Visible Reverse k-Nearest Neighbor Query Processing in Spatial Databases

Yunjun Gao, Member, IEEE, Baihua Zheng, Member, IEEE, Gencai Chen, Wang-Chien Lee, Member, IEEE, Ken C.K. Lee, and Qing Li, Senior Member, IEEE

Abstract—Reverse nearest neighbor (RNN) queries have a broad application base such as decision support, profile-based marketing, resource allocation, etc. Previous work on RNN search does not take obstacles into consideration. In the real world, however, there are many physical obstacles (e.g., buildings) and their presence may affect the visibility between objects. In this paper, we introduce a novel variant of RNN queries, namely, visible reverse nearest neighbor (VRNN) search, which considers the impact of obstacles on the visibility of objects. Given a data set P, an obstacle set O, and a query point q in a 2D space, a VRNN query retrieves the points in P that have q as their visible nearest neighbor. We propose an efficient algorithm for VRNN query processing, assuming that P and O are indexed by R-trees. Our techniques do not require any preprocessing and employ half-plane property and visibility check to prune the search space. In addition, we extend our solution to several variations of VRNN queries, including: 1) visible reverse k-nearest neighbor (VRkNN) search, which finds the points in P that have q as one of their k visible nearest neighbors; 2) δ-VRkNN search, which handles VRkNN retrieval with the maximum visible distance δ constraint; and 3) constrained VRkNN (CVRkNN) search, which tackles the VRkNN query with region constraint. Extensive experiments on both real and synthetic data sets have been conducted to demonstrate the efficiency and effectiveness of our proposed algorithms under various experimental settings.

Index Terms—Reverse nearest neighbor, visible reverse nearest neighbor, spatial database, query processing, algorithm.

1 INTRODUCTION

Reverse nearest neighbor (RNN) search has received considerable attention from the database research community in the past few years, due to its importance in a wide spectrum of applications such as decision support [6], profile-based marketing [6], [14], resource allocation [6], [19], etc. Given a set of data points P and a query point q in a multidimensional space, an RNN query finds the points in P that have q as their nearest neighbor (NN). A popular generalization of RNN is the reverse k-nearest neighbor (RkNN) search, which returns the points in P whose NNs include q. Formally, $R_k\text{NN}(q) = \{p \in P | q \in k\text{NN}(p)\}$, where $k\text{NN}(p)$ represents the set of reverse k nearest neighbors to a query point q and $k\text{NN}(p)$ denotes the set of k nearest neighbors to a point p. Fig. 1a illustrates an example with four data points, labeled as p_1, p_2, p_3, and p_4, in a 2D space. Each point $p_i (1 \leq i \leq 4)$ is associated with a circle centered at p_i and having $dist(p_i, NN(p_i))^1$ as its radius, i.e., the circle $cir(p_i, NN(p_i))$ covers p_i’s NN. For example, the circle $cir(p_3, NN(p_3))$ encloses p_2, the NN of p_3, i.e., $NN(p_3)$. For a given RNN query issued at point q, its answer set $RNN(q) = \{p_1\}$ as q is only located inside the circle $cir(p_1, NN(p_1))$. It is worth noting the asymmetric NN relationship, that is, $p \in k\text{NN}(q)$ does not necessarily imply $q \in k\text{NN}(p)$, e.g., in Fig. 1a, we notice that $NN(p_1) = p_2$, but $NN(p_3) = p_2$.

1.1 Motivation

There are many RNN/RkNN query algorithms that have been proposed in the database literature. Basically, they can be classified into three categories: 1) precomputation-based algorithms [6], [19]; 2) dynamic algorithms [13], [14], [16]; and 3) algorithms for various RNN/RkNN query variants [7], [8], [15]. Nevertheless, none of the existing work on RNN/RkNN search has considered physical obstacles (e.g., buildings) that exist in the real world. The presence of obstacles may have a significant impact on the visibility or distance between objects, and hence, affects the result of RNN/RkNN queries. Furthermore, in some applications, users may be only interested in the objects that are visible or reachable to them.

Actually, the existence of physical obstacles has been considered in certain types of spatial queries. They include: 1) obstructed nearest neighbor (ONN) query [20], which returns the $k(\geq 1)$ points in P that have the smallest obstructed distances (defined as the length of the shortest path that connects any two points without crossing any

1. Without loss of generality, function $dist(p_i)$ returns the euclidean distance between any two points p_i and p_j.

Y. Gao is with the School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902, Singapore, and the College of Computer Science, Zhejiang University, 38 Zheda Road, Hangzhou 310027, PR China. E-mail: yjgao@smu.edu.sg, gaojy@zju.edu.cn.

B. Zheng is with the School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902, Singapore. E-mail: bhzheng@smu.edu.sg.

G. Chen is with the College of Computer Science, Zhejiang University, 38 Zheda Road, Hangzhou 310027, PR China. E-mail: chenge@zju.edu.cn.

W.-C. Lee and K.C.K. Lee are with the Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802. E-mail: {wlee, cklee}@cse.psu.edu.

Q. Li is with the Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China. E-mail: qili@cityu.edu.hk.

Manuscript received 7 Nov. 2008; revised 10 Mar. 2009; accepted 17 Apr. 2009; published online 28 Apr. 2009. Recommended for acceptance by M. Garofalakis.

For information on obtaining reprints of this article, please send e-mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-2008-11-0589.

Digital Object Identifier no. 10.1109/TKDE.2009.113.
obstacle from an obstacle set) to \(q\); 2) \(\text{visible} k\)-nearest neighbor (\(\text{VKNN}\)) search [10], which finds the \(k\) nearest points that are \(\text{visible}\) to \(q\); and 3) \(\text{clustering spatial data in the presence of obstacles}\) [17], which divides a set of 2D data points into smaller homogeneous groups (i.e., clusters) by taking into account the impact of obstacles. Different from the existing work, this paper considers the obstacles in the context of RNN/R\(k\)NN retrieval. To the best of our knowledge, this is the first work to address this problem.

1.2 Contributions

In this paper, we introduce a novel form of RNN queries, namely, \(\text{visible reverse nearest neighbor}\) (VRNN) search, which considers the impact of obstacles on the visibility of objects. Given a data set \(P\), an obstacle set \(O\), and a query point \(q\) in a 2D space, a VRNN query retrieves all the points in \(P\) that have \(q\) as their \(\text{visible NN}\). Take a VRNN query issued at point \(q\) as an example (as depicted in Fig. 1b). It returns \(\{p_1\}\) as the result set, which is different from the result of an RNN query issued at \(q\) (as shown in Fig. 1a). In addition, we define several variants of VRNN queries, including: 1) \(\text{visible reverse } k\)-nearest neighbor (VR\(k\)NN) search, a natural generalization of VRNN retrieval, which finds all the points \(p \in P\) that have \(q\) as one of their \(k\) \(\text{visible NNs}\); 2) \(\delta\)-VR\(k\)NN search, which answers the VR\(k\)NN query with the \(\text{maximum visible distance}\) \(\delta\) \(\text{constraint}\); and 3) \(\text{constrained VRNN}\) (CVR\(k\)NN) search, which processes the VR\(k\)NN query with \(\text{region constraint}\). These potential variants form a suite of interesting and intuitive problems from both the research point of view and application point of view.

We focus this paper on VRNN search, not only because the problem is new to the research community but also because it has a large application base. Some of the example applications are listed as follows:

Outdoor advertisement planning

Suppose \(P&G\) plans to post advertisements in billboards to promote a new shampoo. In order to encourage customers to try this new product, \(P&G\) decides to distribute some samples near billboards as well. Due to the high cost of sample distribution, only those billboard locations that can reach a big pool of potential customers are considered. Ideally, the more people can view the billboards, the more effective the promotion will be. We assume that the number of candidate billboard locations is \(\text{small}\) due to limited budget, and each customer only pays attention to the billboard located \(\text{closest}\), and meanwhile, \(\text{visible}\) to him/her. Hence, VRNN search can be conducted to compare the optimality of any two candidate billboard locations \(q_1\) and \(q_2\) in terms of the potential customer base they can reach. By performing a VRNN query which takes as inputs a set of residential buildings or shopping malls (that represent the potential customer base), a set of obstacles (e.g., buildings), and a query point \(q_1/q_2\), the decision-maker can identify the customers that would watch the billboard located at \(q_1/q_2\). The one with more customers is better.

Selection of promotion sites

Suppose Yao Restaurant & Bar plans to open a new restaurant YEEHA in Shanghai and wants to distribute coupons to its potential customers for promotion. Assume those customers who do not know YEEHA previously but have YEEHA as their \(\text{visible nearest restaurant}\) are more likely to visit YEEHA for a trial. Consequently, in order to ensure the effectiveness of the promotion, Yao Restaurant & Bar needs to locate all the office buildings and residential buildings that have YEEHA as their \(\text{visible nearest restaurant}\), and to identify people working or staying in those buildings as its target consumers. VRNN search can provide a perfect match.\(^2\)

A naive solution to deal with VR\(k\)NN (\(k \geq 1\)) is queries is to find a set of points \(p \in P\), denoted as \(S_p\), which are \(\text{visible}\) to a specified query point \(q\), perform VR\(k\)NN search on each of them, and return these points \(p \in S_p\) with \(q \in \text{VRNN}(p)\). However, this method is very inefficient because it needs to traverse the data set \(P\) and obstacle set \(O\) \(\text{multiple times}\) (i.e., \(|S_p| + 1\) \(\text{times}\)\(^3\)), resulting in high I/O overhead and expensive CPU cost, especially when \(|\text{VR\(k\)NN}(q)\| < |S_p|\).

In this paper, we propose an efficient algorithm for VRNN query processing, assuming that both \(P\) and \(O\) are indexed by R-trees [2], [4]. Our method follows a \(\text{filter-refinement}\) framework and requires \(\text{no preprocessing}\). Specifically, a set of candidate objects (i.e., a superset of the final query result) is retrieved in the filter step and gets refined in the subsequent refinement step, with these two steps integrated into a single R-tree traversal. Since the size of the candidate set has a direct impact on the search efficiency, we employ \(\text{half-plane properties}\) (as [16]) and \(\text{visibility check}\) to prune the search space. In addition, the search algorithm is general and can be easily extended to support different variants of VRNN queries, such as VR\(k\)NN search, \(\delta\)-VR\(k\)NN search, and CVR\(k\)NN search.

In brief, the key contributions of this paper can be summarized as follows:

- We introduce and formalize VRNN retrieval, a novel addition to the family of RNN queries, which is very useful in many applications involving spatial data and physical obstacles for decision support.
- We develop an efficient VRNN search algorithm, analyze its cost, and prove its correctness.
- We extend our techniques to several variations of VRNN queries, including VR\(k\)NN search, \(\delta\)-VR\(k\)NN search, and CVR\(k\)NN search.

2. Note that if we assume that those customers having YEEHA as their closest restaurant (no matter whether YEEHA is \(\text{visible}\) to them) are more likely to visit YEEHA for a trial, the RNN search based on the obstructed distance would be more suitable.

3. \(|P|\) denotes the cardinality of a set \(P\).
TABLE 1
Frequently Used Symbols

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>A set of data points in a two-dimensional space</td>
</tr>
<tr>
<td>O</td>
<td>A set of obstacles in a two-dimensional space</td>
</tr>
<tr>
<td>T_p</td>
<td>The R-tree on P</td>
</tr>
<tr>
<td>T_o</td>
<td>The R-tree on O</td>
</tr>
<tr>
<td>q</td>
<td>A query point</td>
</tr>
<tr>
<td>e</td>
<td>An entry (point or MBR node) in an R-tree</td>
</tr>
<tr>
<td>VR</td>
<td>The visible region of q</td>
</tr>
<tr>
<td>L_o</td>
<td>A list that keeps the obstacle lines of the obstacles affecting the visibility of q</td>
</tr>
<tr>
<td>CR</td>
<td>A constrained region</td>
</tr>
<tr>
<td>RNN(q)</td>
<td>Result set of a RNN query issued at q</td>
</tr>
<tr>
<td>VNN(q)</td>
<td>Result set of a VNN query issued at q</td>
</tr>
<tr>
<td>VRNN(q)</td>
<td>Result set of a VRNN query issued at q</td>
</tr>
</tbody>
</table>

- We conduct extensive experiments using both real and synthetic data sets to demonstrate the performance of our proposed algorithms in terms of efficiency and effectiveness.

The rest of this paper is organized as follows: Section 2 formalizes VRkNN query and reviews related work. Section 3 discusses how to determine whether an object is visible to q in the presence of obstacles and introduces the concept of visible region to improve the search performance. Section 4 proposes an efficient algorithm for processing VRNN queries and conducts an analytical study to prove its correctness. Section 5 extends our solution to tackle several VRNN query variants. Extensive experimental evaluations and our findings are reported in Section 6. Finally, Section 7 concludes the paper with some directions for future work.

2 BACKGROUND

In this section, we present the formal definition of VRkNN query, reveal its characteristics, and then, survey related work, including RNN/RkNN search algorithms and visibility queries. Table 1 lists the symbols used in this paper.

2.1 Problem Statement
Given a data set P, an obstacle set O, and a query point q in a 2D space, the visibility between two points is defined in Definition 1. Based on which, we formulate VNN and VRkNN queries in Definitions 2 and Definition 3, respectively.

Definition 1 (Visibility). Given O in a 2D space, points p and q are visible to each other if the straight line connecting p and q does not cut through any obstacle o in O, i.e., \(\forall o \in O, \overline{pq} \cap o = O \).

Definition 2 (Visible k-nearest neighbor query) [10]. Given P, O, q in a 2D space, and an integer k(\(\geq 1 \)), a VNN query finds a set of points \(VNN(q) \subseteq P \), such that: 1) \(\forall p \in VNN(q) \) is visible to q; 2) \(|VNN(q)| \leq k \); and 3) \(\forall p' \in P - VNN(q) \) and \(\forall p \in VNN(q) \), if p' is visible to q, \(dist(p, q) \leq dist(p', q) \).

Definition 3 (Visible reverse k-nearest neighbor query). Given P, O, q in a 2D space, and an integer k(\(\geq 1 \)), a VRNN query retrieves a set of points \(VRNN(q) \subseteq P \), such that \(\forall p \in VRNN(q), q \in VNN(p) \), i.e., \(VRNN(q) = \{p \in P \mid q \in VNN(p)\} \).

Next, some important properties of the VRkNN query that will be utilized to process VRkNN query are presented in Property 1, Property 2, and Property 3, respectively.

Property 1. The VRkNNs of a query point q might not be localized to the neighborhood of q.

Property 2. Given a query point q, the cardinality of q’s VRkNNs (i.e., \(|VRkNN(q)| \)) varies by the position of q and the distributions of data points/obstacles.

Property 3. p \(\in VRkNN(q) \) does not necessarily imply p \(\in VRkNN(q) \) and vice versa.

In order to facilitate the understanding, we illustrate these properties using the example depicted in Fig. 1b. First, although point \(p_1 \) is the furthest from a specified query point q compared with other points, it is still an answer point to the VRNN query issued at q (i.e., \(p_1 \in VRNN(q) \)). In contrast, point \(p_2 \) that is closer to q than \(p_1 \) is not included in VRNN(q). Second, for the same k, VRNN queries issued at different locations may obtain different results with different number of answer points. As an example, \(|VRNN(q)| = |\{p_1\}| = 1, |VRNN(q')| = |\{p_1, p_2\}| = 2 \), and \(|VRNN(q'')| = |\{p_1\}| = 0 \). Third, the relationship of visible nearest neighbor is asymmetric. For instance, \(VNN(q) = \{p_2\} \), but \(VRNN(q) = \{p_1\} \) that does not contain \(p_2 \).

2.2 Related Work

2.2.1 Algorithms for RNN/RkNN Search
Since the concept of RNN was first introduced by Korn and Muthukrishnan [6], many algorithms have been proposed, which can be divided into three categories. The first category is precomputation-based [6], [19]. For each point \(p_i \), it precomputes the distance from \(p_i \) to its nearest neighbor \(p'_i \) (i.e., NN(\(p_i \))) and forms a vicinity circle cir(\(p_i, p'_i \)) that is centered at \(p_i \) and has \(dist(p_i, p'_i) \) as the radius. For a given query point q, it examines q against all the vicinity circles cir(\(p_i, p'_i \)) with \(p_i \in P \), and those having their vicinity circles enclosing q form the final result, i.e., \(RNN(q) = \{p \in P \mid q \in cir(p, NN(p))\} \). To facilitate the examination, all the vicinity circles can be indexed by RNN-tree [6] or RdNN-tree [19]. Approaches of this category mainly have two shortcomings. First, both the index construction cost and the index update overhead are very expensive. To address this problem, bulk insertion in the RdNN-tree has been proposed in [9]. Second, although these methods can be extended to handle the RdNN retrieval (if the corresponding NN information for each point is available), they are limited to answer RkNN queries for a fixed k. To support various k, an approach for RkNN search with local kNN-distance estimation has been developed in [18].

The second category does not rely on precomputation but adopts a filter-refinement framework [13], [14], [16]. In the filter step, the space is pruned according to defined heuristics, and a set of candidate objects is retrieved from the data set. In the refinement step, all the candidates are verified according to kNN search criteria and those false hits are removed. For example, based on a given query point q, the original 2D data space can be partitioned around q into six equal regions, such that the NNs of q found in each region are the only candidates of the RNN query [14]. Thus,
in the filter step, six constrained NN queries are conducted to find the candidates in each region; and then, at the second step, NN queries are applied to eliminate the false hits. The efficiency of this approach is owing to the small number of candidates, e.g., at most 6 for an RNN query in a 2D space. However, the number of candidates grows exponentially with the increase of the search space dimensionality, meaning that the search efficiency can only be guaranteed in a low-dimensional space. To efficiently process RNN queries in a high-dimensional space, an approximated algorithm is proposed in [13]. It retrieves m nearest points to q as candidates with m (a randomly selected number) larger than k, and then, verifies the candidates using range queries. Nevertheless, the accuracy and performance of this algorithm is highly dependent on the value of m. The larger the m value is, the more identified candidates are. Consequently, it is more likely that a complete result set is returned with a higher processing cost. A small m value favors the efficiency, whereas it may incur false misses, i.e., points that are actual reverse k nearest neighbors but missed from the final query result set.

In order to conduct exact RNN search, an efficient algorithm, called TPL, is proposed in [16]. TPL exploits a half-plane property to locate RNN candidates. Applying the best-first traversal paradigm, TPL traverses the data R-tree to retrieve the NNs of q as RNN candidates. Every time, an unexplored data point p is retrieved, a half-plane is constructed along the perpendicular bisector between p and q, denoted as \(\perp(p, q) \). The bisector divides the data space into two half-planes: \(HP_q(p, q) \) that contains q and \(HP_p(p, q) \) that contains p. Any object, including both points and minimum bounding rectangle (MBR), falling completely inside \(HP_q(p, q) \) must have p closer to it than q. As shown in Fig. 2, the bisector \(\perp(p_3, q) \) partitions the space into two half-planes. As point \(p_1 \) falls into the half-plane \(HP_q(p_1, q) \), it is closer to q than to \(p_3 \). In addition, the number of half-planes \(HP_p(p, q) \) that a given point \(p' \) falls in represents the number of data points that are closer to \(p' \) than q. Hence, if a data point is within at least k \(HP_p(p, q) \) half-planes, it cannot be a qualifying RNN candidate, and thus, can be safely discarded. The filter step terminates when all the nodes of R-tree are either pruned or visited. As illustrated in Fig. 2, points \(p_1, p_3, \) and \(p_4 \) are identified as the RNN candidates in the filter step, while point \(p_2 \) that is inside \(HP_{p_1}(p_1, q) \cap HP_{p_3}(p_3, q) \) and N (enclosing points \(p_5, p_6 \)) that is within \(HP_{p_3}(p_3, q) \cap HP_{p_4}(p_4, q) \) are filtered out. Later, in the refinement step, TPL eliminates false hits by reusing the pruned points/MBRs. Continuing the running example, points \(p_3 \) and \(p_4 \) are false hits, as their vicinity circles enclose other points. The final query result set is \([p_1]\). Our proposed algorithms for VRNN search and its variations employ half-plane property and visibility check to identify result candidates and prune the search space.

Algorithms belonging to the third category are to tackle various RNN/RkNN query variants, such as bichromatic RNN queries [15], aggregate RNN queries over data stream [7], and ranked RNN search [8].

2.2.2 Visibility Queries

Visibility computation algorithms that determine object visibility from a given viewpoint or a viewing cell have been well-studied in the area of computer graphics and computational geometry [1]. However, there are only a few works on visibility queries in the database community [5], [11], [12]. The basic idea is to employ various indexing structures (e.g., LoD-R-tree [5], HDv-tree [12], etc.) to deal with visibility queries in visualization systems. These specialized access methods are designed only for the purpose of visualization test, and hence, contain zero distance information. Thus, they are not capable of supporting efficient VR NN query processing. Recently, V\(k \)NN search [10] has been investigated, where the goal is to retrieve the k NNs that are visible to a specified query point. Further study along this line includes continuous V\(k \)NN retrieval [3].

3 Preliminaries

As VRNN search considers the impact of obstacles on objects’ visibility, all the objects that are invisible to q for sure will not be contained in the result. Consequently, an essential issue we have to address is how to determine whether an object is visible to q. A simple approach is to examine a given object p against all the obstacles w.r.t. q, which is inefficient because the examination of each object \(\sigma \) requires a scanning of the obstacles. In this paper, we derive a visible region for the query point q, denoted by \(VR_{q} \), by visiting the obstacle set once, and the visibility of an object p w.r.t. q can be determined by checking whether \(p \) is located inside \(VR_q \). In this section, we explain the formation of the visible region.

Before we present the detailed formation algorithm, we first discuss the presentation of a visible region. As shown in Fig. 3, a visible region might be in an irregular shape and we can use vertex to represent it. Nevertheless, it might not be so straightforward to determine whether an object is inside an irregular polygon. Alternatively, we propose to use obstacle lines, defined in Definition 4, to handle this problem.

Definition 4 (Obstacle line). The obstacle line of an obstacle \(\sigma \) w.r.t. q, denoted by ol\(\omega \), is the line segment that obstructs the sight lines from q.

Suppose the rectangle o depicted in Fig. 3 is an obstacle, and its corresponding obstacle line is ol\(\omega \). The shadowed

5. Although an obstacle o may be in an arbitrary shape (e.g., triangle, pentagon, etc.), we assume that o is a rectangle in this paper.
area, blocked by $ol_{o'}$ is not visible to q, and the rest (except o) is within the visible region of q (i.e., VR_q). Based on the concept of obstacle line, we can determine the angular bound and the distance bound of an obstacle line w.r.t. q, which can be utilized to facilitate the visibility checking of objects.

Taking q as an origin in the search space, the **angular bound** of o’s obstacle line (i.e., ol_o) w.r.t. q is denoted as $[ol_o.minA, ol_o.maxA]$, in which $ol_o.minA$ and $ol_o.maxA$ are, respectively, the minimum angle and the maximum angle of ol_o, and $ol_o.minA \leq ol_o.maxA$ (see Fig. 3). If q is located inside o, the angular bound of ol_o w.r.t. q is set to $[0, 2\pi]$. When ol_o intersects with the positive x-axis in the search space, we partition ol_o horizontally along the x-axis into ol_{o1} and ol_{o2}. In addition, given two obstacles o and o', if their angular bounds are disjoint, i.e., $[ol_o.minA, ol_o.maxA] \cap [ol_{o'}.minA, ol_{o'}.maxA] = \emptyset$, they will not affect each other’s visibility w.r.t. q. The **distance bound** of o’s obstacle line w.r.t. q is denoted as $[ol_o.minD, ol_o.maxD]$, where $ol_o.minD$ and $ol_o.maxD$ are the minimal distance and the maximal distance from q to ol_o, respectively (see Fig. 3).

Without any obstacle, the visible region of q (i.e., VR_q) is the entire search space. As obstacles are visited, VR_q gets shrunk. Consequently, an issue we have to solve is how to decide whether a new obstacle might change the size of VR_q. In the following, we first explain the examination-based online segments (or edges), namely, **Edge Visibility Check** (EVC), and then, extend it for obstacles in rectangular shapes.

EVC gradually examines the obstacles and maintains the obstacle lines of all the obstacles found so far which affect the visibility of a given query point q. Given a new obstacle o, o might affect these obstacles with angular bounds overlapping with o’s but definitely not the rest. Consequently, EVC evaluates the impact of o on the size of VR_q via comparing o’s angular bound against that of obstacle lines in L_q.

Due to the space limitation, the pseudocode of EVC is skipped, while we use an example depicted in Fig. 4 to illustrate the basic idea. Assume that $L_q = \{ol_{o1}, ol_{o2}, ol_{o3}\}$ and e_2 is the edge to be evaluated. According to the angular bound of each obstacle line $l \in L_q$ and that of edge e_2, there are three possible cases:

1. $l.maxA \leq e_2.minA$ (e.g., $l = ol_{o3}$), indicating that e_2 will not affect the visibility of l w.r.t. q;
2. $[l.minA, l.maxA] \cap [e_2.minA, e_2.maxA] \neq \emptyset$ (e.g., $l = ol_{o2}$), meaning that a detailed examination is necessary as e_2 is very likely to affect l’s visibility w.r.t. q; and
3. $l.minA \geq e_2.maxA$ (e.g., $l = ol_{o3}$), which indicates that l and all the remaining obstacle lines in L_q with $minA$ larger than that of l’s will not be affected by e_2, and thus, the evaluation on e_2 can be terminated.

Now the only left task is how to change L_q when a new obstacle line l_n overlaps with some existing obstacle line l in L_q (i.e., **case 2** above). Again, there are three possible cases. First, $l.maxD \leq l_n.minD$ holds, which means that l_n has zero impact on q’s visible region VR_q. For example, in Fig. 4b, although e_1 overlaps with o_1 in terms of angular bounds, it is invisible to q, and hence, e_1 can be ignored. Second, $l.minD \geq l_n.maxD$ satisfies, which indicates that the entire l_n is visible to q. Thus, l_n is inserted into L_q and the part of l that is blocked by l_n is removed. In Fig. 4b, for instance, e_4 is within the angular bound of o_3 and its maximal distance to q (i.e., $e_4.maxD$) is smaller than the minimal distance between o_3’s obstacle line ol_{o3} and q (i.e., $ol_{o3}.minD$). Consequently, e_4 that is visible to q is included into L_q and ol_{o3} is shrunk, as shown in Fig. 4b. Third, l_n and l intersect, meaning that part of l_n is visible to q and the other part of l obstructed by l_n becomes invisible to q. L_q needs to include the new visible part of l_n and removes the invisible part of l. As an example, in Fig. 4b, edge e_3 and the obstacle line of o_1 (i.e., ol_{o1}) intersect, and edge e_2 and o_3’s obstacle line ol_{o3} intersect. Thus, we find the intersection points, and then, update L_q. After evaluating new edges $e_1, e_2, e_3,$ and e_4, the visible region of q (i.e., VR_q) is updated to the shaded area (containing the shaded region highlighted in dashed line), as illustrated in Fig. 4b.

Next, we explain how to extend the algorithm of EVC to determine the impact of a rectangle N on VR_{qr}, namely, **Object Visibility Check** (OVC). The basic idea of OVC is to invoke EVC to evaluate the edges of a rectangle. It is worth noting that OVC only needs to evaluate at most two out of four edges of a rectangle, because at most two edges may affect the formation of VR_{qr}. Take the obstacle o_1 (i.e., the rectangle that is formed by edges $e_1, e_2, e_3,$ and e_4) in Fig. 5a as an example. Since a specified query point q lies in the southwest of o_1, only the two edges e_1 and e_4 facing toward q need evaluations, whereas the other two edges e_2 and e_3 are ignored. During the processing of OVC, we distinguish the following two possible situations: 1) if two evaluated edges of N are **invisible** to q, OVC returns IV to indicate that N is invisible to q and hence, N and all its enclosed child nodes can be pruned away and otherwise, 2) two evaluated edges of N are **visible** (partially or completely) to q, OVC returns AV or PV to indicate that N is all-visible (i.e., completely visible) or partially visible to q. If N represents an obstacle, the impact of N’s edges on VR_{qr} is evaluated by EVC, which updates L_q if necessary. Otherwise, N must be

Fig. 3. An example obstacle line and its angular and distance bounds.

Fig. 4. Example of edge visibility check. (a) Obstacle placement. (b) New visible region.
an intermediate node and its child nodes are accessed for further exploration. We omit the pseudocode of OVC due to space limitation.

We are now ready to present our Visible Region Computation Algorithm (VRC). We assume that all the obstacles are indexed by an R-tree \(T_o \), and VRC traverses \(T_o \) in a best-first manner, with unvisited nodes maintained by a min-heap \(H \) sorted based on ascending order of their minimal distances to a given query point. Algorithm 1 shows the pseudocode of VRC algorithm. It continuously checks the head entry \(e \) of \(H \). The detailed examination varies, dependent on the type of \(e \). If \(e \) is an obstacle, it is checked against all the obstacle lines preserved in \(L_q \) (lines 6-7). If it is visible to \(q \), \(e \) might contribute to the formation of \(VR_q \), and thus, \(L_q \) is updated. On the other hand, \(e \) must be a node and all its child entries that are visible (completely or partially) to \(q \) are enqueued for later examination (lines 8-10). VRC also exploits an early termination condition (lines 4-5), as proved by Lemma 1.

Algorithm 1. Visible Region Computation Algorithm (VRC) algorithm VRC \((T_o, q, L_q) \)

/* \(T_o.root \): the root node of R-tree \(T_o \), IV: invisible */
1: insert all entries of \(T_o.root \) into min-heap \(H \); list \(L_q = \emptyset \)
2: while \(H \neq \emptyset \) do
3: de-heap the top entry \((e, key) \) from \(H \)
4: if \(L_q.isclose = \text{TRUE} \) and \(\text{mindist}(e, q) > \text{MAX}_{e \in L_q}(l.maxD) \) then
5: break // terminate
6: if \(e \) is an obstacle then
7: OVC \((e, L_q, q) \) // check \(e \)'s visibility w.r.t. \(q \)
8: else // \(e \) is a MBR (i.e., an intermediate node)
9: for each entry \(e_i \in e \) and OVC \((e_i, L_q, q) \) \(\neq IV \) do
10: insert \((e_i, \text{mindist}(e_i, q)) \) into \(H \)

Lemma 1. Suppose heap \(H \) maintains all the unvisited nodes sorted in ascending order of their minimal distances to the query point \(q \) and list \(L_q \) keeps the obstacle lines of all the obstacles found so far that affect the visibility of \(q \). If \(L_q \) is closed (i.e., \(\cup_{e \in L_q}(l.minA, l.maxA) = [0, 2\pi] \)), denoted as \(L_q.isclose = \text{TRUE} \), and \(\text{mindist}(e, q) > \text{MAX}_{e \in L_q}(l.maxD) \), \(e \) and all the rest entries in \(H \) are invisible to \(q \).

Proof. Suppose there is an entry \(e \) with \(\text{mindist}(e, q) > \text{MAX}_{e \in L_q}(l.maxD) = d_{\text{max}} \) visible to \(q \). As \(e \) is visible to \(q \), there must be at least one line segment issued at \(q \) and reaching a point of \(e \) (denoted as \(p \)) without cutting through any other obstacle (by Definition 1). Since \(L_q \) is closed, without loss of generality, we can assume that the extension of line segment \(\overline{pq} \) intersects an obstacle line \(l \in L_q \) at point \(p' \) with \(\text{dist}(p, q) \leq \text{dist}(p', q) \leq d_{\text{max}} \). As we know that \(\text{mindist}(e, q) \leq \text{dist}(p, q) \) holds. Hence, \(\text{mindist}(e, q) \leq d_{\text{max}} = \text{MAX}_{e \in L_q}(l.maxD) \) satisfies, which contradicts our previous assumption. \(\square \)

An illustrative example of the VRC algorithm is depicted in Fig. 5, where obstacle set \(O = \{o_1, o_2, o_3, o_4, o_5, o_6, o_7, o_8\} \) is indexed by the R-tree \(T_o \) shown in Fig. 5b. We use a list \(L_q \) to store the obstacle lines of all the obstacles that can affect the visibility of \(q \), sorted according to ascending order of their minimal bounding angles; and a heap \(H \) to maintain all the unvisited entries, sorted based on their minimal distances to \(q \). Initially, \(H = \{N_1, N_2, N_3\} \) and the algorithm always deheaps the top entry from \(H \) for examination until \(H \) becomes empty. First, \(N_1 \) is accessed. As it is visible to \(q \), its child nodes are enqueued for later examination, after which \(H = \{o_1, N_2, N_3, o_4, o_5\} \). Then, \(o_4 \) is evaluated. Since it is the first obstacle checked, \(o_4 \) for sure affects \(q \)’s visibility and is added to \(L_q(= \{o_4\}) \). Third, \(N_3 \) is checked. According to current \(L_q, N_3 \) is visible to \(q \), and thus, its child nodes are enqueued, with \(H = \{o_5, N_3, o_2, o_4, o_5\} \). Fourth, \(o_5 \) is examined and becomes the second obstacle affecting the visibility of \(q \), i.e., \(L_q = \{o_5, o_{\text{ol}_3}\} \). Next, \(N_3 \) is deheaped and its child nodes are enqueued into \(H(= \{o_7, o_5, o_{\text{ol}_2}, o_{\text{ol}_1}\}) \). In the sequel, VRC deheaps obstacles from \(H \) and keeps updating \(L_q \) until \(H = \emptyset \). Finally, \(L_q = \{o_{\text{ol}_7}, o_{\text{ol}_6}, o_{\text{ol}_5}, o_{\text{ol}_2}, o_{\text{ol}_1}\} \), in which \(o_{\text{ol}_6} \) is the partial obstacle line of obstacle \(o_{\text{ol}_5} \), as illustrated in Fig. 5a.

4 VRNN Query Processing

In this section, we explain how to process VRNN query. We first present the pruning strategy followed by the details of VRNN search algorithm. Then, we analyze the cost of VRNN algorithm and prove its correctness.

4.1 Pruning Strategy

In order to improve the search performance, we utilize half-plane property (as [16]) and visibility check (discussed in Section 3) to prune the search space. Consider the perpendicular bisector between a data point \(p_1 \) and a given query point \(q \), denoted by \(l_1 \). In Fig. 6. The bisector divides the whole data space into two half-planes, i.e., \(HP_1(p_1, q) \) containing \(p_1 \) (i.e., trapezoid \(EFCD \)) and \(HP_2(p_1, q) \) containing \(q \) (i.e., trapezoid \(ABFE \)). All the data points (e.g., \(p_2, p_3 \)) and nodes (e.g., \(N_1 \)) that fall completely inside \(HP_1(p_1, q) \) and are visible to \(p_1 \) must have \(p_1 \) closer to them than \(q \), and thus, they cannot be/contain a VRNN of \(q \). However, all the data points (e.g., \(p_4, p_5 \)) and nodes (e.g., \(N_2, N_3 \)) that fall into \(HP_2(p_1, q) \) but are partially visible/invisible to \(p_1 \) might become or contain a VRNN of \(q \). Therefore, they cannot be discarded and a further examination is necessary. In the following description, we term \(p_1 \) as a pruning point.
4.2 The VRNN Algorithm

Based on the above pruning strategy, the basic idea of the VRNN algorithm proposed in this paper tries to prune away unqualified data objects/nodes to save the traversal cost. Consequently, it adopts a two-step filter-and-refinement framework, assuming that data set \(P \) and obstacle set \(O \) are indexed by two separate R-trees. In order to enhance the performance, these two steps are well integrated into a single traversal of the trees. In particular, the algorithm accesses nodes/points in ascending order of their distances to the query point \(q \) to retrieve a set of potential candidates, maintained by a candidate set \(S_c \). All the data points and nodes that cannot be/contain a VRNN of \(q \) are discarded by our proposed pruning strategy, preserved in a refinement point set \(S_p \) and a refinement node set \(S_n \), respectively. At the second step, the entries in both \(S_p \) and \(S_n \) are used to eliminate false hits.

Algorithm 2. VRNN Search Algorithm (VRNN)

```plaintext
algoritm VRNN (Tp, Tn, q) */ Sc: candidate set; Sp: refinement point set; Sn: refinement node set; */
1: initialize sets \( S_c = \emptyset, S_p = \emptyset, S_n = \emptyset, S_r = \emptyset \)
2: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
3: VRNN-Refinement (q, Sc, Sp, Sn, Sr)
4: return \( Sr \)
```

Algorithm 2 presents the pseudocode of the VRNN Search Algorithm (VRNN) that takes data R-tree \(T_p \), obstacle R-tree \(T_n \), and a query point \(q \) as inputs, and outputs exactly all the VRNNs of \(q \). We use an example shown in Fig. 7 to elaborate the VRNN algorithm. Here, \(P = \{p_1, p_2, \ldots, p_{13}, p_{14}\} \), \(O = \{o_1, o_2, o_3, o_4\} \), and the corresponding \(T_p \) is depicted in Fig. 7b. A primary heap \(H_w \) is maintained to keep all the unvisited entries ordered in ascending order of their minimal distances to the query point \(q \).

4.2.1 The Filter Step

Initially, VRNN visits the root node of \(T_p \), inserts its child entries \(N_8 \) and \(N_9 \) that are visible to \(q \) into \(H_w(= \{N_8, N_9\}) \), and adds the entry \(N_{10} \) that is invisible to \(q \) to \(S_r(= \{N_{10}\}) \). Then, the algorithm deheaps \(N_8 \) accesses its child nodes, and enheaps all the entries that are visible to \(q \), after which \(H_w = \{N_3, N_9, N_1, N_2\} \). Next, \(N_3 \) is visited and it updates \(H_w \) to \(\{p_1, N_9, N_1, N_2, p_{11}\} \). The next deheaped entry is \(p_1 \). As it is visible to \(q \), \(p_1 \) is the first VRNN candidate (i.e., \(S_c = \{p_1\} \)) and becomes the current pruning point \(cp \) that is used for pruning in the subsequent execution.

The next deheaped entry is \(N_9 \). As \(cp = p_1 \) is not empty, VRNN uses Trim algorithm\(^6\) (as [16]) to check whether \(N_9 \) can be pruned. As \(N_9 \) overlaps with \(HP_{cp}(q) \), its child nodes have to be accessed. Child node \(N_8 \) is discarded as it locates inside \(HP_{cp}(q) \) and it is visible (completely) to \(cp \), meaning that it cannot contain any qualified candidate. Thus, \(N_9 \), which is an MBR, is added to \(S_c \), i.e., \(S_c = \{N_1, N_2, p_{11}\} \). The other child entry \(N_4 \) is enheaped into \(H_w(= \{N_1, N_2, p_{11}\}) \) because it falls partially into \(HP_{cp}(q) \) and is visible (completely) to \(cp \), indicating that \(N_4 \) may contain VRNN candidates. VRNN proceeds to deheap \(N_4 \) and visits its child entries, i.e., data points \(p_2 \) and \(p_5 \). As \(p_2 \) falls inside \(HP_{p_2}(q) \) and is visible to \(cp \), it is added to \(H_w(= \{p_2, N_1, N_2, p_{11}\}) \). On the other hand, point \(p_5 \) is inserted into \(S_p = \{p_5\} \) since it locates inside \(HP_{p_5}(q) \) and is visible to \(cp \). Next, \(p_2 \) is deheaped. As it cannot be pruned by current pruning point \(p_1 \), it becomes the second pruning point and maintained by an auxiliary heap \(H_a = \{p_2\} \).

Subsequently, VRNN accesses node \(N_1 \) and inserts its child points \(p_4 \) and \(p_6 \) into \(H_w(= \{N_2, p_4, p_6, p_{11}\}) \). Note that although \(p_6 \) falls fully into \(HP_{p_6}(q) \), it is invisible to the current pruning point (i.e., \(p_1 \)) due to the obstruction of obstacle \(o_2 \), and hence, \(p_6 \) cannot be pruned by \(cp \). The next processed entry \(N_2 \) is added to \(S_c(= \{N_{10}, N_5, N_2\}) \) directly, as it locates inside \(HP_{p_1}(q) \) and is visible (completely) to \(cp \). In the sequel, \(p_4 \) and \(p_6 \) are retrieved and inserted into \(H_w \) after which \(H_w = \{p_2, p_4, p_6, p_{11}\} \). Finally, \(p_{11} \) is deheaped and added to \(S_p = \{p_4, p_{11}\} \) since it satisfies the pruning condition. Here, as \(H_w \) is empty, the first loop stops, with \(H_w, S_c, S_p, \) and \(S_n \) being \(\{p_2, p_4, p_6\}, \{p_1\}, \{p_4, p_{11}\}, \) and \(\{N_{10}, N_5, N_2\} \), respectively. The heap contents at each phase during the aforementioned filter process are illustrated in Table 2 where, for simplicity, we omit associated distances to \(q \) for node MBRs and data points.

Algorithm 3. Filter for VRNN Algorithm (VRNN-Filter)

```plaintext
algoritm VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn) */ Tp: root of the R-tree Tp; IV: invisible; AV: all-visible; PV: partially-visible */
1: **if** \( T_p \) is leaf **then** return \( \emptyset \) **end**
2: if \( T_p \) is internal **then**
3: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
4: **end**
5: **if** \( p \) is in \( Sc \) **then**
6: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
7: **end**
8: **if** \( p \) is in \( Sp \) **then**
9: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
10: **end**
11: **if** \( p \) is in \( Sn \) **then**
12: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
13: **end**
14: **if** \( p \) is in \( S_r \) **then**
15: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
16: **end**
17: **if** \( p \) is in \( H_w \) **then**
18: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
19: **end**
20: return \( \emptyset \)
21: **end**
22: VRNN-Filter (Tp, Tn, q, Sc, Sp, Sn)
23: return \( \emptyset \)
```

6. If a node MBR can be completely discarded, the Trim algorithm returns \(\infty \); otherwise it returns the minimum distance between a given query point \(q \) and the residual MBR. Similarly, it returns the actual distance from a point to \(q \) if the point cannot be pruned, or \(\infty \) otherwise. Refer to [16] for details.
Next, the roles of H_w and H_a are switched. In other words, in the rest of current iteration, the algorithm uses H_w as an auxiliary heap, while takes H_a as a primary heap. VRNN proceeds in the same loop until $H_w = H_a = \emptyset$, i.e., all the points are either pruned (i.e., inserted into S_p) or become candidates (i.e., inserted into S_a). Finally, we have $S_a = \{p_1,p_2,p_3,p_k\}$, $S_p = \{p_0,p_1\}$, and $S_n = \{N_1,N_3,N_4\}$.

Algorithm 3 shows the pseudocode of the Filter for VRNN Algorithm (VRNN-Filter). When an intermediate node is visited, it utilizes OVC function to check its visibility to the query point q, and then, processes it. Similarly, when a data point is accessed, it uses OVC function to examine its visibility to the current pruning point cp, and then, processes it. For each pruning point cp discovered, VRNN-Filter applies VRC algorithm to get its visible region, i.e., finding the obstacles from T_o that can affect cp’s visibility. Note that all pruned entries are preserved in their corresponding refinement sets but not removed permanently, as they will be used to verify candidates in the next refinement step.

4.2.2 The Refinement Step

When the filter step finishes, the refinement step starts, with the pseudocode of Refinement for VRNN Algorithm (VRNN-Refinement) depicted in Algorithm 4. In the first place, VRNN-Refinement conducts self-filtering (lines 2-4), that is, it prunes away the candidates that are visible to each other and are closer to each other than to q. Then, the algorithm enters the refinement step, where it verifies whether each remaining candidate in S_a is a true result (lines 7-18). First, it calls Round of Refinement Algorithm (Refinement-Round), depicted in Algorithm 5, to eliminate false candidates from S_a based on the contents of S_p and S_n, without any extra node access. The remaining points p in S_n need further refinement, with each associated with $p.toVisit$ that records the nodes which might enclose some not-yet visited points that may invalidate p. Hence, nodes in $p.toVisit$ are visited, with each access updating the contents of S_p and S_n. Note that S_p and S_n are reset to \emptyset after each round of Refinement-Round (line 12) to avoid duplicated checking. The refinement step continues until $S_a = \emptyset$.

Algorithm 4. Refinement for VRNN Algorithm (VRNN-Refinement)

algorithm VRNN-Refinement (q,S_a, S_p, S_n, S_r)

1: for each point $p \in S_a$ do
2: for each other point $p' \in S_a$ do
3: if OVC $(p',L_p,p) \neq IV$ and $dist(p',p) < dist(q,p)$ then
4: $S_c = S_c - \{p\}$; goto 1
5: if p is not eliminated from S_a then
6: initialize $p.toVisit = \emptyset$
7: repeat
8: $S_r = S_r - \{p\};$ goto 9
9: Refinement-Round (q,S_c, S_p, S_n, S_r)
10: let N be the lowest level node of $p.toVisit$ for $p \in S_c$
11: remove N from all $p.toVisit$ and access N
12: $S_r = S_r - \{p\}$; goto 14
13: if N is a leaf node then
14: $S_p = \{p'|p' \in N \text{ and } p' \text{ is visible to } p\}$
15: else
16: \(S_n = \{ N' | N' \in N \text{ and } N' \text{ is visible to } p \} \)
17: else
18: return // terminate

Now, we explain the details of Refinement-Round algorithm. Specifically, it has three tasks, i.e., pruning false positive, identifying nodes that might invalidate the remaining points in \(S_n \) and returning final result objects. First, points \(p \in S_n \) satisfying any of following conditions are for sure false positives and can be pruned: 1) \(\exists p' \in S_n \) such that \(p' \) is visible to \(p \) and \(\text{dist}(p', p) < \text{dist}(q, p) \) (lines 2-4), or 2) \(\exists p \in S_n \) such that \(N \) is all-visible to \(p \) and \(\text{minmaxdist}(N, p) < \text{dist}(q, p) \) (lines 5-8). Note that \(\text{minmaxdist}(N, p) \) is the upper bound of the distance between \(p \) and its closest point in \(N \). Thus, \(\text{minmaxdist}(N, p) < \text{dist}(q, p) \) meaning that \(N \) contains at least one point that is closer to \(p \) than to \(q \). For example, in Fig. 7, \(p_2 \in S_n \) can be safely discarded because \(N_5 \in S_n \) is all-visible to it and \(\text{minmaxdist}(N_5, p_2) < \text{dist}(q, p_2) \). Second, \(\forall p \in S_n \) can be reported immediately as an actual VRNN of \(q \) when the following two conditions are satisfied: 1) \(\forall p' \in S_n \), \(p' \) is either invisible to \(p \) or \(\text{dist}(p', p) > \text{dist}(q, p) \) and 2) \(\forall N \in S_n, \) it is all-visible/partially visible to \(p \) and \(\text{minmaxdist}(N, p) > \text{dist}(q, p) \). In our example, \(p_1 \) and \(p_8 \) satisfy the above conditions, and hence, they are removed from \(S_n \) and reported as the VRNNs of \(q \) immediately. The point \(q \in S_n \) that cannot be pruned or reported as a real result must have some nodes in \(S_n \) that contradict above conditions, and we utilize a set \(p_{\text{toVisit}} \) to record all those nodes (lines 9-11).

Let \(p_1 \) as an example. As \(p_1_{\text{toVisit}} = \{ N_3 \} \), we access \(N_2 \) and find out that the enclosed point \(p_3 \) is the VNN of \(p_1 \), and thus, \(p_1 \) is invalidated.

Algorithm 5. Round of Refinement Algorithm (Refinement-Round)

\begin{algorithm}
 \begin{algorithmic}
 \State for each point \(p \in S_n \) do
 \State for each point \(p' \in S_n \) do
 \If { \(\text{OVC}(p', L_p, p) \neq IV \) and \(\text{dist}(p', p) < \text{dist}(q, p) \) then
 \State \(S_c = S_c - \{ p \}; \) got \(0 \)
 \For { each node \(N \in S_n \) do
 \If { \(\text{OVC}(N, L_p, p) = AV \) then
 \If { \(\text{minmaxdist}(N, p) < \text{dist}(q, p) \) then
 \State \(S_c = S_c - \{ p \}; \) got \(0 \)
 \EndIf
 \EndIf
 \EndFor
 \If { \(\text{OVC}(N, L_p, p) \neq IV \) and \(\text{mindist}(N, p) < \text{dist}(q, p) \) then
 \State add \(N \) to \(p_{\text{toVisit}} \)
 \If { \(p_{\text{toVisit}} = \emptyset \) then
 \State \(S_c = S_c - \{ p \}; S_c = S_c \cup \{ p \}\)
 \EndIf
 \EndIf
 \EndFor
 \EndFor
 \EndIf
 \EndIf
 \EndFor
\end{algorithmic}
\end{algorithm}

If there are multiple nodes in \(p_{\text{toVisit}} \) for each \(p \) remaining in \(S_n \), we can access all of them to invalidate the candidate objects. However, not all the accesses are necessary. Hence, we adopt an incremental approach to access the lowest level nodes first in order to achieve a better pruning. In our example shown in Fig. 7, the second refinement round starts with \(S_n = \{ p_1 \}, S_p = \{ p_3, p_7 \} \) (i.e., points enclosed in \(N_2 \), \(S_n = \emptyset \), and \(S_c = \{ p_1, p_8 \} \)). Point \(p_1 \) is eliminated as a false positive since \(p_1 \) is visible to \(p_1 \) and \(\text{dist}(p_3, p_1) < \text{dist}(q, p_1) \) holds, and then, the VRNN algorithm terminates.

Notice that although VRNN-Refinement and Refinement-Round algorithms are similar to the TPL-Refinement and TPL-Refinement-Round algorithms proposed in [16], they integrate \textit{object visibility check} during the refinement process.

4.3 Discussion

In a 2D space, like the existing SAA [14] and TPL [16] methods for RNN queries, the proposed VRNN algorithm does not require any preprocessing and can return exact result. However, the VRNN algorithm incurs a higher query cost as it considers the obstacle influence on the visibility of objects and it has to traverse not only the data set \(P \) but also the obstacle set \(O \). In this section, we present the time complexity of the VRNN algorithm and prove its correctness.

The cost of R-tree traversal dominates the total overhead of the VRNN algorithm. We first derive the upper bound of the number of traversals on the R-trees \(T_p \) and \(T_o \), respectively.

Lemma 2. The VRNN algorithm traverses \(T_p \) at most once and \(T_o \) at most \((|S_c| + 1)\) times, with \(S_c \) representing the candidate set.

Proof. As shown in Algorithm 3, VRNN-Filter algorithm only traverses \(T_p \) once to obtain a VRNN candidate set \(S_c \). It then uses \textit{half-plane property} and \textit{visibility check} to prune false candidates and invokes the VRC algorithm \textit{once} for each candidate \(p \in S_c \) to find the obstacles affecting its visibility (line 6 in Algorithm 3). Moreover, VRNN-Filter also calls the VRC algorithm \textit{once} to retrieve the obstacles that can affect the visibility of \(q \) (line 2 in Algorithm 3). Consequently, the VRNN algorithm traverses \(T_o \) at most \((|S_c| + 1)\) times. \(\square\)

Let \(|T_p| \) and \(|T_o| \) be the tree size of \(T_p \) and \(T_o \), respectively, and \(|S_c|, |S_p| \), and \(|S_o| \) be the cardinality of \(S_c, S_p, \) and \(S_o \), respectively. We have the following theorems.

Theorem 1. The time complexity of the VRNN algorithm is \(O((|T_p| + 1)\log|T_o| + |S_c|^2 + |S_o||(|S_p| + |S_o|)) \).

Proof. The VRNN algorithm follows the filter-refinement framework. In the filter step, it takes \(O((|T_p| + 1)\log|T_o|) \) for obtaining candidate set \(S_c \); in the refinement step, it incurs \(O(|S_c|^2 + |S_o||(|S_p| + |S_o|)) \) to eliminate all the false hits. Therefore, the total time complexity of the VRNN algorithm is \(O((|T_p| + 1)\log|T_o| + |S_c|^2 + |S_o||(|S_p| + |S_o|)) \).

Theorem 2. The VRNN algorithm retrieves exactly the VRNNs of a given query point \(q \), i.e., the algorithm has no false negatives and no false positives.

Proof. First, the VRNN algorithm only prunes away those nonqualifying points or nodes in the filter step by using our proposed pruning strategy. Thus, no answer points are missed (i.e., no false negatives). Second, every candidate \(p \in S_n \) is verified in the refinement step by comparing it with each data point retrieved during the filter step and each node that might contain VNNs of \(p \), which ensures no false positives. \(\square\)
5 Extensions

This section discusses three interesting variants of VRNN queries, namely, VRkNN, δ-VRkNN, and CVRkNN queries.

5.1 The VRkNN Search

A VRkNN query retrieves all the points in a data set whose VRkNN sets include q, as formalized in Definition 3. Our solution to VRkNN retrieval can be adapted to support VRkNN search. The detailed extensions are described as follows. First, the pruning strategy (presented in Section 4.1) can be extended to an arbitrary value of k. Assume a VRkNN query and a data set P with $n \geq k$ data points p_1, p_2, \ldots, p_n. Let $D = \{\theta_1, \theta_2, \ldots, \theta_k\}$ be a subset of P. If a point/node fully falls into $\bigcap_{i=1}^{k} HP_{\theta_i}(q)$ and is all-visible to each point in D, it must have k points (i.e., $\theta_1, \theta_2, \ldots, \theta_k$) closer to it than q. Consequently, it can be safely pruned away. On the other hand, if a point/node locates inside $\bigcap_{i=1}^{k} HP_{\theta_i}(q)$ and is partially visible/invisible to any subset of D, it can become or contain a VRkNN of q, and thus, needs further examination.

Next, we explain how to extend the proposed algorithms for VRkNN query processing. To solve a VRkNN query, we also follow the filter-refinement framework. In particular, we find a set S, of VRkNN candidates that contains all the actual answer points, and then, eliminate all the false candidates in S. The VRkNN-Filter algorithm can be easily modified to support VRkNN search, by integrating the aforementioned pruning strategy. Specifically, the filter step of VRkNN search first finds an initial candidate set S, which contains the k data points closest to a given query point q, and meanwhile, visible to q. Then, the algorithm proceeds to retrieve candidates as well as to prune away all the nonqualifying data points and node MBRs that satisfy the aforementioned pruning condition. Data points and node MBRs discarded are kept in the refinement point set S_p and the refinement node set S_n, respectively. The filter phase finishes when all the nodes that may include candidates have been visited.

Algorithm 6. k-Refinement-Round Algorithm

$\langle k$-Refinement-Round \rangle

1: for each point $p \in S$ do
2: \hspace{1em} for each point $p' \in S_p$ do
3: \hspace{2em} if OVC $(p', L_p, p) \neq IV$ and $dist(p', p) < dist(q, p)$ then
4: \hspace{3em} $p.cnt = p.cnt + 1$
5: \hspace{2em} if $p.cnt = k$ then
6: \hspace{3em} $S_s = S_s - \{p\}$; goto 1
7: \hspace{1em} for each node $N \in S_n$ do
8: \hspace{2em} if OVC $(N, L_p, p) \neq IV$ and $mindist(N, p) < dist(q, p)$ then
9: \hspace{3em} add N to $p.toVisit$
10: \hspace{1em} if $p.toVisit = O$ then
11: \hspace{2em} $S_s = S_s - \{p\}$; $S_s = S_s \cup \{p\}$

The VRkNN-Refinement algorithm can be extended for VRkNN retrieval as well. Similarly, the refinement step of VRkNN search is also executed in rounds, which are shown in Algorithm 6. Different from Refinement-Round, a point $p \in S_s$ can be pruned only if there are at least k points visible to p within $dist(p, q)$. Hence, we associate a counter $p.cnt$ (initially set to 0) with each point p during the processing. Every time, the algorithm finds a point p' that satisfies the following two conditions: 1) p' is visible to p and 2) $dist(p', p) < dist(q, p)$, the p''s counter $p.cnt$ is increased by one. Eventually, p can be removed as a false hit when $p.cnt = k$. The refinement phase terminates after all the points in S_s have been eliminated or verified. We omit the pseudocodes of the filter and main refinement algorithms for VRkNN search since they are very similar as VRkNN-Filter and VRkNN-Refinement presented in Algorithm 3 and Algorithm 4, respectively.

5.2 VRkNN Queries with Constraints

In some real applications, users might enforce some constraints (e.g., distance, spatial region, etc.) on VRkNN queries, and thus, we introduce the VRkNN query with maximum visible distance δ constraint (called δ-VRkNN search) and the VRkNN query with constrained region CR constraint (called CVRkNN search), respectively. Take the application outdoor advertisement planning described in Section 1 as an example. If it is assumed that customers pay zero attention to the billboard that is located 50 meters away, δ-VRkNN search with $\delta = 50$ is more suitable, compared with VRkNN search, as it takes the distance constraint into account. On the other hand, if $P&G$ only targets for the customers located in certain area (e.g., the customers within a shopping mall), CVRkNN query with constrained region CR set to the specified shopping mall is more suitable. In this section, we explain how to extend the CVNN search algorithm to answer δ-VRkNN and/or CVRkNN queries.

Given a data set P, an obstacle set O, a query point q, a distance threshold δ, a constrained region CR, and an integer $k \geq 1$, 1) a δ-VRkNN query finds a set of points from P, denoted by δ-VRkNN(q), such that $\forall p \in \delta$-VRkNN(q), $q \in Vk$NN(p), and $dist(p, q) \leq \delta$, i.e., δ-VRkNN(q) \subseteq $\{p \in P | q \in Vk$NN(p) \wedge $dist(p, q) \leq \delta\}$ and 2) a CVRkNN query returns a set of points from P, denoted by CVRkNN(q), such that $\forall p \in CVR$k$NN($q$), $q \in Vk$NN(p), and $p \cap CR \neq \emptyset$ (i.e., p is inside CR), formally, CVRk$NN($q$) \subseteq $\{p \in P | q \in Vk$NN(p) \wedge $p \cap CR \neq \emptyset\}$. It is important to note that in addition to the position of q and the distributions of data points and obstacles, 1) the cardinality of δ-VRkNN(q), i.e., $|\delta$-VRkNN(q)|, is dependent on the value of δ and 2) the cardinality of CVRkNN(q), i.e., $|CVR$k$NN($q$)|, is dependent on the size and distribution of CR. As an example, a δ-VRkNN (k = 1) query issued at point q is illustrated in Fig. 8a, where data set $P = \{p_1, p_2, p_3, p_4\}$, obstacle set $O = \{o_1, o_2\}$, and its distance constraint δ is highlighted in the figure. The final result of this query is empty, which is different from the result of VRkNN search on the same data and obstacle sets (as shown in Fig. 1b) due to the δ constraint.

The proposed algorithms for VRkNN search can be easily adjusted to support δ-VRkNN and CVRkNN queries, by integrating constrained conditions (i.e., distance threshold δ and constrained region CR) during the query processing. Moreover, we develop following heuristics to facilitate the search process. First, since the search region (SR) of δ-VRkNN retrieval is bounded by δ (e.g., the shaded area in Fig. 8a representing the SR of the δ-VRkNN query issued at q), 1) any obstacle that does not intersect SR cannot affect the visibility of objects evaluated currently, and can be pruned away safely.
6 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency and effectiveness of our proposed algorithms for VRNN query and its variants through experiments on both real and synthetic data sets. First, Section 6.1 describes the experimental settings, and then, Sections 6.2, 6.3, 6.4, and 6.5 report experimental results and our findings for VRNN, VR\textsubscript{CR}, \(\delta\)-VR\textsubscript{NN}, and CVR\textsubscript{NN} queries, respectively. All the algorithms were implemented in C++, and all the experiments were conducted on a PC with a Pentium IV 3.0 GHz CPU and 2GB RAM, running Microsoft Windows XP Professional Edition.

6.1 Experimental Setup

We deploy five real data sets\footnote{LB, NA, and LA are available at http://www.maproom.psu.edu/dcw; and Cities and Rivers are available at http://www.rtreeportal.org.}, which are summarized in Table 3. Synthetic data sets are created following the uniform distribution and zipf distribution, with the cardinality varying from \(0.1 \times |LA|\) to \(10 \times |LA|\). The coordinate of each point in \textit{Uniform} data sets is generated uniformly along each dimension, and that of each point in Zipf data sets is generated according to zipf distribution with skew coefficient \(\alpha = 0.8\). All the data sets are mapped to a \([0, 10,000] \times [0, 10,000]\) square. As VRNN search and its variations involve a data set \(P\) and an obstacle set \(O\), we deploy five different data set combinations, namely, \textit{CR}, \textit{LL}, \textit{NL}, \textit{UL}, and \textit{ZL}, representing \((P, O) = (\text{Cities, Rivers}), (LB, LA), (NA, LA), (Uniform, LA), and (Zipf, LA)\), respectively. Note that the data points in \(P\) are allowed to lie on the boundaries of the obstacles but not in their interior, and the obstacles in \(O\) are allowed to overlap each other.

All data and obstacle sets are indexed by R*-trees [2]. The disk page size is fixed to 1K bytes, such that the maximum node capacity equals 50 entries for dimensionality 2 and the number of nodes/pages for LB, NA, LA, Cities, and Rivers data sets equals 1,178, 9,145, 2,629, 118, and 432, respectively. Note that we choose a small page size to simulate practical scenarios where the cardinalities of the data and obstacle sets are much larger. The experiments investigate the performance of the proposed algorithms under a variety of parameters which are listed in Table 4. In each experiment, we vary only one parameter, while the others are fixed at their default values, and run 200 queries with their average performance reported. The query distribution follows the underlying data set distribution and the overall query cost is measured. Both the I/O overhead (by charging 10 ms per page fault, as in [16]) and CPU time contribute to the query cost. We assume that the server maintains a buffer with LRU as the cache replacement policy. Unless specifically stated, the size of buffer is 0, i.e., the I/O cost is determined by the number of node/page accesses.

6.2 Results on VRNN Queries

The first set of experiments verifies the performance of the proposed VRNN algorithm for VRNN search. First, we study the effect of the \(|P|/|O|\) ratio on the VRNN algorithm using two data set combinations (including \(UL\) and \(ZL\)). Fig. 9 plots the total query cost (in seconds) of the VRNN algorithm as a function of \(|P|/|O|\), fixing \(k = 1\). In Fig. 9, each result is broken into two components, corresponding to the filter step and the refinement step, respectively. The percentage inside the bar indicates the ratio of cost incurred in the filter step to that of the overall query cost. In addition, we show the percentage of I/O time in the entire query cost, denoted by I/O percent; the cardinality of the candidate set, denoted as \(|S_c|\); and the number of node accesses on the data R-tree \(T_p\), denoted by \(N(T_p)\). For example, as shown in Fig. 9a, when \(|P|/|O| = 1\), VRNN accesses 497 out of 2,629 nodes of \(T_p\); its I/O cost contributes to 92 percent of overall query cost; and the candidate set \(S_c\) has 8.3 objects on average. The total query cost is around 37 seconds, while the filtering step takes 92 percent of the time.

It is observed that the filter step actually dominates the overall overhead (>90 percent), especially when the \(|P|/|O|\) ratio is small (e.g., 0.1, 0.2). This is because: (1) the filter step of VRNN needs to traverse the obstacle R-tree \(T_p(|S_c| + 1)\) times
of VRNN requires traversing the obstacle R-tree $T_o(|S_c| + 1)$ times. Consequently, it may access the same nodes (e.g., the root node of T_o) multiple times, and hence, a buffer space can improve the search performance by keeping the nodes locally available.

6.3 Results on VRkNN Queries

The second set of experiments evaluates the efficiency and effectiveness of VRkNN query processing algorithm. First, we inspect the impact of k value on the performance of the VRkNN algorithm, using LL and NL data set combinations. Fig. 11 illustrates the total query cost of the VRkNN algorithm with respect to k which varies from 1 to 16. As expected, the overhead of VRkNN grows with k, due to the significant increase in the cost of VRkNN-Filter. Notice that the number of candidates retrieved during the filter step increases almost linearly with k.

In the following experiments, we investigate the effect of different parameters, including the $|P|/|O|$ ratio and buffer size, on the performance of the VRkNN algorithm, with UL and ZL data set combinations. In Fig. 12, we show the efficiency of the algorithm for VRkNN queries, by fixing $k = 4$ and varying $|P|/|O|$ between 0.1 and 10. In Fig. 13, we plot the cost of the VRkNN algorithm as a function of the buffer size. As the observations are similar to those made from the VRNN retrieval, we save the detailed explanation due to the space limitation.

6.4 Results on δ-VRkNN Queries

The third set of experiments explores the influence of the maximal visible distance δ constraint on the efficiency of the

![Fig. 9. VRNN cost versus $|P|/|O|$ ($k = 1, |O| = 131,461$). (a) UL. (b) ZL.](image)

![Fig. 10. VRNN cost versus buffer size ($k = 1, |O| = 131,461$). (a) UL ($|P|/|O| = 1$). (b) ZL ($|P|/|O| = 1$).](image)

![Fig. 11. VRkNN cost versus k ($|O| = 131,461$). (a) LL. (b) NL.](image)

![Fig. 12. VRkNN cost versus $|P|/|O|$ ($k = 4, |O| = 131,461$). (a) UL. (b) ZL.](image)
with the growth of the number of candidates retrieved in the filter step ascends data set combinations. Obviously, algorithm increases gradually as size of the search region. In particular, the cost of the VR

\[\text{LL} \] and query processing algorithm. We deploy real data sets, i.e., search space. Fig. 14 shows the overall query cost of the change \(\text{\textit{VR}} \)

\[\frac{\text{LL}}{\text{NL}} \] and \(\text{query processing algorithm. We fix} \]

\[\text{\textit{VR}} \]

\[\text{\textit{NN}} \] cost versus buffer size \((k = 4, |O| = 131,461)\). (a) \(\text{UL} \) \((|P|/|O| = 1)\). (b) \(\text{ZL} \) \((|P|/|O| = 1)\).

\[\delta \text{-VRNN query processing algorithm. We fix} \]

\[k = 4 \] and change \(\delta \) values from 6 to 30 percent of the side length of the search space. Fig. 14 shows the overall query cost of the \(\delta \)-VRNN search algorithm with respect to \(\delta \) for \(\text{LL} \) and \(\text{NL} \) data set combinations. Obviously, \(\delta \) has a direct impact on the performance of \(\delta \)-VRNN retrieval, since it controls the size of the search region. In particular, the cost of the algorithm increases gradually as \(\delta \) grows. This is because the number of candidates retrieved in the filter step ascends with the growth of \(\delta \).

6.5 Results on CVRNN Queries

The last set of experiments investigates the effect of the constrained region \(\text{CR} \) size on the performance of CVRNN query processing algorithm. We deploy real data sets, i.e., \(\text{LL} \) and \(\text{NL} \) data set combinations, fix \(k \) to 4, vary the size of \(\text{CR} \) from 10 to 50 percent of the whole data space, and present all the experimental results in Fig. 15. As expected, the cost of the algorithm increases with the growth of \(\text{CR} \). The reason behind is that as constrained region grows, the size of search space enlarges and the number of candidates obtained in the filter step increases, which leads to more traversals of the obstacle R-tree \(T_o \), more visibility checks, and more candidate examinations.

7 Conclusions

In this paper, we identify and solve a novel type of reverse nearest neighbor queries, namely, VRNN search. Although both RNN search and VNN search have been studied, there is no previous work that considers both the visibility and the reversed spatial proximity relationship between objects. On the other hand, VRNN retrieval is useful in many decision support applications involving spatial data and physical obstacles. Consequently, we propose an efficient algorithm for VRNN query processing, assuming that both the data set \(P \) and the obstacle set \(O \) are indexed by R-trees. We employ half-plane property and visibility check to prune the search space, analyze the cost of the proposed VRNN algorithm, and prove its correctness. In addition, we extend our techniques to tackle three interesting VRNN query variations, including VR\(\text{NN} \), \(\delta \)-VRNN, and CVRNN queries. An extensive experimental evaluation with both real and synthetic data sets has been conducted which demonstrates the performance of our proposed algorithms for handling VRNN search and its variants, under various experimental settings.

This work motivates several directions for future work. First, we plan to study the VRNN query with respect to multiple query points. Second, we focus only on a 2D space in this paper, and hence, how to extend our solution to a multidimensional space is a challenging topic that is worth further studying. Finally, it would be particularly interesting to develop analytical models for estimating the query cost of VRNN search and its variants. Such models will not only facilitate query optimization, but may also reveal new problem characteristics that could lead to even better algorithms.

Acknowledgments

This research is partly supported by the Office of Research, Singapore Management University. Wang-Chien Lee was supported in part by the US National Science Foundation under Grant IIS-0534343 and Grant CNS-0626709.

References

