kNN queries, the CW
algorithm filters candidate objects using a within-window
query around the query point. Since the within-window
query tries to bound at least k objects, only those bounded
objects are under consideration when computing the kNN
query. Similarly, the research presented in [13], [14] is also
motivated by the frequent update operation issued by the
moving objects. However, they proposed different ap-
proaches, adopting incremental evaluation and shared
execution strategies, to address the performance issue.
Since the update operation and query processing at server
site will be significantly degraded to become the bottleneck
of the system performance, some scalable and efficient
algorithms have been proposed.

On one hand, all of the proposed algorithms for CkNN
search are only suitable for systems with resident storage

but not for wireless data broadcast systems, which only
support sequential access but not random access. On the
other hand, most existing air indices are not designed to
answer location-based queries. Our study uniquely ad-
dresses the CkNN search problem in wireless data broad-
cast systems.

3 SEARCH CkNN ON HILBERT CURVE AIR INDEX

To adapt to the linear streaming property of the wireless data
broadcast channel, the Hilbert Curve (HC) index was proposed
to disseminate location-based data via wireless broadcast
[27], [16]. In this section, we first briefly describe the basic
idea of the HC index and then introduce the new CkNN

search algorithm based on the HC index. The algorithm
presented in this paper supports generalized CNN queries,
namely, continuous-k-nearest-neighbor (CkNN) queries.

3.1 Hilbert Curve Index

A space-filling curve is a continuous path that visits every
point in a k-dimensional grid exactly once without crossing
itself. Well-known space filling curves, including the
Z-curve, the Gray-coded curve, the Peano curve, and the
Hilbert curve, are different in the order in which the points
in the grid space are visited [26]. The Hilbert curve is
chosen to build the HC index due to its optimal locality [18].

Like other space-filling curves, the Hilbert curve maps
points from a multidimensional space to a one-dimensional
space. Fig. 5a shows the basic Hilbert curve of order 1. To
derive a curve of order i, each vertex of the basic curve is
replaced by a curve of order ði� 1Þ, which may be
strategically rotated and/or reflected to fit the new curve.
The Hilbert curves of orders 2 and 3 are depicted in Fig. 5b
and Fig. 5c. The numbers, called index values in this paper,
represent the visiting orders of different points in the
Hilbert curve. For example, curve H2 illustrates a (4� 4)
grid, where the point ð1; 1Þ has the index value 2. The objects
whose positions are denoted by hollow circles in Fig. 5c
constitute a running example to be used in later descriptions
of our CkNN search algorithm based on the HC index.

Given the mapping function of the Hilbert curve, it is
easy for a client to perform a conversion between
coordinates and HC index values [19]. Let n be the number
of bits assigned to represent a coordinate, the expected time
for the conversion is Oðn2Þ. Since n is a preset system
constant, the conversion can be done in a constant time. In
our previous study, search algorithms for window queries
and kNN searches have been developed (please refer to [27]
for details).
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Fig. 4. Linear access on wireless broadcast channel. (a) R-tree index.

(b) Branch-and-bound search.
Fig. 5. Hilbert curves of order 1, 2, and 3. (a) H1. (b) H2. (c) H3.



3.2 Search Algorithms for CkNN Queries

The basic idea for processing a CkNN query is to first bound
an approximated search range that includes all the
candidates. Thereafter, a refining process is conducted to
filter out unqualified candidates. The detailed algorithm
comprises three steps: 1) Obtain the k-nearest neighbors to
the two endpoints of the query line segment. Based on these
objects, an approximated search range that bounds all the
objects in the final answer set is determined. 2) Obtain a
candidate set by issuing a window query based on the
approximated search range. 3) Examine the candidate set to
obtain the exact answer set. Before going into the details, we
first develop two heuristics for processing the CkNN search.
Table 1 defines the notations for discussion and description
of our algorithms.

Heuristic HC1. For a given query line segment se, kNNðsÞ ¼
fOsi ; i 2 ½1; k�g a n d kNNðeÞ ¼ fOei ; i 2 ½1; k�g. T h e n ,
fOsi ; Oei ; i 2 ½1; k�g � CkNNðseÞ.

Proof. Since s and e are two points on the query line
segment, their k-nearest neighbors are part of the final
answer set. tu

Next, we observe that, if two endpoints of the line
segment share the same set of k-nearest neighbor objects, the
whole line segment is dominated by those k-nearest
neighbors.

Heuristic HC2. For a query segment se, if

kNNðsÞ ¼ kNNðeÞ ¼ fOi; i 2 ½1; k�g;

then CkNNðseÞ ¼ fOi; i 2 ½1; k�g.
Proof. By mathematical induction.

Basic Step. If k ¼ 1, the above heuristics can be shown
with a Voronoi Diagram [20], which partitions a space
into disjoint Voronoi Cells (VCs) based on locations of
data objects in the space. V CðOiÞ represents the VC
corresponding to the object Oi. For any query point, it
must be located within one VC, say V CðOiÞ, and
object Oi must be the nearest neighbor to that query
point. As shown in Fig. 1, the Voronoi Diagram
partitions the space into five parts denoted by the
dashed line, according to the positions of given objects.
The shadowed polygon is the corresponding VC of
object O3, i.e., O3 is the only nearest neighbor to any
query point inside the shadowed polygon. Based on

computational geometry, VCs are convex [20]. Since
NNðsÞ ¼ NNðeÞ ¼ O1, both endpoints and, hence, the
entire query line segment se, lie inside the VC of
object O1. Therefore, object O1 is the nearest neighbor
to any query point along the query line segment.

Inductive Step. If we assume that the heuristic is
true for k ¼ mðm � 1Þ, we are going to prove that it is
also true for k ¼ mþ 1. If the heuristic is not true for
k ¼ mþ 1, there must be at least one point p 2 se such
that ðmþ 1ÞNNðpÞ 6¼ ðmþ 1ÞNNðsÞ. Since we have
known from the assumption that mNNðpÞ ¼ mNNðsÞ,
the ðmþ 1Þth nearest neighbor of p must be different
from that of s (or e). Assume that objects o0 and omþ1 are
the ðmþ 1Þth nearest neighbors to point p and point s
(and e), respectively. If we remove all the objects o 2
mNNðsÞ from the data set, then NNðsÞ ¼ NNðeÞ ¼ omþ1

and NNðpÞ ¼ o0. Based on the features of the Voronoi
Diagram (as shown in the Basic Step), object omþ1 must
be object o0. As a result, ðmþ 1ÞNNðpÞ actually equals
ðmþ 1ÞNNðsÞ and this inductive step is complete. Thus,
by the principle of mathematical induction, the heuristic
is true for all k � 1. tu

In Step 1 of the CkNN search algorithm, the k-nearest
neighbors to the endpoints of the given line segment are
obtained and included in the final answer set (based on
Heuristic HC1). If both endpoints share the same set of
k-nearest neighbors, the final answer set can be returned
directly without further processing (based on Heuristic
HC2). Otherwise, a radius, guaranteeing at least k objects
within that radius to every point along the query line
segment, is obtained according to Algorithm 1. Thereafter, a
search range bounding all the candidate objects is deter-
mined based on Algorithm 2.

Algorithm 1 Finding Maximal Distance

Input: kNNðsÞ, kNNðeÞ, se, k;

Output: the minimum radius Dmax;

Procedure:

1: � ¼ kNNðsÞ [ kNNðeÞ; cur ¼ s;
2: Dmax ¼ 0; kNNðcurÞ ¼ kNNðsÞ
3: while kNNðcurÞ <> kNNðeÞ do

4: next:x ¼ e:x;
5: for each object o 2 kNNðcurÞ do

6: for each object o0 2 ð�� kNNðcurÞÞ do

7: p ¼ intersection (biscðo; o0Þ; se);
8: if (p:x > cur:x) and (p:x < next:x) then

9: next ¼ p;

10: Dl ¼ dispðkNNðcurÞ½k�; curÞ;
11: Dr ¼ max disðkNNðcurÞ; nextÞ;
12: Dmax ¼MAXðMAXðDl;DrÞ;DmaxÞ; cur ¼ next;
13: kNNðcurÞ ¼ findKnnðcur; candidate set �; kÞ;
14: Dl ¼ dispðkNNðcurÞ½k�; curÞ;
15: Dr ¼ dispðkNNðeÞ½k�; eÞ;
16: Dmax ¼MAXðMAXðDl;DrÞ;DmaxÞ;
17: return Dmax;

Algorithm 1 assumes that the kNN objects to the two
endpoints, kNNðsÞ and kNNðeÞ, are known. Those two
sets of objects form a candidate set �. It is motivated by
the fact that, if a circle around a point p contains k objects
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of the set �, this circle must contain at least k objects of the
whole data set. As a result, its k-nearest neighbors must be
included as well.

The algorithm first checks kNNðsÞ and kNNðeÞ. If they
are different, se is not dominated by the same set of objects
and there is at least one split point between points s and e.
A sweeping line approach is adopted to find the split
point(s), which works as follows: For any object o from
kNNðsÞ and any object o0 from (�� kNNðsÞ), the intersec-
tion between the bisector biscðo; o0Þ and query segment se,
denoted by q0, is the point by passing which object o0 will
replace o as one of the kNN objects to point q0. Among those
intersections, the one m having the shortest distance to
point s is the next split point. Segment sm is dominated by
kNNðsÞ and the process continues with segment me as the
query segment until the kNNðmÞ contains the same objects
as kNNðeÞ.

The split points partition the whole query segment se
into several subsegments, with each dominated by a set of
objects. For a subsegment l, the maximal distance, denoted
by D, between any point of l and its kNN objects could be
detected (please refer to Claim 1 for the detailed theoretical
proof). Among all the detected Ds, Dmax is set to the
maximal one. For any point p along the segment se, it is
guaranteed that the circle centered at p with Dmax as its
radius will contain at least k objects.

Claim 1. LetDsðkÞ be the distance between s and its kthNN object
kNNðsÞ½k�, DeðkÞ be the distance between e and its kth NN
object kNNðeÞ½k�, andDðkÞ be the maximal ofDsðkÞ andDeðkÞ.
If kNNðsÞ ¼ kNNðeÞ, 8q 2 se, dispðq; kNNðqÞ½k�Þ � DðkÞ.

Proof. By mathematical induction.
Basic Step. When k ¼ 1, the fact that NNðsÞ equals

NNðeÞ means that both endpoints s and e are within the
Voronoi Cell of the objectNNðsÞ. Therefore, objectNNðsÞ
must be the nearest object to any point q on the
segment se. Since

dispðq;NNðsÞÞ �MAX
�
dispðe;NNðsÞÞ; dispðs;NNðsÞÞ

�
;

the claim is true.
Inductive Step. Let us assume that the claim is true

for k and prove that it is true for ðkþ 1Þ. Suppose
kNNðsÞ ¼ foi; i 2 ½1; k�g and

ðkþ 1ÞNNðsÞ ¼ kNNðsÞ [ fokþ1g:

Randomly selecting a point q from the segment se,
object o0 2 ðkþ 1ÞNNðsÞ is the farthest one away from q
compared with the other objects within ðkþ 1ÞNNðsÞ. If
o0 2 kNNðsÞ, dispðq; o0Þ � DðkÞ (based on the assump-
tion). Since Dðkþ 1Þ > DðkÞ, dispðq; o0Þ must be smaller
than Dðkþ 1Þ. Otherwise, o0 must be object okþ1. Based
on the distance between a given point and any point of a
line segment,

dispðq; okþ1Þ �MAXðdispðs; okþ1Þ; dispðe; okþ1ÞÞ ¼ Dðkþ 1Þ:

The inductive step is complete.
As a result, for any query point q on the segment se, at

least k objects in the set kNNðsÞ are within the circle
cirðq;DðkÞÞ. Therefore, Claim 1 is proved. tu

Fig. 6 shows an example (where k ¼ 2) to illustrate the

process of finding Dmax. Before the algorithm starts, 2NN

objects to both endpoints are detected, i.e., 2NNðsÞ ¼
fO1; O2g and 2NNðeÞ ¼ fO3; O4g. Therefore, the candidate

set � contains four objects. First, the algorithm starts with s

as the cur point. Two objects, O1 and O2, are in the set

2NNðcurÞ and another two objects, O3 and O4, form the set

(�� 2NNðcurÞ). As depicted in Fig. 6a, there are four

intersections. Point m1 is chosen as the next split point since

it is closest to the cur point. Next, the algorithm continues

with m1 as the cur point. Similarly, the intersections are

found and the one, m2, having the shortest distance to cur

point is set as the next split point (see Fig. 6b). Since

2NNðm2Þ equals 2NNðeÞ, the algorithm is finished and the

dispðm2; O4Þ is returned as the detected maximal distance

Dmax. Fig. 6c illustrates the steps for finding split points and

Dmax.

Algorithm 2 CkNN Search Range

Input: kNNðsÞ, kNNðeÞ, se, k;

Output: search range R;

Procedure:

1: let Pl be the left-most point with

Pl 2 kNNðsÞ [ kNNðeÞ;
2: let Pr be the right-most point with

Pr 2 kNNðsÞ [ kNNðeÞ;
3: radius ¼ Finding Maximal Distance

ðkNNðsÞ; kNNðeÞ; se; kÞ;
4: P1:x ¼ Pl:x; P1:y ¼ Pl:yþ radius;
5: P2:x ¼ Pl:x; P2:y ¼ Pl:y� radius;
6: P3:x ¼ Pr:x; P1:y ¼ Pr:yþ radius;
7: P4:x ¼ Pr:x; P2:y ¼ Pr:y� radius;
8: return the rectangle R bounded by P1, P2, P3, and P4;

Given the query line segment and Dmax, an intuitive

approach to determine the final search range is to

incorporate all the search circles, as shown in Fig. 7a.

Because the answer set kNNðsÞ has already been detected,

the left side of the search range could be further shrunk to

the smallest x-coordinate of the found objects, i.e., O1.

Similarly, the right side could also be refined by the largest

x-coordinate of the found objects, i.e., O4. Fig. 7b shows the
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final search range which is represented by the solid-line
rectangle. Algorithm 2 gives the pseudocode.

Once the search range is returned, a window query is
issued to complete the second step, i.e., retrieving the
candidates set. The only step left is filtering, i.e., how to
distinguish the real answers from the rest. Employing the
sweeping line approach used in Algorithm 1, split points
are detected one by one and the query line segment is
partitioned into smaller subsegments with each dominated
by a set of objects (based on Heuristic HC2). The detailed
pseudo-code is provided by Algorithm 3 and the proof to
verify that the algorithm will return and only return right
answers is shown in Claim 2. Finally, Algorithm 4
summarizes those three steps and gives a complete
description of the search algorithm.

Algorithm 3 Filtering

Input: query line segment se, kNNðsÞ, kNNðeÞ, candidate

answer set �, k;

Procedure:
1: s0:x ¼ e:x;

2: for each object o in kNNðsÞ do

3: for each object o0 in ð�� kNNðsÞÞ do

4: p ¼ intersection ðbiscðo; o0Þ; seÞ;
5: if (p:x > s:x) and (p:x < s0:x) then

6: s0 ¼ p; Orep ¼ o; Onext ¼ o0;
7: kNNðs0Þ ¼ ðkNNðsÞ � fOrepgÞ [ fOnextg;
8: denote segment ss0 is dominated by kNNðsÞ;
9: Filtering(segment s0e, kNNðs0Þ, kNNðeÞ, �, k);

Claim 2. Algorithm 3 will return and only return qualified
objects.

Proof. Assume that there is an object o 2 CkNNðseÞ which
is not detected by Algorithm 3. Since object o is part of
the answer set, there must be at least one point p 2 se
with o 2 kNNðpÞ. As explained, the filtering algorithm is
completed only when the segment se is successfully
partitioned into several subsegments with each fully
dominated by one set. Consequently, the subsegment
containing point p will also have a corresponding set �
containing its k-nearest neighbors. According to Claim 1,
object o must be bounded by the search range and, hence,
inside the candidate set. Therefore, the detected answer
set � must cover the object o and our assumption is not
satisfied. On the other hand, the returned object must be
one of the kNN objects to at least one point q along the
segment se. Therefore, it must be part of the answer set.
The proof is completed. tu

Algorithm 4 CkNN Search

Input: query line segment se, k, data set S;

Procedure:

1: kNNðsÞ ¼ findKnnðs;S; kÞ; kNNðeÞ ¼ findKnnðe;S; kÞ;
2: if ðkNNðsÞ ¼¼ kNNðeÞÞ then

3: report that segment se is dominated by kNNðsÞ;
4: else

5: R ¼ CkNN Search RangeðkNNðsÞ; kNNðeÞ; se; kÞ;
6: � ¼Window QueryðR;SÞ;
7: FilteringðkNNðsÞ; kNNðeÞ; se; �Þ;

4 IMPLEMENTATION ISSUES

In this section, we discuss two enhancements of HC index
implementation, query partitioning and index organization,
to facilitate efficient processing of CkNN search. The former
strategy allows clients to partition the query window into
smaller subwindows. As each subwindow can be covered
by the Hilbert curve with a lower order, the spatial locality
is improved. As a result, the tuning time performance is
improved. The latter aims at obtaining optimal access
latency. The HC index is proposed to answer multiple
location-based queries. As different queries request various
number of scans of the index, different index organizations
can be used. We develop a theoretical model to analyze the
access latency performance under different index organiza-
tions. Therefore, an index segment can include various
Bþ-trees. If the detailed access patterns of clients are
available, the organization that produces the optimal access
latency can be derived.

4.1 Query Partitioning

The data locality on the Hilbert curve has a great impact on
the performance of query processing. If the nearby points in
the original search space are rather far away from each
other along the curve, the search range of the window query
will be relatively large and, hence, many points need to be
checked. A motivating example is depicted in Fig. 8a in
which the solid rectangle represents a query window.
Employing the window search algorithm, all the points
with index values between 8 and 55 need checking.
Obviously, this range contains many points outside the
window.

It can be observed from Fig. 5 that the order i curve is
derived from order ði� 1Þ curves. If a query window
crosses several order ði� 1Þ curves, it has a higher
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probability to contain many more points than necessary due
to the low locality of the points near the boundary of the
ði� 1Þ curves. Therefore, one solution is to partition the
query window into subwindows. If each subwindow can be
covered by curves of order ði� 1Þ, or even lower orders, the
search range could be dramatically refined. Suppose the
client partitions the window into four subwindows as
shown in Fig. 8b; then, the new search range only consists of
objects whose HC values fall within ranges [8, 11], [28, 35],
or [52, 55].

Each client, based on its available resource and cap-
ability, determines the partition degree. For example, a
client may take a 2� 2 partition and process a window
query based on four order ði� 1Þ curves, where i is the
order of original curve covering the whole search space. In
short, the client can apply 2p � 2p partition against 2p order
ði� pÞ curves.

4.2 Index Organization

A Bþ-tree is employed to store HC index values [21]. Given a
set of data objects, the Bþ-tree is built bottom up. The fan-out
of the tree node is decided by the page capacity. The leaf
nodes of the Bþ-tree contain the sorted HC values of all the
objects along with corresponding pointers, which facilitates
the continuous access at the leaf level. Each object is indexed
and identified by its HC index value, and the associated
pointer presents the broadcast time of the data page
containing the object itself. If the fan-out is three, the
Bþ-tree for the running example is depicted in Fig. 9.

Based on the HC index, different types of queries require
different number of index scans. A window query can be
answered by scanning the HC index once, while a kNN
query requires two scans and a CkNN query needs to scan
the HC index three times. Based on this observation, several
alternatives can be considered in organizing the index
segments. One solution is to include an original Bþ-tree
without any alternation. The advantage of this scheme is the
simplicity and small index storage cost. In this case,
however, the kNN and CkNN search process may need to
go across two and three index segments, respectively. If
some data objects in the final answer set are broadcast
between the scanned index segments, they will be missed
and, hence, significantly extend the access latency (since the
clients have to wait until the next cycle to retrieve them).
The second solution is to duplicate the Bþ-tree by broad-
casting it twice within the same index segment, which
ensures that the kNN searches can be finished within one
(longer) index segment. Although this solution doubles the
size of the index segment compared with the first solution,
it saves the client’s average access latency for kNN searches
(and also the CkNN queries). The last solution is to replicate
the Bþ-tree three times within one index segment. This

enables clients to answer all the supported queries by
scanning an index segment only once. To serve multiple
types of location-based queries, we have to consider the
overall performance. Thus, in the rest of this section, we
conduct a performance analysis of different organization
schemes for different queries. Notations used in the
derivation are summarized in Table 2.

The following analysis is conducted based on the
assumption that each object has the same access probability
and clients tune into the channel randomly. As we
mentioned before, index organization schemes only affect
the average access latency, but not the tuning time.
Consequently, we only include the cost model of access
latency, as shown in (1). Subscript i 2 ½1; 3� stands for
repeating time of the Bþ-tree within one index segment.

latti ¼
1

2
� Ii þ

D

m�i

� �
þ 1� pti

2
� Cyclei

þ pti � 1þ n
t � i
m�i

� �
� Cyclei;

i 2 ½1; 3�; t 2 fw; k; cg; nk ¼ 2; nc ¼ 3;

ð1Þ

pti ¼

0 if t ¼ w and i 2 ½1; 3��
1� ð1� 1

m�Þ
jkj
�
= m�

1

� �
if t ¼ k and i ¼ 1

0 if t ¼ k and i 2 ½2; 3��
1� ð1� ð3�iÞm� Þ

jcj
�
= m�

1

� �
if t ¼ c and i 2 ½1; 2�

0 if t ¼ c and i ¼ 3:

8>>>>><
>>>>>:

The first term of the equation is the latency of the initial
probe, i.e., the period starts when the client first tunes into
the broadcast channel till the moment it receives the first
index segment. The second term of the equation is the
average waiting time for the answers which are assumed to
be uniformly distributed within the broadcast cycle under
the situation that p is zero. Since some searches cannot be
completed within one index segment, the clients have to
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probe in the next or even the following index segments to
finish the queries. This is caused by the possibility that
some answers are broadcast between the scanned index
segments and, thus, are missed from the current broadcast
cycle (p 6¼ 0). Consequently, the clients suffer from waiting
until the next broadcast cycle to receive those answers.
Given a distribution of the queries submitted by the clients,
we can approximate the average performance of different
indices based on the expected access latencies of different
schemes. The expected access latency is derived as in (2).

lati ¼ qw � latwi þ qk � latki þ qc � latci
i 2 ½1; 3� and qw þ qk þ qc ¼ 1:0:

ð2Þ

5 PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
CkNN search algorithm on HC Index. Two data sets, as
shown in Fig. 10, are used in the evaluations. In the first
data set (UNIFORM), 10,000 points are uniformly generated
in a square euclidean space. The second data set (REAL)
contains around 6,000 cities and villages of Greece, which is
extracted from the point data set available in [22]. The
simulation model is implemented using CSIM, a discrete-
event-based simulation package (www.mesquite.com).

We implement the CkNN search algorithms based on
R-tree for comparison [6]. As explained in Section 2, the
algorithm is designed for disk-based R-tree. Consequently,
it is not suitable for direct use in wireless data broadcast
due to the backtracking operations which may incur a
longer access latency. Thus, we make the following changes
to adapt the algorithm to the wireless data broadcast
environment: In short, the branches of R-tree are visited
sequentially based on broadcast order, rather than on the
order dynamically determined by heuristics. As the loca-
tions of data objects are known a priori, the STR packing
scheme is employed to build R-tree in order to achieve the
best performance (denoted as STR R-tree in the later
presentation) [23]. Furthermore, the Hilbert curve is also
adopted as an alternative in packing R-tree [24], which is
also implemented in our simulation (denoted as HC R-tree).

R-tree, including both STR R-tree and HC R-tree, is
broadcast in a depth-first order because breath-first broad-
cast requires a client to maintain a queue during query
processing to keep track of the distance information
between the query point and all the nodes in the same
level in order to prune the unnecessary branches. The queue
requires a large memory space, which may not be available
to all the mobile devices. As for the HC index, Bþ-tree is
broadcast in a breath-first order to facilitate the continuous
access of linked leaf nodes.

System parameters for our evaluation are defined in
Table 3, together with the default settings. Unless explicitly
stated, the default values are used. The fixed size of a page
is denoted as Capacity and the available bandwidth of the
public channel is denoted by Bandwidth. The content body
of each object occupies DataSize bytes. Two floating-point
numbers are used to represent a two-dimensional coordi-
nate, and the same number of bits are used for an HC index
value. The size of a floating-point number is FloatSize. The
bandwidth occupied by a pointer is denoted by PointerSize.
Finally, QueryLengthRatio defines the ratio of the length of
query line segments used in CkNN searches to the side
length of the whole search space.

The ability to address the scalability issue is a major
strength of wireless broadcast systems. However, we only
model one client to capture the client-side processing in our
simulation since the number of clients does not affect the
system performance (i.e., an arbitrary number of clients can
access the broadcast at the same time and there are no
requests/feedback sending from clients to the server). One
million queries are issued randomly in our simulation and
the average performance is shown in the following figures.
The tuning time presented here is the active period to
search in the index. Given a fixed Bandwidth and DataSize,
the tuning time for retrieving qualified objects is a constant
and is independent of indices deployed. Therefore, the cost
for object retrieval is not presented in the simulation.
Similarly, the initial probe is not counted because its
average again is a constant. Each index segment under
R-tree, either STR R-tree or HC R-tree, contains one R-tree,
while, under the HC index, it consists of three Bþ-trees.
Although there are other index organization schemes as
described in Section 4.2, we duplicate Bþ-tree three times to
simplify the description. Access latency under different
organization schemes will be presented later in Section 5.5.

The performance evaluation is organized as follows:
Section 5.1 first validates the enhancement achieved by
query partitioning. Section 5.2 evaluates the tuning time
performance of CkNN search algorithms under different
indices. Section 5.3 examines the access latency of CkNN
search algorithms by varying bandwidth overhead pre-
allocated for index segments within a broadcast cycle. This
experiment provides important guidance from the system
planning perspective since the service providers may
choose to allocate a fixed budget of bandwidth for indexing.
On the other hand, it is important to find out how the CkNN
search algorithms (and indices) fare with each other when
the constraint of index bandwidth preallocation is released.
Thus, Section 5.4 evaluates the access latency performance
under the optimal configuration of bandwidth allocation for
index and data segments. The access latency presented in
the previous two sections is based on the assumption that
three Bþ-trees form an index segment, which provides the
worst-case access latency. In Section 5.5, we assume a
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general scenario in which clients may submit different
kinds of queries, including window queries, kNN queries,
and CkNN queries. The access latency under different index
organizations and various access patterns is thereafter
presented. Finally, we extend the simulation to evaluate
the extra energy overhead caused by switches, which tends
to be neglected by existing work in the literature.

5.1 Query Partitioning

Window query is a fundamental operation for the proces-
sing of complex location-based queries (e.g., kNN and
CkNN) on the HC index. The performance of window
queries based on different degrees of query partitioning is
depicted in Fig. 11. Here, the size of the square query
window is set to 1 percent of the whole search space. A
2p � 2p partition will check against several Hilbert curves of
order ði� pÞ rather than the original curve of order i. This
experiment shows that query partitioning does improve the
tuning time (as shown in the figure) but has no effect on
access time (figure not shown to save space). Using the
original HC index (denoted by No Partition in the figure) as
the baseline for comparison, partition 2� 2, 4� 4, and 8� 8
consume only 53, 37, and 29 percent of the tuning time of
No Partition on UNIFORM. A similar result is also
observed from the REAL data set. For the rest of the
experiments, Partition: 8� 8 is adopted as the default
partitioning scheme.

Since the clients have to determine the boundary index
values for multiple subquery windows when employing
query partitioning, there is a small computational overhead
incurred at clients. It is worth noting that the number of
subqueries incurred due to query partitioning is not
proportional to the number of subspaces corresponding to
Hilbert curves of lower order. This is because some
windows may not overlap with every subspace. Our
experiments show that an average of 1.23 subwindow
queries are produced per window query in Partition 2� 2
and 1.54 subwindow queries are produced per window
query in Partition 4� 4.

5.2 Tuning Time Performance

In this section, we present the average tuning time of
answering a CkNN query based on different indices. In
addition to system parameters such as page capacity,
tuning time performance is dependent on the index
structures adopted, search algorithms, and parameters
specified in a query. However, the index organization
models, i.e., how the index segment is interleaved with data
segments, do not affect tuning time. Thus, in this section,
we compare the tuning time of different indices by varying
the page capacity, number of nearest objects k, and the
QueryLengthRatio, separately.

We first perform a sensitivity test on page capacity. In this

experiment (see Fig. 12), the QueryLengthRatio is set to 0:1

and k is set to 1 and 5. The HC index outperforms STR R-tree

and HC R-tree significantly on UNIFORM. As shown in

Fig. 12a, the HC index consumes only 27 percent and

30 percent of the tuning time consumed by the STR R-tree

and HC R-tree, respectively. The HC index also outperforms

the R-tree variants noticeably when the data distribution is

not uniform. As shown in Fig. 12b, the HC index consumes

only 61 percent and 34 percent of the tuning time consumed

by STR R-tree and HC R-tree, respectively. When k ¼ 5, the

tuning time under the HC index still performs constantly

better than that of other indices. Take the REAL data set as

an example; the HC index consumes only 65 percent and

38 percent of the tuning time of STR R-tree and HC R-tree.
Next, we study the impact of query line length on tuning

time by setting k ¼ 1 and Capacity ¼ 256 bytes. In this

experiment (see Fig. 13), the QueryLengthRatio is varied

from 0.025, 0.05, 0.1, to 0.2. As expected, more page accesses

are requested when the length of the query line increases.

This is because a CkNN query with a longer query line asks

for more objects and, hence, needs a larger search space.

The HC index performs consistently well. It consumes only

28 percent and 32 percent of the average tuning time

consumed by STR R-tree and HC R-tree, respectively, on

UNIFORM. The HC index on average consumes 75 percent
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Fig. 11. Improvement of query partitioning. (a) UNIFORM. (b) REAL.

Fig. 12. Tuning time of CkNN queries versus Capacity. (a) UNIFORM
(k ¼ 1). (b) REAL (k ¼ 1). (c) UNIFORM (k ¼ 5). (d) REAL (k ¼ 5).

Fig. 13. Tuning time of CNN queries versus QueryLengthRatio.
(a) UNIFORM. (b) REAL.



and 38 percent of the tuning time consumed by STR R-tree
and HC R-tree, respectively, on the REAL data set.

Finally, Fig. 14 shows the experimental results on
different data sets by fixing Capacity ¼ 256 bytes and
QueryLengthRatio ¼ 0:1, and varying k from 1 to 9. As
shown, the tuning time of all indices is not very sensitive to
k; it only slightly increases as k increases. Taking UNIFORM
as an example, when k is increased from 1 to 9, the tuning
time performance on average is reduced by 10 percent for
all three indices. This experiment also shows that the HC
index has a better performance for complex CkNN queries
in comparison with STR R-tree and HC R-tree. For UNI-
FORM, the HC index consumes 30 percent the tuning time
of STR R-tree and 33 percent tuning time of HC R-tree,
respectively. For the REAL data set, it consumes 90 percent
tuning time of STR R-tree and 46 percent tuning time of HC
R-tree, respectively.

5.3 Fixed Bandwidth Allocation for Index

While the primary goal of this study is to minimize energy
consumption at mobile clients, the air index has a
significant impact on access latency which is highly
dependent on how much bandwidth is available for index
segments and how index segments are interleaved with
data segments. From the perspective of system deployment
and operations, fixed amounts of bandwidth may be
budgeted for index segments; thus, in this section, we
examine the access latency performance of CkNN algo-
rithms given a predetermined index bandwidth (which
implicitly determines the number of index segments to be
interleaved with data segments in a broadcast cycle).

In this experiment, we vary Percentage, the ratio of
preallocated index bandwidth to overall Bandwidth, to test
its impact on access time. In other words, index segments
within one broadcast cycle occupy Percentage*Bandwidth
bandwidth. Therefore, m, the number of index segments
broadcast in a broadcast cycle, can be derived accordingly.
Since the replication of index segments does not have an
impact on the tuning time resulted from index scanning, we
do not plot the figures for tuning time.

We take an estimated optimal access time, i.e., a half of
the broadcast cycle which consists of only data objects, as
the base line for comparison. For clarity of presentation, the
experimental results are normalized based on this optimal
access time. As shown in Fig. 15, both R-tree and the HC
index share a similar access latency when Percentage is very
small. This is because a small Percentage results in a small m.
For example, when Percentage is 0.01, both R-tree and the
HC index have only one index segment (i.e., m 	 1).
Therefore, different indices share similar initial probe time

and broadcast cycle and, hence, access latency. As Percen-
tage increases, more index segments are broadcast within
one cycle to reduce the initial probe time. Although a large
m incurs a longer broadcast cycle, the client benefits more
from the improved initial probe time. However, when m
reaches a certain value, the lengthened broadcast cycle
starts to dominate the access latency and, hence, causes a
longer access latency. It is also observed that an index with
smaller size has a more frequent appearance within one
cycle. R-tree, owning to the smaller size, has a better access
latency than the HC index.

5.4 Access Latency under an Optimal Configuration

In this section, we examine the access time of compared
search algorithms and indices under optimal configuration
of index and data bandwidth allocation. The minimal access
latency under an optimal m (denoted by m�) is presented in
Fig. 16. In contrast to Section 5.3, here, we assume that
sufficient bandwidth is available for broadcasting the index
segment m� times within a broadcast cycle. Fig. 16 shows
the access latency under different page capacities. The
query parameters examined previously, i.e., the number of
nearest objects and the length of query line, have no effect
on access time and, thus, are not discussed here.

As shown in the figure, indices expand the broadcast
cycle and result in a longer access latency. Take UNIFORM
as an example; the R-tree index, including both STR R-tree
and HC R-tree, causes a 23 percent access latency overhead,
while the HC index incurs a 39 percent access latency
overhead. Compared to the experiment discussed in
Section 5.3, the access latency under an optimal configura-
tion is obviously better than the access time resulting from
predetermined index bandwidth allocation.

5.5 Access Latency under Different Index
Organizations

Based on the performance presented in previous sections,
R-tree has a better access latency than the HC index. This is
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Fig. 14. Tuning time of CkNN queries. (a) UNIFORM. (b) REAL.
Fig. 15. Access latency versus various percentages. (a) UNIFORM.
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Fig. 16. Access latency under optimal configuration. (a) UNIFORM.
(b) REAL.



because we duplicate Bþ-tree three times within one index
segment, which significantly increases the occupied band-
width of the index. Therefore, the presented access latency
for the HC index is the worst case scenario. In real
applications, each index segment under the HC index can
broadcast Bþ-tree once or twice, but not necessarily three
times, to shorten the access latency. As described in
Section 4.2, the number of Bþ-trees included in an index
segment is determined based on the detailed access patterns.

In Fig. 17, the performance of access latency under
different organization schemes is presented. To save the
space, only the results based on UNIFORM are depicted.
We further assume there is enough bandwidth allocated to
index segments and, hence, the access latency is evaluated
based on the optimal m. As expected, the simulation results
demonstrate a perfect match with analytical results derived
from (1) and (2). The average difference between simulation
results and analytical results is around 4 percent, which
further verifies the accuracy of the analytical model. In the
simulation, all the default system parameters are applied,
and the k for kNN search is one, window size is 0.01 of the
original search space, and k for CkNN search is again one.

It is obvious as access patterns change that the optimal
index organization scheme that minimizes the average access
latency also varies. For example, when a uniform access
pattern is applied (i.e., pw ¼ pk ¼ pc, as shown in Fig. 17a, the
index organization to broadcast Bþ-tree once within the
index segment optimizes the performance. However, if most
of the queries issued are NN searches, the index segment to
duplicateBþ-tree twice works the best (as shown in Fig. 17b).
Therefore, the analytical model developed in Section 4.2
provides the system administrator a guidance to select the
corresponding index organization model.

5.6 Switching Overhead

Air indexing techniques are based on the idea of keeping the
mobile clients in doze mode as long as possible and only
switching them back to active mode when the data of interest
are broadcast. While most of the existing work in the
literature neglected the energy overhead caused by mode
switches, there is a general concern of whether the energy
saving obtained from turning mobile devices into doze mode
can outweigh the switching overhead, particularly when
traversing an index will obviously incur many switches.

In order to verify that air indexing techniques do save
energy, we conduct a simulation to count the average
number of switches incurred by a query in this section. In
this simulation, a transition from active mode to doze mode

and vice versa are both counted as switches. This experi-
ment also allows us to compare the impact of switches on
various indexing schemes and search algorithms.

Table 4 summarizes the average number of switches for
answering CkNN queries. We observe that, in most cases,
the CkNN search algorithm based on the HC index results
in a much smaller number of switches when compared to
the CkNN algorithms based on STR R-tree and HC R-tree.
This is because the Bþ-tree in the HC index is broadcast in
breath-first order. A window query which retrieves objects
within a linear range can be answered by traversing the
Bþ-tree from the root node to the leaf nodes once. Since
range search under the HC index is deterministic, the
number of switches is only dependent on the height of the
tree. Once a leaf node which covers the smallest HC value
of a range is reached, the rest of the objects within the range
are sequentially obtained from the leaf nodes. Since
window query is the fundamental operation commonly
used in other queries (e.g., kNN and CkNN), the number of
switches is independent of k in kNN queries or the length of
the query line segment for CkNN queries. Taking the
UNIFORM data set as an example, the HC index only
incurs 47 percent switches of STR R-tree and 68 percent
switches of HC R-tree.

To more precisely compare the performance of the CkNN
search algorithms under evaluation, we obtain their average
power consumptions on UNIFORM (see Fig. 18). It is
observed that the typical setup time for a mobile device to
start or tune into active mode is in the order of 100 �s [9].
Since the setup time is device dependent, we use different
setup times, ranging from 100 �s, 1 ms, to 10 ms. We
assume that Capacity is 256 bytes and the Bandwidth is
256 kbps. As a result, receiving a page takes 8 ms. When set-
up time reaches 10 ms, a switch takes a longer time than
receiving a page. This can be regarded as the worst-case
scenario. Let Pon and Poff denote the power consumption in
active and doze modes, respectively. Also, let Ton, Toff , and
Tset denote the time spent in active, doze, and setup (i.e.,
switching) during CkNN query processing. Finally, we use
Nswi to denote the number of switches incurred. We adopt
the numbers from the Hobbit chip [4], which consumes
250 mW in the active mode and 50 �W in the doze mode,
and Proxim RangeLAN2 [9], which requires 1:5 W in
transmit mode, 0:75 W in receive mode, and 0:01 W in
doze mode, to approximate the energy consumption in
answering a CkNN query. Here, we only consider the
power consumed in searching the index, denoted by P in
(3), excluding the power consumed in the initial probe step
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Fig. 17. Access latency versus index organization. (a) pw ¼ pk ¼ pc ¼ 1
3 .

(b) pk ¼ 1
2 , pw ¼ pc ¼ 1

4 .

TABLE 4
Number of Switches under CNN Search

(QueryLengthRatio ¼ 0:1)



and the object retrieval step. Since different devices have
different power consumptions in switching, we assume that
Pswi equals �� Pon, where � is set to 1, 5, and 10.

P ¼ Ton � Pon þ Tset �Nswi � Pswi þ Toff � Poff : ð3Þ

Wireless data broadcast with no index obviously will
consume more energy than broadcast with an index. In
the experiment, we adopt a simple indexing mechanism
which does not require any switching (denoted as Naive
Index) as the base line for comparison. This index is
formed by a set of 2-tuple hpi; tii, with i 2 ½1; N �, where
pi is the location of object Oi and ti is the broadcast time
of Oi. Therefore, the naive index occupies N ¼ N �
ð2FloatSizeþ PointerSizeÞ=Capacity pages. Under this
scheme, mobile clients process CkNN queries by scan-
ning those N pages to obtain the broadcast time of the
qualified data objects.

The simulation result reveals some important findings.
First, air indices do reduce power consumption. Although
CkNN searches based on various indices require switches,
they significantly reduce the number of pages that need to
be downloaded. Therefore, the power saving obtained by
retrieving only relevant pages is far more than the extra
power incurred by switches. Second, the HC index provides
the best performance in terms of power consumption
because the CkNN search algorithm based on the HC index
requires the least tuning time as well as the smallest number
of switches. When Pon ¼ Pswi ¼ 250 mW , Poff ¼ 50 �W , the
HC index only consumes 19 percent power of STR R-tree,

39 percent power of HC R-tree, and 9 percent power of
naive index under UNIFORM. Even when Pswi is 10 times
higher than Pon, the HC index still consumes the least
energy. For the other settings and data distributions (not
shown here due to space limitations), the HC index also
significantly outperforms the other indices.

Finally, it can be observed that, as setup time becomes
longer and the ratio of Pswi to Pon becomes larger, the
energy consumed by the switch operation starts to dom-
inate the whole energy consumption. In this case, the
broadcast server may consider adopting the naive approach
to save clients’ energy if THE key objective is energy
conservation for the majority of the mobile clients.

6 CONCLUSION

With the advent of wireless networks and the popularity of
mobile devices, the pervasive computing era will soon
arrive. Wireless data broadcast, which allows simultaneous
access by an arbitrary number of clients, is a very efficient
and scalable information dissemination method. In this
paper, we address the problem of answering CkNN queries
in wireless data broadcast systems.

The characteristics of wireless data broadcast make direct
adoption of existing spatial index structures a challenge [15],
[25], [16]. In order to enable energy efficient retrieval of
location-based data in the wireless data broadcast systems,
the Hilbert curve index has been proposed [16], [27]. In this
paper, we develop a new search algorithm to support CkNN
search based on the HC index. Furthermore, we address two
implementation issues by proposing: 1) a query window
partitioning strategy to improve the spatial locality of
Hilbert curve and 2) three index organization schemes to
facilitate the processing of different queries. A theoretical
model is developed to guide the choice of the most suitable
organization scheme for broadcasting index information.
Finally, a comprehensive simulation is implemented to
evaluate the performance of the proposed CkNN search
algorithm based on the HC index, compared against that of
an algorithm based on revised R-tree variants. The result
shows that the proposed CkNN search algorithm outper-
forms its R-tree counterparts significantly in terms of tuning
time, for both the synthetic data set and the real data set.
This study also takes into account the incurred overhead for
switching between doze and active modes. Our experiments
show that the energy savings by CkNN search algorithms
(for both the HC index and R-tree index) outweigh the
incurred switching overhead, with the HC index signifi-
cantly outperforming R-tree. Generally speaking, the HC
index has superior tuning time performance but also has to
pay off the gain with a longer access latency. Since no index
can optimize both tuning time performance and access
latency performance, the HC index still is the best choice for
applications with a priority on tuning time performance.

In this paper, we have assumed that all the data objects
are logically stored in the broadcast server. As for the next
step, we will consider the scenarios where the data objects
are distributed in a network of broadcast servers. We are
looking into this problem to develop cooperation strategies
among the broadcast servers.
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Fig. 18. Power consumption (Capacity = 256 bytes, UNIFORM).
(a) Tset ¼ 100 �s, Hobbit. (b) Tset ¼ 100 �s, Proxim. (c) Tset ¼ 1 ms,
Hobbit. (d) Tset ¼ 1 ms, Proxim. (e) Tset ¼ 10 ms, Hobbit. (f) Tset ¼ 10 ms,
Proxim.
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