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Abstract—Reverse nearest neighbor (RNN) queries have a broad application base such as decision support, profile-based marketing,

resource allocation, etc. Previous work on RNN search does not take obstacles into consideration. In the real world, however, there are

many physical obstacles (e.g., buildings) and their presence may affect the visibility between objects. In this paper, we introduce a

novel variant of RNN queries, namely, visible reverse nearest neighbor (VRNN) search, which considers the impact of obstacles on the

visibility of objects. Given a data set P , an obstacle set O, and a query point q in a 2D space, a VRNN query retrieves the points in P

that have q as their visible nearest neighbor. We propose an efficient algorithm for VRNN query processing, assuming that P and O are

indexed by R-trees. Our techniques do not require any preprocessing and employ half-plane property and visibility check to prune the

search space. In addition, we extend our solution to several variations of VRNN queries, including: 1) visible reverse k-nearest

neighbor (VRkNN) search, which finds the points in P that have q as one of their k visible nearest neighbors; 2) �-VRkNN search, which

handles VRkNN retrieval with the maximum visible distance � constraint; and 3) constrained VRkNN (CVRkNN) search, which tackles

the VRkNN query with region constraint. Extensive experiments on both real and synthetic data sets have been conducted to

demonstrate the efficiency and effectiveness of our proposed algorithms under various experimental settings.

Index Terms—Reverse nearest neighbor, visible reverse nearest neighbor, spatial database, query processing, algorithm.
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1 INTRODUCTION

REVERSE nearest neighbor (RNN) search has received
considerable attention from the database research

community in the past few years, due to its importance in a
wide spectrum of applications such as decision support [6],
profile-based marketing [6], [14], resource allocation [6], [19],
etc. Given a set of data points P and a query point q in a
multidimensional space, an RNN query finds the points in P
that have q as their nearest neighbor (NN). A popular
generalization of RNN is the reverse k-nearest neighbor (RkNN)
search, which returns the points in P whose kNNs include q.
Formally, RkNNðqÞ ¼ fp 2 P jq 2 kNNðpÞg, where RkNN(q)
represents the set of reverse k nearest neighbors to a query
point q and kNN(p) denotes the set of k nearest neighbors to a
point p. Fig. 1a illustrates an example with four data points,

labeled as p1, p2, p3, and p4, in a 2D space. Each point pið1 �
i � 4Þ is associated with a circle centered at pi and having
distðpi;NNðpiÞÞ1 as its radius, i.e., the circle cirðpi;NNðpiÞÞ
covers pi’s NN. For example, the circle cirðp3; NNðp3ÞÞ
encloses p2, the NN of p3 (i.e., NNðp3Þ). For a given RNN
query issued at point q, its answer set RNNðqÞ ¼ fp4g as q is
only located inside the circle cirðp4; NNðp4ÞÞ. It is worth
noting the asymmetric NN relationship, that is, p 2 kNNðqÞ
does not necessarily imply q 2 kNNðpÞ, e.g., in Fig. 1a, we
notice that NNðp4Þ ¼ p3, but NNðp3Þ ¼ p2.

1.1 Motivation

There are many RNN/RkNN query algorithms that have

been proposed in the database literature. Basically, they can

be classified into three categories: 1) precomputation-based

algorithms [6], [19]; 2) dynamic algorithms [13], [14], [16];

and 3) algorithms for various RNN/RkNN query variants

[7], [8], [15]. Nevertheless, none of the existing work on

RNN/RkNN search has considered physical obstacles (e.g.,

buildings) that exist in the real world. The presence of

obstacles may have a significant impact on the visibility or

distance between objects, and hence, affects the result of

RNN/RkNN queries. Furthermore, in some applications,

users may be only interested in the objects that are visible or

reachable to them.
Actually, the existence of physical obstacles has been

considered in certain types of spatial queries. They include:

1) obstructed nearest neighbor (ONN) query [20], which

returns the kð�1Þ points in P that have the smallest

obstructed distances (defined as the length of the shortest

path that connects any two points without crossing any
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obstacle from an obstacle set) to q; 2) visible k-nearest neighbor
(VkNN) search [10], which finds the k nearest points that are
visible to q; and 3) clustering spatial data in the presence of
obstacles [17], which divides a set of 2D data points into
smaller homogeneous groups (i.e., clusters) by taking into
account the impact of obstacles. Different from the existing
work, this paper considers the obstacles in the context of
RNN/RkNN retrieval. To the best of our knowledge, this is
the first work to address this problem.

1.2 Contributions

In this paper, we introduce a novel form of RNN queries,
namely, visible reverse nearest neighbor (VRNN) search, which
considers the impact of obstacles on the visibility of objects.
Given a data set P , an obstacle setO, and a query point q in a
2D space, a VRNN query retrieves all the points in P that
have q as their visible NN. Take a VRNN query issued at
point q as an example (as depicted in Fig. 1b). It returns fp1g
as the result set, which is different from the result of an RNN
query issued at q (as shown in Fig. 1a). In addition, we define
several variants of VRNN queries, including: 1) visible reverse
k-nearest neighbor (VRkNN) search, a natural generalization
of VRNN retrieval, which finds all the points p 2 P that have
q as one of their k visible NNs; 2) �-VRkNN search, which
answers the VRkNN query with the maximum visible distance
� constraint; and 3) constrained VRkNN (CVRkNN) search,
which processes the VRkNN query with region constraint.
These potential variants form a suite of interesting and
intuitive problems from both the research point of view and
application point of view.

We focus this paper on VRNN search, not only because
the problem is new to the research community but also
because it has a large application base. Some of the example
applications are listed as follows:

Outdoor advertisement planning. Suppose P&G plans
to post advertisements in billboards to promote a new
shampoo. In order to encourage customers to try this new
product, P&G decides to distribute some samples near
billboards as well. Due to the high cost of sample
distribution, only those billboard locations that can reach
a big pool of potential customers are considered. Ideally, the
more people can view the billboards, the more effective the
promotion will be. We assume that the number of candidate
billboard locations is small due to limited budget, and each
customer only pays attention to the billboard located closest,
and meanwhile, visible to him/her. Hence, VRNN search

can be conducted to compare the optimality of any two
candidate billboard locations q1 and q2 in terms of the
potential customer base they can reach. By performing a
VRNN query which takes as inputs a set of residential
buildings or shopping malls (that represent the potential
customer base), a set of obstacles (e.g., buildings), and a
query point q1=q2, the decision-maker can identify the
customers that would watch the billboard located at q1=q2.
The one with more customers is better.

Selection of promotion sites. Suppose Yao Restaurant &
Bar plans to open a new restaurant YEEHA in Shanghai and
wants to distribute coupons to its potential customers for
promotion. Assume those customers who do not know
YEEHA previously but have YEEHA as their visible nearest

restaurant are more likely to visit YEEHA for a trial.
Consequently, in order to ensure the effectiveness of the
promotion, Yao Restaurant & Bar needs to locate all the office
buildings and residential buildings that have YEEHA as
their visible nearest restaurant, and to identify people
working or staying in those buildings as its target
consumers. VRNN search can provide a perfect match.2

A naive solution to deal with VRkNN (k � 1) queries is
to find a set of points p 2 P , denoted as Sq, which are visible
to a specified query point q, perform VkNN search on each
of them, and return these points p 2 Sq with q 2 VkNNðpÞ.
However, this method is very inefficient because it needs to
traverse the data set P and obstacle set O multiple times (i.e.,
(jSqj þ 1) times3), resulting in high I/O overhead and
expensive CPU cost, especially when jVRkNNðqÞj � jSqj.

In this paper, we propose an efficient algorithm for
VRNN query processing, assuming that both P and O are
indexed by R-trees [2], [4]. Our method follows a filter-

refinement framework and requires no preprocessing.
Specifically, a set of candidate objects (i.e., a superset of
the final query result) is retrieved in the filter step and gets
refined in the subsequent refinement step, with these two
steps integrated into a single R-tree traversal. Since the size
of the candidate set has a direct impact on the search
efficiency, we employ half-plane properties (as [16]) and
visibility check to prune the search space. In addition, the
search algorithm is general and can be easily extended to
support different variants of VRNN queries, such as
VRkNN search, �-VRkNN search, and CVRkNN search.

In brief, the key contributions of this paper can be
summarized as follows:

. We introduce and formalize VRNN retrieval, a novel
addition to the family of RNN queries, which is very
useful in many applications involving spatial data
and physical obstacles for decision support.

. We develop an efficient VRNN search algorithm,
analyze its cost, and prove its correctness.

. We extend our techniques to several variations of
VRNN queries, including VRkNN search, �-VRkNN
search, and CVRkNN search.
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Fig. 1. Example of RNN and VRNN queries. (a) RNN search. (b) VRNN

search.

2. Note that if we assume that those customers having YEEHA as their
closest restaurant (no matter whether YEEHA is visible to them) are more
likely to visit YEEHA for a trial, the RNN search based on the obstructed
distance would be more suitable.

3. jP j denotes the cardinality of a set P.



. We conduct extensive experiments using both real
and synthetic data sets to demonstrate the perfor-
mance of our proposed algorithms in terms of
efficiency and effectiveness.

The rest of this paper is organized as follows: Section 2
formalizes VRkNN query and reviews related work. Section 3
discusses how to determine whether an object is visible to q in
the presence of obstacles and introduces the concept of visible
region to improve the search performance. Section 4 proposes
an efficient algorithm for processing VRNN queries and
conducts an analytical study to prove its correctness.
Section 5 extends our solution to tackle several VRNN query
variants. Extensive experimental evaluations and our find-
ings are reported in Section 6. Finally, Section 7 concludes the
paper with some directions for future work.

2 BACKGROUND

In this section, we present the formal definition of VRkNN
query, reveal its characteristics, and then, survey related
work, including RNN/RkNN search algorithms and visibi-
lity queries. Table 1 lists the symbols used in this paper.

2.1 Problem Statement

Given a data set P , an obstacle setO, and a query point q in a
2D space, the visibility between two points is defined in
Definition 1, based on which we formulate VkNN and
VRkNN queries in Definition 2 and Definition 3, respectively.

Definition 1 (Visibility). Given O in a 2D space, points p
and p0 are visible to each other iff the straight line connecting
p and p0 does not cut through any obstacle o in O, i.e.,
8o 2 O; pp0 \ o ¼ �.

Definition 2 (Visible k-nearest neighbor query) [10]. Given
P, O, q in a 2D space, and an integer kð�1Þ, a VkNN query
finds a set of points V kNNðqÞ � P , such that: 1) 8p 2
V kNNðqÞ is visible to q; 2) jV kNNðqÞj � k4; and 3) 8p0 2
P � V kNNðqÞ and 8p 2 V kNNðqÞ, if p0 is visible to
q; distðp; qÞ � distðp0; qÞ.

Definition 3 (Visible reverse k-nearest neighbor query).
Given P, O, q in a 2D space, and an integer kð�1Þ, a
VRkNN query retrieves a set of points VRkNNðqÞ � P , such
that 8p 2 VRkNNðqÞ; q 2 V kNNðpÞ, i.e., VRkNNðqÞ ¼
fp 2 P jq 2 V kNNðpÞg.

Next, some important properties of the VRkNN query
that will be utilized to process VRkNN search are presented
in Property 1, Property 2, and Property 3, respectively.

Property 1. The VRkNNs of a query point q might not be
localized to the neighborhood of q.

Property 2. Given a query point q, the cardinality of q’s VRkNNs
(i.e., jVRkNNðqÞj) varies by the position of q and the
distributions of data points/obstacles.

Property 3. p 2 V kNNðqÞ does not necessarily imply p 2
V RkNNðqÞ and vice versa.

In order to facilitate the understanding, we illustrate
these properties using the example depicted in Fig. 1b. First,
although point p1 is the furthest from a specified query
point q compared with other points, it is still an answer
point to the VRNN query issued at q (i.e., p1 2 V RNNðqÞ).
In contrast, point p2 that is closer to q than p1 is not included
in VRNNðqÞ. Second, for the same k, VRkNN queries issued
at different locations may obtain different results with
different number of answer points. As an example,
jVRNNðqÞj ¼ jfp1gj ¼ 1; jVRNNðq0Þj ¼ jfp3; p4gj ¼ 2, a n d
jVRNNðq00Þj ¼ j�j ¼ 0. Third, the relationship of visible
nearest neighbor is asymmetric. For instance, VNNðqÞ ¼
fp2g; but V RNNðqÞ ¼ fp1g that does not contain p2.

2.2 Related Work

2.2.1 Algorithms for RNN/RkNN Search

Since the concept of RNN was first introduced by Korn and
Muthukrishnan [6], many algorithms have been proposed,
which can be divided into three categories. The first
category is precomputation-based [6], [19]. For each point
p, it precomputes the distance from p to its nearest neighbor
p0 (i.e., NNðpÞ) and forms a vicinity circle cirðp; p0Þ that is
centered at p and has distðp; p0Þ as the radius. For a given
query point q, it examines q against all the vicinity circles
cirðp; p0Þ with p 2 P , and those having their vicinity circles
enclosing q form the final result, i.e., RNNðqÞ ¼
fp 2 P jq 2 cirðp;NNðpÞÞg. To facilitate the examination,
all the vicinity circles can be indexed by RNN-tree [6] or
RdNN-tree [19]. Approaches of this category mainly have
two shortcomings. First, both the index construction cost
and the index update overhead are very expensive. To
address this problem, bulk insertion in the RdNN-tree has
been proposed in [9]. Second, although these methods can
be extended to handle the RkNN retrieval (if the corre-
sponding kNN information for each point is available), they
are limited to answer RkNN queries for a fixed k. To
support various k, an approach for RkNN search with local
kNN-distance estimation has been developed in [18].

The second category does not rely on precomputation
but adopts a filter-refinement framework [13], [14], [16]. In
the filter step, the space is pruned according to defined
heuristics, and a set of candidate objects is retrieved from
the data set. In the refinement step, all the candidates are
verified according to kNN search criteria and those false hits
are removed. For example, based on a given query point q,
the original 2D data space can be partitioned around q into
six equal regions, such that the NNs of q found in each
region are the only candidates of the RNN query [14]. Thus,
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4. The cardinality of VkNN(q), i.e., jVkNNðqÞj, may be smaller than k due
to the obstruction of obstacles.

TABLE 1
Frequently Used Symbols



in the filter step, six constrained NN queries are conducted to
find the candidates in each region; and then, at the second
step, NN queries are applied to eliminate the false hits. The
efficiency of this approach is owing to the small number of
candidates, e.g., at most 6 for an RNN query in a 2D space.
However, the number of candidates grows exponentially
with the increase of the search space dimensionality,
meaning that the search efficiency can only be guaranteed
in a low-dimensional space. To efficiently process RNN
queries in a high-dimensional space, an approximated
algorithm is proposed in [13]. It retrieves m nearest points
to q as candidates with m (a randomly selected number)
larger than k, and then, verifies the candidates using range
queries. Nevertheless, the accuracy and performance of this
algorithm is highly dependent on the value of m. The larger
the m value is, the more the identified candidates are.
Consequently, it is more likely that a complete result set is
returned with a higher processing cost. A small m value
favors the efficiency, whereas it may incur false misses, i.e.,
points that are actual reverse k nearest neighbors but
missed from the final query result set.

In order to conduct exact RNN search, an efficient
algorithm, called TPL, is proposed in [16]. TPL exploits a
half-plane property to locate RkNN candidates. Applying the
best-first traversal paradigm, TPL traverses the data R-tree
to retrieve the NNs of q as RkNN candidates. Every time,
an unexplored data point p is retrieved, a half-plane is
constructed along the perpendicular bisector between p and
q, denoted as ?ðp; qÞ. The bisector divides the data space
into two half-planes: HPqðp; qÞ that contains q and HPpðp; qÞ
that contains p. Any object, including both points and
minimum bounding rectangle (MBR), falling completely
inside HPpðp; qÞ must have p closer to it than q. As shown
in Fig. 2, the bisector ?ðp3; qÞ partitions the space into two
half-planes. As point p1 falls into the half-plane HPqðp3; qÞ,
it is closer to q than to p3. In addition, the number of half-
planes HPpðp; qÞ that a given point p0 falls in represents the
number of data points that are closer to p0 than q. Hence, if
a data point is within at least k HPpðp; qÞ half-planes, it
cannot be a qualifying RkNN candidate, and thus, can be
safely discarded. The filter step terminates when all the
nodes of R-tree are either pruned or visited. As illustrated
in Fig. 2, points p1; p3, and p4 are identified as the RNN
candidates in the filter step, while point p2 that is inside
HPp1ðp1; qÞ \HPp3ðp3; qÞ and N (enclosing points p5; p6) that
is within HPp3ðp3; qÞ \HPp4ðp4; qÞ) are filtered out. Later, in
the refinement step, TPL eliminates false hits by reusing the

pruned points/MBRs. Continuing the running example,
points p3 and p4 are false hits, as their vicinity circles
enclose other points. The final query result set is {p1}. Our
proposed algorithms for VRNN search and its variations
employ half-plane property and visibility check to identify
result candidates and prune the search space.

Algorithms belonging to the third category are to tackle
various RNN/RkNN query variants, such as bichromatic
RNN queries [15], aggregate RNN queries over data stream
[7], and ranked RNN search [8].

2.2.2 Visibility Queries

Visibility computation algorithms that determine object
visibility from a given viewpoint or a viewing cell have
been well-studied in the area of computer graphics and
computational geometry [1]. However, there are only a few
works on visibility queries in the database community [5],
[11], [12]. The basic idea is to employ various indexing
structures (e.g., LoD-R-tree [5], HDoV-tree [12], etc.) to deal
with visibility queries in visualization systems. These
specialized access methods are designed only for the
purpose of visualization test, and hence, contain zero
distance information. Thus, they are not capable of
supporting efficient VRkNN query processing. Recently,
VkNN search [10] has been investigated, where the goal is
to retrieve the k NNs that are visible to a specified query
point. Further study along this line includes continuous
VkNN retrieval [3].

3 PRELIMINARIES

As VRNN search considers the impact of obstacles on
objects’ visibility, all the objects that are invisible to q for sure
will not be contained in the result. Consequently, an
essential issue we have to address is how to determine
whether an object is visible to q. A simple approach is to
examine a given object p against all the obstacles w.r.t. q,
which is inefficient because the examination of each object p
requires a scanning of the obstacles. In this paper, we derive
a visible region for the query point q, denoted by VRq, by
visiting the obstacle set once, and the visibility of an object p
w.r.t. q can be determined by checking whether p is located
inside V Rq. In this section, we explain the formation of the
visible region.

Before we present the detailed formation algorithm, we
first discuss the presentation of a visible region. As shown
in Fig. 3, a visible region might be in an irregular shape
and we can use vertex to represent it. Nevertheless, it
might not be so straightforward to determine whether an
object is inside an irregular polygon. Alternatively, we
propose to use obstacle lines, defined in Definition 4, to
handle this problem.

Definition 4 (Obstacle line). The obstacle line of an obstacle o5

w.r.t. q, denoted by olo, is the line segment that obstructs the
sight lines from q.

Suppose the rectangle o depicted in Fig. 3 is an obstacle,
and its corresponding obstacle line is olo. The shadowed
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Fig. 2. Example of TPL algorithm.

5. Although an obstacle o may be in an arbitrary shape (e.g., triangle,
pentagon, etc.), we assume that o is a rectangle in this paper.



area, blocked by olo, is not visible to q, and the rest (except o)
is within the visible region of q (i.e., V Rq). Based on the
concept of obstacle line, we can determine the angular bound
and the distance bound of an obstacle line w.r.t. q, which can
be utilized to facilitate the visibility checking of objects.

Taking q as an origin in the search space, the angular
bound of o’s obstacle line (i.e., olo) w.r.t. q is denoted as
[olo:minA; olo:maxA], in which olo:minA and olo:maxA are,
respectively, the minimum angle and the maximum angle
of olo, and olo:minA � olo:maxA (see Fig. 3). If q is located
inside o, the angular bound of olo w.r.t. q is set to [0, 2�].
When olo intersects with the positive x-axis in the search
space, we partition olo horizontally along the x-axis into olo1
and olo2. In addition, given two obstacles o and o0, if their
angular bounds are disjoint, i.e., ½olo:minA; olo:maxA� \
½olo0 :minA; olo0 :maxA� ¼ �, they will not affect each other’s
visibility w.r.t. q. The distance bound of o’s obstacle line w.r.t.
q is denoted as ½olo:minD; olo:maxD�, where olo:minD and
olo:maxD are the minimal distance and the maximal
distance from q to olo, respectively (see Fig. 3).

Without any obstacle, the visible region of q (i.e., VRq) is
the entire search space. As obstacles are visited, V Rq gets
shrunk. Consequently, an issue we have to solve is how to
decide whether a new obstacle might change the size of
V Rq. In the following, we first explain the examination-
based online segments (or edges), namely, Edge Visibility
Check (EVC), and then, extend it for obstacles in rectan-
gular shapes.

EVC gradually examines the obstacles and maintains the
obstacle lines of all the obstacles found so far which affect
the visibility of a given query point q. Given a new obstacle
o; o might affect these obstacles with angular bounds
overlapping with o’s but definitely not the rest. Conse-
quently, EVC evaluates the impact of o on the size of VRq

via comparing o’s angular bound against that of obstacle
lines in Lq.

Due to the space limitation, the pseudocode of EVC is
skipped, while we use an example depicted in Fig. 4 to
illustrate the basic idea. Assume that Lq ¼ folo1; olo2; olo3g
and e2 is the edge to be evaluated. According to the angular
bound of each obstacle line l 2 Lq and that of edge e2, there
are three possible cases: 1) l:maxA � e2:minA (e.g., l ¼ olo1),
indicating that e2 will not affect the visibility of l w.r.t q;
2) ½l:minA; l:maxA� \ ½e2:minA; e2:maxA� 6¼ � (e.g., l ¼ olo2),
meaning that a detailed examination is necessary as e2 is
very likely to affect l’s visibility w.r.t. q; and 3) l:minA �
e2:maxA (e.g., l ¼ olo3), which indicates that l and all the
remaining obstacle lines in Lq with minA larger than that of

l’s will not be affected by e2, and thus, the evaluation on e2

can be terminated.
Now the only left task is how to change Lq when a new

obstacle line ln overlaps with some existing obstacle line l
in Lq (i.e., case 2 above). Again, there are three possible
cases. First, l:maxD � ln:minD holds, which means that ln
has zero impact on q’s visible region V Rq. For example, in
Fig. 4b, although e1 overlaps with o1 in terms of angular
bounds, it is invisible to q, and hence, can be ignored.
Second, l:minD � ln:maxD satisfies, which indicates that
the entire ln is visible to q. Thus, ln is inserted into Lq and
the part of l that is blocked by ln is removed. In Fig. 4b, for
instance, e4 is within the angular bound of o3 and its
maximal distance to q (i.e., e4:maxD) is smaller than the
minimal distance between o3’s obstacle line olo3 and q (i.e.,
olo3:minD). Consequently, e4 that is visible to q is included
into Lq and olo3 is shrunk, as shown in Fig. 4b. Third, ln and
l intersect, meaning that part of ln is visible to q and the
other part of l obstructed by ln becomes invisible to q. Lq
needs to include the new visible part of ln and removes the
invisible part of l. As an example, in Fig. 4b, edge e3 and
the obstacle line of o1 (i.e., olo1) intersect, and edge e2 and
o2’s obstacle line olo2 intersect. Thus, we find the intersec-
tion points, and then, update Lq. After evaluating new
edges e1; e2; e3, and e4, the visible region of q (i.e., VRq) is
updated to the shaded area (containing the shaded region
highlighted in dashed line), as illustrated in Fig. 4b.

Next, we explain how to extend the algorithm of EVC to
determine the impact of a rectangle N on VRq, namely,
Object Visibility Check (OVC). The basic idea of OVC is to
invoke EVC to evaluate the edges of a rectangle. It is worth
noting that OVC only needs to evaluate at most two out of
four edges of a rectangle, because at most two edges may
affect the formation of VRq. Take the obstacle o7 (i.e., the
rectangle that is formed by edges e1; e2; e3, and e4) in Fig. 5a
as an example. Since a specified query point q lies in the
southwest of o7, only the two edges e1 and e4 facing toward
q need evaluations, whereas the other two edges e2 and e3

are ignored. During the processing of OVC, we distinguish
the following two possible situations: 1) if two evaluated
edges of N are invisible to q, OVC returns IV to indicate that
N is invisible to q, and hence, N and all its enclosed child
nodes can be pruned away and otherwise, 2) two evaluated
edges of N are visible (partially or completely) to q, OVC
returns AV or PV to indicate that N is all-visible (i.e.,
completely visible) or partially visible to q. If N represents
an obstacle, the impact of N’s edges on V Rq is evaluated by
EVC, which updates Lq if necessary. Otherwise, N must be
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Fig. 4. Example of edge visibility check. (a) Obstacle placement. (b) New

visible region.Fig. 3. An example obstacle line and its angular and distance bounds.



an intermediate node and its child nodes are accessed for

further exploration. We omit the pseudocode of OVC due to

space limitation.
We are now ready to present our Visible Region

Computation Algorithm (VRC). We assume that all the

obstacles are indexed by an R-tree To, and VRC traverses

To in a best-first manner, with unvisited nodes maintained

by a min-heap H sorted based on ascending order of their

minimal distances to a given query point. Algorithm 1

shows the pseudocode of VRC algorithm. It continuously

checks the head entry e of H. The detailed examination

varies, dependent on the type of e. If e is an obstacle, it is

checked against all the obstacle lines preserved in Lq
(lines 6-7). If it is visible to q; e might contribute to the

formation of VRq, and thus, Lq is updated. On the other

hand, e must be a node and all its child entries that are

visible (completely or partially) to q are enheaped for later

examination (lines 8-10). VRC also exploits an early

termination condition (lines 4-5), as proved by Lemma 1.

Algorithm 1. Visible Region Computation Algorithm (VRC)

algorithm VRC (To; q; Lq)

=� To:root: the root node of R-tree To; IV: invisible */

1: insert all entries of To:root into min-heap H; list Lq ¼ �

2: while H 6¼ � do

3: de-heap the top entry (e, key) from H

4: if Lq:isclose ¼ TRUE and

mindistðe; qÞ > MAXl2Lqðl:maxDÞ then

5: break // terminate

6: if e is an obstacle then

7: OVC (e; Lq; q) // check e’s visibility w.r.t. q

8: else // e is a MBR (i.e., an intermediate node)

9: for each entry ei 2 e and OVC (ei; Lq; q) 6¼ IV do

10: insert (ei;mindistðei; qÞ) into H

Lemma 1. Suppose heap H maintains all the unvisited nodes

sorted in ascending order of their minimal distances to the query

point q and list Lq keeps the obstacle lines of all the obstacles

found so far that affect the visibility of q. If Lq is closed (i.e.,

[l2Lq½l:minA; l:maxA� ¼ ½0; 2�; �), denoted as Lq.isclose ¼
TRUE, and mindistðe; qÞ > MAXl2Lqðl:maxDÞ, e and all the

rest entries in H are invisible to q.

Proof. Suppose there is an entry e with mindistðe; qÞ >
MAXl2Lqðl:maxDÞ ¼ dmax visible to q. As e is visible to q,
there must be at least one line segment issued at q and
reaching a point of e (denoted as p) without cutting
through any other obstacle (by Definition 1). Since Lq is
closed, without loss of generality, we can assume that the
extension of line segment qp intersects an obstacle line
l 2 Lq at point p0 with distðp; qÞ � distðp0; qÞ � dmax. As
we know that mindistðe; qÞ � distðp; qÞ holds. Hence,
mindistðe; qÞ � dmax ¼ MAXl2Lqðl:maxDÞ satisfies, which
contradicts our previous assumption. tu

An illustrative example of the VRC algorithm is depicted
in Fig. 5, where obstacle set O ¼ fo1; o2; o3; o4; o5; o6; o7; o8g is
indexed by the R-tree To shown in Fig. 5b. We use a list Lq to
store the obstacle lines of all the obstacles that can affect the
visibility of q, sorted according to ascending order of their
minimum bounding angles; and a heap H to maintain all the
unvisited entries, sorted based on their minimal distances to
q. Initially, H ¼ fN1; N2; N3g and the algorithm always
deheaps the top entry from H for examination until H
becomes empty. First, N1 is accessed. As it is visible to q, its
child nodes are enheaped for later examination, after which
H ¼ fo1; N2; N3; o3; o2g. Then, o1 is evaluated. Since it is the
first obstacle checked, o1 for sure affects q’s visibility and is
added to Lqð¼ folo1gÞ. Third, N2 is checked. According to
current Lq;N2 is visible to q, and thus, its child nodes are
enheaped, with H ¼ fo5; N3; o3; o2; o4; o6g. Fourth, o5 is
examined and becomes the second obstacle affecting the
visibility of q, i.e., Lq ¼ folo5; olo1g. Next, N3 is deheaped and
its child nodes are enheaped into Hð¼ fo7; o3; o2; o4; o8; o6gÞ.
In the sequel, VRC deheaps obstacles from H and keeps
updating Lq until H ¼ �. Finally, Lq ¼ folo7; olo62; olo5; olo3;
olo2; olo1g, in which olo62 is the partial obstacle line of obstacle
o6, as illustrated in Fig. 5a.

4 VRNN QUERY PROCESSING

In this section, we explain how to process VRNN query. We
first present the pruning strategy followed by the details of
VRNN search algorithm. Then, we analyze the cost of
VRNN algorithm and prove its correctness.

4.1 Pruning Strategy

In order to improve the search performance, we utilize half-
plane property (as [16]) and visibility check (discussed in
Section 3) to prune the search space. Consider the
perpendicular bisector between a data point p1 and a given
query point q, denoted by ?ðp1; qÞ, i.e., line l1 in Fig. 6. The
bisector divides the whole data space into two half-planes,
i.e., HPp1ðp1; qÞ containing p1 (i.e., trapezoid EFCD) and
HPqðp1; q) containing q (i.e., trapezoid ABFE). All the data
points (e.g., p2; p3) and nodes (e.g., N1) that fall completely
inside HPp1ðp1; qÞ and are visible to p1 must have p1 closer to
them than q, and thus, they cannot be/contain a VRNN of q.
However, all the data points (e.g., p6; p7) and nodes (e.g.,
N2; N3) that fall into HPp1ðp1; qÞ but are partially visible/
invisible to p1 might become or contain a VRNN of q.
Therefore, they cannot be discarded and a further examina-
tion is necessary. In the following description, we term p1 as
a pruning point.
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4.2 The VRNN Algorithm

Based on the above pruning strategy, the basic idea of the

VRNN algorithm proposed in this paper tries to prune

away unqualified data objects/nodes to save the traversal

cost. Consequently, it adopts a two-step filter-and-refinement

framework, assuming that data set P and obstacle set O are

indexed by two separate R-trees. In order to enhance the

performance, these two steps are well integrated into a

single traversal of the trees. In particular, the algorithm

accesses nodes/points in ascending order of their distances
to the query point q to retrieve a set of potential candidates,

maintained by a candidate set Sc. All the data points and

nodes that cannot be/contain a VRNN of q are discarded by

our proposed pruning strategy, preserved in a refinement

point set Sp and a refinement node set Sn, respectively. At
the second step, the entries in both Sp and Sn are used to

eliminate false hits.

Algorithm 2. VRNN Search Algorithm (VRNN)
algorithm VRNN (Tp; To; q)

/* Sc: candidate set; Sp: refinement point set;

Sn: refinement node set;

Sr: result set of a VRNN query */

1: initialize sets Sc ¼ �; Sp ¼ �; Sn ¼ �; Sr ¼ �

2: VRNN-Filter (Tp; To; q; Sc; Sp; Sn)

3: VRNN-Refinement (q; Sc; Sp; Sn; Sr)

4: return Sr

Algorithm 2 presents the pseudocode of the VRNN

Search Algorithm (VRNN) that takes data R-tree Tp, obstacle

R-tree To, and a query point q as inputs, and outputs exactly

all the VRNNs of q. We use an example shown in Fig. 7 to

elaborate the VRNN algorithm. Here, P ¼ fp1; p2; . . . ; p13;

p14g; O ¼ fo1; o2; o3; o4g, and the corresponding Tp is de-

picted in Fig. 7b. A primary heap Hw is maintained to keep all

the unvisited entries ordered in ascending order of their
minimal distances to the query point q.

4.2.1 The Filter Step

Initially, VRNN visits the root node of Tp, inserts its child
entries N8 and N9 that are visible to q into Hwð¼ fN8; N9gÞ,
and adds the entry N10 that is invisible to q to Snð¼ fN10gÞ.
Then, the algorithm deheaps N8, accesses its child nodes,

and enheaps all the entries that are visible to q, after which

Hw ¼ fN3; N9; N1; N2g. Next, N3 is visited and it updates Hw

to fp1; N9; N1; N2; p11g. The next deheaped entry is p1. As it

is visible to q; p1 is the first VRNN candidate (i.e., Sc ¼ fp1g)
and becomes the current pruning point cp that is used for

pruning in the subsequent execution.

The next deheaped entry is N9. As cpð¼ p1Þ is not empty,
VRNN uses Trim algorithm6 (as [16]) to check whether N9

can be pruned. As N9 overlaps with HPqðcp; qÞ, its child
nodes have to be accessed. Child node N5 is discarded as it
locates inside HPcpðcp; qÞ and it is visible (completely) to cp,
meaning that it cannot contain any qualified candidate.
Thus, N5, which is an MBR, is added to Sn, i.e.,
Sn ¼ fN10; N5g. The other child entry N4 is enheaped into
Hwð¼ fN4; N1; N2; p11gÞ because it falls partially into
HPcpðcp; qÞ and is visible (completely) to cp, indicating that
N4 may contain VRNN candidates. VRNN proceeds to
deheap N4 and visits its child entries, i.e., data points p2 and
p5. As p2 falls inside HPqðcp; qÞ and is visible to cp, it is
added to Hwð¼ fp2; N1; N2; p11gÞ. On the other hand, point
p5 is inserted into Sp ¼ fp5g since it locates inside
HPcpðcp; qÞ and is visible to cp. Next, p2 is deheaped. As it
cannot be pruned by current pruning point (p1), it becomes
the second pruning point and maintained by an auxiliary
heap Ha ¼ fp2g.

Subsequently, VRNN accesses node N1 and inserts its
child points p4 and p8 into Hwð¼ fN2; p4; p8; p11gÞ. Note that
although p8 falls fully into HPcpðcp; qÞ, it is invisible to the
current pruning point (i.e., p1) due to the obstruction of
obstacle o2, and hence, p8 cannot be pruned by cp. The next
processed entry N2 is added to Snð¼ fN10; N5; N2gÞ directly,
as it locates inside HPcpðcp; qÞ and is visible (completely) to
cp. In the sequel, p4 and p8 are retrieved and inserted into
Ha, after which Ha ¼ fp2; p4; p8g. Finally, p11 is deheaped
and added to Sp ¼ fp5; p11g since it satisfies the pruning
condition. Here, as Hw is empty, the first loop stops, with
Ha; Sc; Sp, and Sn being {p2; p4; p8}, {p1}, {p5; p11}, and
{N10; N5; N2}, respectively. The heap contents at each phase
during the aforementioned filter process are illustrated in
Table 2 where, for simplicity, we omit associated distances
to q for node MBRs and data points.

Algorithm 3. Filter for VRNN Algorithm (VRNN-Filter)
algorithm VRNN-Filter (Tp; To; q; Sc; Sp; Sn)

/* Tp:root: the root node of R-tree Tp; IV: invisible; AV:

all-visible; PV: partially-visible */
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6. If a node MBR can be completely discarded, the Trim algorithm
returns 1; otherwise it returns the minimum distance between a given
query point q and the residual MBR. Similarly, it returns the actual distance
from a point to q if the point cannot be pruned, or1 otherwise. Refer to [16]
for details.

Fig. 6. Illustration of pruning based on half-planes and visibility check.

Fig. 7. Example of VRNN algorithm. (a) Data and obstacle placement.

(b) The data R-tree.



1: insert all entries of Tp:root into min-heap Hw; cp ¼
NULL;Ha ¼ �

2: VRC (To; q; Lq) // compute q’s visible region V Rq

3: while Hw 6¼ � do

4: de-heap the top entry (e, key) from Hw

5: if e is a data point then

6: Sc ¼ Sc [ feg; cp ¼ e; VRCðTo; cp; LcpÞ
7: while Hw 6¼ � do

8: de-heap the top entry ðe0; key0Þ from Hw

9: if e0 is a data point then

10: if Trim ðq; cp; e0Þ ¼ 1 and OVC ðe0; Lcp; cpÞ ¼ AV
then

11: Sp ¼ Sp [ fe0g
12: else

13: insert (e0; distðe0; qÞ) into Ha

14: else // e0 is a MBR (i.e., an intermediate node)

15: for each entry e0i 2 e0 do

16: if OVC (e0i; Lq; q) 6¼ IV then

17: if Trim (q; cp; e0iÞ ¼ 1 and OVC ðe0i; Lcp; cpÞ ¼
AV then

18: Sp ¼ Sp [ fe0ig if e0i is a data point or Sn ¼
Sn [ fe0ig if e0i is a node

19: else if Trim (q; cp; e0iÞ ¼ 1 and OVC

(e0i; Lcp; cpÞ ¼ IV then

20: insert (e0i;mindistðe0i; qÞ) into Ha

21: else

22: insert (e0i;mindistðe0i; qÞ) into Hw

23: else // OVC (e0i; Lq; qÞ ¼ IV
24: Sp ¼ Sp [ fe0ig if e0i is a data point or Sn ¼

Sn [ fe0ig if e0i is a node

25: swap (Hw;Ha) // change the roles between Hw

and Ha

26: else // e is a MBR (i.e., an intermediate node)

27: for each entry ei 2 e do

28: if OVC (ei; Lq; qÞ 6¼ IV then

29: if cp 6¼ NULL and Trim (q; cp; eiÞ ¼ 1 and

OVC (ei; Lcp; cpÞ ¼ AV then

30: Sp ¼ Sp [ feig if ei is a data point or Sn ¼
Sn [ feig if ei is a node

31: else

32: insert (ei;mindistðei; q)) into Hw

33: else // OVC (ei; Lq; qÞ ¼ IV
34: Sp ¼ Sp [ feig if ei is a data point or Sn ¼

Sn [ feig if ei is a node

Next, the roles of Hw and Ha are switched. In other
words, in the rest of current iteration, the algorithm uses Hw

as an auxiliary heap, while takes Ha as a primary heap.
VRNN proceeds in the same loop until Hw ¼ Ha ¼ �, i.e.,
all the points are either pruned (i.e., inserted into Sp) or
become candidates (i.e., inserted into Sc). Finally, we have
Sc ¼ fp1; p2; p4; p8g; Sp ¼ fp5; p11g, and Sn ¼ fN10; N5; N2g.

Algorithm 3 shows the pseudocode of the Filter for VRNN
Algorithm (VRNN-Filter). When an intermediate node is
visited, it utilizes OVC function to check its visibility to the
query point q, and then, processes it. Similarly, when a data
point is accessed, it uses OVC function to examine its
visibility to the current pruning point cp, and then,
processes it. For each pruning point cp discovered,
VRNN-Filter applies VRC algorithm to get its visible region,
i.e., finding the obstacles from To that can affect cp’s
visibility. Note that all pruned entries are preserved in
their corresponding refinement sets but not removed
permanently, as they will be used to verify candidates in
the next refinement step.

4.2.2 The Refinement Step

When the filter step finishes, the refinement step starts, with
the pseudocode of Refinement for VRNN Algorithm (VRNN-
Refinement) depicted in Algorithm 4. In the first place,
VRNN-Refinement conducts self-filtering (lines 2-4), that is,
it prunes away the candidates that are visible to each other
and are closer to each other than to q. Then, the algorithm
enters the refinement step, where it verifies whether each
remaining candidate in Sc is a true result (lines 7-18). First, it
calls Round of Refinement Algorithm (Refinement-Round),
depicted in Algorithm 5, to eliminate false candidates from
Sc based on the contents of Sp and Sn, without any extra
node access. The remaining points p in Sc need further
refinement, with each associated with p.toVisit that records
the nodes which might enclose some not-yet visited points
that may invalidate p. Hence, nodes in p.toVisit are visited,
with each access updating the contents of Sp and Sn. Note
that Sp and Sn are reset to � after each round of Refinement-
Round (line 12) to avoid duplicated checking. The refine-
ment step continues until Sc ¼ �.

Algorithm 4. Refinement for VRNN Algorithm (VRNN-

Refinement)

algorithm VRNN-Refinement (q; Sc; Sp; Sn; Sr)

1: for each point p 2 Sc do

2: for each other point p0 2 Sc do

3: if OVC (p0; Lp; p) 6¼ IV and distðp0; pÞ <
distðq; pÞ then

4: Sc ¼ Sc � fpg; goto 1

5: if p is not eliminated from Sc then

6: initialize p:toV isit ¼ �

7: if Sc 6¼ � then

8: repeat

9: Refinement-Round (q; Sc; Sp; Sn; Sr)
10: let N be the lowest level node of p.toVisit for p 2 Sc
11: remove N from all p.toVisit and access N

12: Sp ¼ Sn ¼ � // for the next round

13: if N is a leaf node then

14: Sp ¼ fp0jp0 2 N and p0 is visible to pg
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15: else

16: Sn ¼ fN 0jN 0 2 N and N 0 is visible to p}

17: else

18: return // terminate

Now, we explain the details of Refinement-Round
algorithm. Specifically, it has three tasks, i.e., pruning false
positive, identifying nodes that might invalidate the
remaining points in Sc, and returning final result objects.
First, points p in Sc satisfying any of following conditions are
for sure false positives and can be pruned: 1) 9p0 2 Sp such
that p0 is visible to p and dist(p0; p) < distðq; pÞ (lines 2-4), or
2) 9N 2 Sn such that N is al l-visible to p and
minmaxdistðN; pÞ < distðq; pÞ (lines 5-8). Note that min-
maxdist(N; p) is the upper bound of the distance between p

and its closest point in N . Thus, minmaxdistðN; pÞ <
distðq; pÞ meaning that N contains at least one point that is
closer to p than to q. For example, in Fig. 7, p2 2 Sc can be
safely discarded because N5 2 Sn is all-visible to it and
minmaxdistðN5; p2Þ < distðq; p2Þ. Second, 8p 2 Sc can be
reported immediately as an actual VRNN of q when the
following two conditions are satisfied: 1) 8p0 2 Sp; p0 is either
invisible to p or distðp0; pÞ > distðq; pÞ and 2) 8N 2 Sn, it is
all-visible/partially visible to p and mindistðN; pÞ >
distðq; pÞ. In our example, p4 and p8 satisfy the above
conditions, and hence, they are removed from Sc and
reported as the VRNNs of q immediately. The point p 2 Sc
that cannot be pruned or reported as a real result must have
some nodes in Sn that contradict above conditions, and we
utilize a set p.toVisit to record all those nodes (lines 9-11).
Take p1 as an example. As p1:toV isit ¼ fN2g, we access N2

and find out that the enclosed point p3 is the VNN of p1, and
thus, p1 is invalidated.

Algorithm 5. Round of Refinement Algorithm

(Refinement-Round)

algorithm Refinement-Round (q; Sc; Sp; Sn; Sr)

1: for each point p 2 Sc do

2: for each point p0 2 Sp do

3: if OVC (p0; Lp; p) 6¼ IV and distðp0; pÞ < distðq; pÞ then

4: Sc ¼ Sc � fpg; goto 1

5: for each node N 2 Sn do

6: if OVC ðN;Lp; pÞ ¼ AV then

7: if minmaxdistðN; pÞ < distðq; pÞ then

8: Sc ¼ Sc � fpg; goto 1

9: for each node N 2 Sn do

10: if OVC (N;Lp; p) 6¼ IV and mindistðN; pÞ < distðq; pÞ
then

11: add N to p.toVisit

12: if p:toV isit ¼ � then

13: Sc ¼ Sc � fpg;Sr ¼ Sr [ fpg
If there are multiple nodes in p.toVisit for each p

remaining in Sc, we can access all of them to invalidate
the candidate objects. However, not all the accesses are
necessary. Hence, we adopt an incremental approach to
access the lowest level nodes first in order to achieve a better
pruning. In our example shown in Fig. 7, the second
refinement round starts with Sc ¼ fp1g; Sp ¼ fp3; p7g (i.e.,
points enclosed in N2), Sn ¼ �, and Sr ¼ fp4; p8g. Point p1 is
eliminated as a false positive since p3 is visible to p1 and

distðp3; p1Þ < distðq; p1Þ holds, and then, the VRNN algo-
rithm terminates.

Notice that although VRNN-Refinement and Refinement-
Round algorithms are similar to the TPL-Refinement and
TPL-Refinement-Round algorithms proposed in [16], they
integrate object visibility check during the refinement process.

4.3 Discussion

In a 2D space, like the existing SAA [14] and TPL [16]
methods for RNN queries, the proposed VRNN algorithm
does not require any preprocessing and can return exact
result. However, the VRNN algorithm incurs a higher
query cost as it considers the obstacle influence on the
visibility of objects and it has to traverse not only the data
set P but also the obstacle set O. In this section, we
present the time complexity of the VRNN algorithm and
prove its correctness.

The cost of R-tree traversal dominates the total over-
head of the VRNN algorithm. We first derive the upper
bound of the number of traversals on the R-trees Tp and
To, respectively.

Lemma 2. The VRNN algorithm traverses Tp at most once
and To at most ðjScj þ 1Þ times, with Sc representing the

candidate set.

Proof. As shown in Algorithm 3, VRNN-Filter algorithm
only traverses Tp once to obtain a VRNN candidate set
Sc. It then uses half-plane property and visibility check to
prune false candidates and invokes the VRC algorithm
once for each candidate p 2 Sc to find the obstacles
affecting its visibility (line 6 in Algorithm 3). Moreover,
VRNN-Filter also calls the VRC algorithm once to retrieve
the obstacles that can affect the visibility of q (line 2 in
Algorithm 3). Consequently, the VRNN algorithm
traverses To at most ðjScj þ 1Þ times. tu

Let jTpj and jToj be the tree size of Tp and To, respectively,
and jScj; jSpj, and jSnj be the cardinality of Sc; Sp, and Sn,
respectively. We have the following theorems.

Theorem 1. The time complexity of the VRNN algorithm is O

ðlogjTpj 	 ðjScj þ 1ÞlogjToj þ jScj2 þ jScjðjSpj þ jSnjÞÞ.
Proof. The VRNN algorithm follows the filter-refinement

framework. In the filter step, it takes OðlogjTpj 	 ðjScj þ
1ÞlogjTojÞ for obtaining candidate set Sc; in the refinement
step, it incurs OðjScj2 þ jScjðjSpj þ jSnjÞÞ to eliminate all
the false hits. Therefore, the total time complexity of the
VRNN algorithm is OðlogjTpj 	 ðjScj þ 1ÞlogjToj þ jScj2 þ
jScjðjSpj þ jSnjÞÞ. tu

Theorem 2. The VRNN algorithm retrieves exactly the VRNNs

of a given query point q, i.e., the algorithm has no false
negatives and no false positives.

Proof. First, the VRNN algorithm only prunes away those
nonqualifying points or nodes in the filter step by using
our proposed pruning strategy. Thus, no answer points
are missed (i.e., no false negatives). Second, every
candidate p 2 Sc is verified in the refinement step by
comparing it with each data point retrieved during the
filter step and each node that might contain VNNs of p,
which ensures no false positives. tu
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5 EXTENSIONS

This section discusses three interesting variants of VRNN
queries, namely, VRkNN, �-VRkNN, and CVRkNN queries.

5.1 The VRkNN Search

A VRkNN query retrieves all the points in a data set whose
VkNN sets include q, as formalized in Definition 3. Our
solution to VRNN retrieval can be adapted to support
VRkNN search. The detailed extensions are described as
follows. First, the pruning strategy (presented in Section 4.1)
can be extended to an arbitrary value of k. Assume a
VRkNN query and a data set P with n (�k) data points
p1; p2; . . . ; pn. Let D ¼ f�1; �2; . . . ; �kg be a subset of P . If a
point/node fully falls into \ki¼1HP�ið�i; qÞ and is all-visible to
each point in D, it must have k points (i.e., �1; �2; . . . ; �k)
closer to it than q. Consequently, it can be safely pruned
away. On the other hand, if a point/node locates inside
\ki¼1HP�ið�i; qÞ and is partially visible/invisible to any subset
of D, it can become or contain a VRkNN of q, and thus,
needs further examination.

Next, we explain how to extend the proposed algorithms
for VRkNN query processing. To solve a VRkNN query, we
also follow the filter-refinement framework. In particular,
we find a set Sc of VRkNN candidates that contains all the
actual answer points, and then, eliminate all the false
candidates in Sc. The VRNN-Filter algorithm can be easily
modified to support VRkNN retrieval, by integrating the
aforementioned pruning strategy. Specifically, the filter step
of VRkNN search first finds an initial candidate set Sc
which contains the k data points closest to a given query
point q, and meanwhile, visible to q. Then, the algorithm
proceeds to retrieve candidates as well as to prune away all
the nonqualifying data points and node MBRs that satisfy
the aforementioned pruning condition. Data points and
node MBRs discarded are kept in the refinement point
set Sp and the refinement node set Sn, respectively. The
filter phase finishes when all the nodes that may include
candidates have been visited.

Algorithm 6. k-Refinement-Round Algorithm

(k-Refinement-Round)

algorithm k-Refinement-Round ðq; Sc; Sp; Sn; SrÞ
1: for each point p 2 Sc do

2: for each point p0 2 Sp do

3: if OVC (p0; Lp; p) 6¼ IV and distðp0; pÞ < distðq; pÞ then

4: p:cnt ¼ p:cntþ 1

5: if p:cnt ¼ k then

6: Sc ¼ Sc � fpg; goto 1

7: for each node N 2 Sn do

8: if OVC (N;Lp; p) 6¼ IV and mindistðN; pÞ < distðq; pÞ
then

9: add N to p.toVisit

10: if p:toV isit ¼ � then

11: Sc ¼ Sc � fpg;Sr ¼ Sr [ fpg
The VRNN-Refinement algorithm can be extended for

VRkNN retrieval as well. Similarly, the refinement step of
VRkNN search is also executed in rounds, which are
shown in Algorithm 6. Different from Refinement-Round,
a point p 2 Sc can be pruned only if there are at least
k points visible to p within distðp; qÞ. Hence, we associate a
counter p.cnt (initially set to 0) with each point p during

the processing. Every time, the algorithm finds a point p0

that satisfies the following two conditions: 1) p0 is visible to
p and 2) distðp0; pÞ < distðq; pÞ, the p’s counter p.cnt is
increased by one. Eventually, p can be removed as a false
hit when p:cnt ¼ k. The refinement phase terminates after
all the points in Sc have been eliminated or verified. We
omit the pseudocodes of the filter and main refinement
algorithms for VRkNN search since they are very similar
as VRNN-Filter and VRNN-Refinement presented in
Algorithm 3 and Algorithm 4, respectively.

5.2 VRkNN Queries with Constraints

In some real applications, users might enforce some
constraints (e.g., distance, spatial region, etc.) on VRkNN
queries, and thus, we introduce the VRkNN query with
maximum visible distance � constraint (called �-VRkNN
search) and the VRkNN query with constrained region CR
constraint (called CVRkNN search), respectively. Take the
application outdoor advertisement planning described in
Section 1 as an example. If it is assumed that customers
pay zero attention to the billboard that is located 50 meters
away, �-VRkNN search with � ¼ 50 is more suitable,
compared with VRkNN search, as it takes the distance
constraint into account. On the other hand, if P&G only
targets for the customers located in certain area (e.g., the
customers within a shopping mall), CVRkNN query with
constrained region CR set to the specified shopping mall is
more suitable. In this section, we explain how to extend the
CVNN search algorithm to answer �-VRkNN and/or
CVRkNN queries.

Given a data set P , an obstacle set O, a query point q,
a distance threshold �, a constrained region CR, and an
integer kð�1Þ, 1) a �-VRkNN query finds a set of points
f r o m P , d e n o t e d b y �-VRkNNðqÞ, s u c h t h a t
8p 2 �-VRkNNðqÞ; q 2 V kNNðpÞ, and distðp; qÞ � �, i.e.,
�-VRkNNðqÞ ¼ fp 2 P jq 2 V kNNðpÞ ^ distðp; qÞ � �} a n d
2) a CVRkNN query returns a set of points from P ,
denoted by CVRkNN(q), such that 8p 2 CVRkNN(q), q 2
VkNN(p), and p \ CR 6¼ � (i.e., p is inside CR), formally,
CVRkNNðqÞ ¼ fp 2 P jq 2 V kNNðpÞ ^ p \ CR 6¼ �}. It is
important to note that in addition to the position of q
and the distributions of data pints and obstacles, 1) the
cardinality of �-VRkNNðqÞ, i.e., j�-VRkNNðqÞj, is depen-
dent on the value of � and 2) the cardinality of
CVRkNN(q), i.e., jCVRkNNðqÞj, is dependent on the size
and distribution of CR. As an example, a �-VRNN (k ¼ 1)
query issued at point q is illustrated in Fig. 8a, where
data set P ¼ fp1; p2; p3; p4g, obstacle set O ¼ fo1; o2g, and
its distance constraint � is highlighted in the figure. The
final result of this query is empty, which is different from
the result of VRNN search on the same data and obstacle
sets (as shown in Fig. 1b) due to the � constraint.

The proposed algorithms for VRNN search can be easily
adjusted to support �-VRNN and CVRNN queries, by
integrating constrained conditions (i.e., distance threshold �
and constrained region CR) during the query processing.
Moreover, we develop following heuristics to facilitate the
search process. First, since the search region (SR) of �-VRNN
retrieval is bounded by � (e.g., the shaded area in Fig. 8a
representing the SR of the �-VRNN query issued at q), 1) any
obstacle that does not intersect SR cannot affect the visibility
of objects evaluated currently, and can be pruned away safely
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and 2) any point/node that does not locate inside or cross SR
can be directly excluded from the further consideration,
because it cannot be/contain the final answer object. Second,
as the final result of CVRNN search must satisfy the specified
region constraint, 1) any obstacle that is outside CR can be
discarded, since it cannot impact the visibility of objects
evaluated currently and 2) any point/node that does not
intersect CR can be directly excluded from the further
examination, because it cannot become/contain the actual
answer object. In addition, the algorithm can be extended to
support �-VRkNN and CVRkNN queries, which is similar to
the extension for VRkNN search stated above.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency and effectiveness of
our proposed algorithms for VRNN query and its variants
through experiments on both real and synthetic data sets.
First, Section 6.1 describes the experimental settings, and
then, Sections 6.2, 6.3, 6.4, and 6.5 report experimental results
and our findings for VRNN, VRkNN, �-VRkNN, and
CVRkNN queries, respectively. All the algorithms were
implemented in C++, and all the experiments were con-
ducted on a PC with a Pentium IV 3.0 GHz CPU and 2GB
RAM, running Microsoft Windows XP Professional Edition.

6.1 Experimental Setup

We deploy five real data sets,7 which are summarized in
Table 3. Synthetic data sets are created following the
uniform distribution and zipf distribution, with the cardin-
ality varying from 0:1	 jLAj to 10	 jLAj. The coordinate of
each point in Uniform data sets is generated uniformly along
each dimension, and that of each point in Zipf data sets is
generated according to zipf distribution with skew coeffi-
cient � ¼ 0:8. All the data sets are mapped to a [0, 10,000] 	
[0, 10,000] square. As VRNN search and its variations
involve a data set P and an obstacle set O, we deploy five
different data set combinations, namely, CR, LL, NL, UL,
and ZL, representing (P;O) ¼ (Cities, Rivers), (LB, LA), (NA,
LA), (Uniform, LA), and (Zipf, LA), respectively. Note that
the data points in P are allowed to lie on the boundaries of
the obstacles but not in their interior, and the obstacles in O
are allowed to overlap each other.

All data and obstacle sets are indexed by R*-trees [2]. The
disk page size is fixed to 1K bytes, such that the maximum

node capacity equals 50 entries for dimensionality 2 and the
number of nodes/pages for LB, NA, LA, Cities, and Rivers
data sets equals 1,178, 9,145, 2,629, 118, and 432, respectively.
Note that we choose a small page size to simulate practical
scenarios where the cardinalities of the data and obstacle sets
are much larger. The experiments investigate the perfor-
mance of the proposed algorithms under a variety of
parameters which are listed in Table 4. In each experiment,
we vary only one parameter, while the others are fixed at
their default values, and run 200 queries with their average
performance reported. The query distribution follows the
underlying data set distribution and the overall query cost is
measured. Both the I/O overhead (by charging 10 ms per
page fault, as in [16]) and CPU time contribute to the query
cost. We assume that the server maintains a buffer with LRU
as the cache replacement policy. Unless specifically stated,
the size of buffer is 0, i.e., the I/O cost is determined by the
number of node/page accesses.

6.2 Results on VRNN Queries

The first set of experiments verifies the performance of the
proposed VRNN algorithm for VRNN search. First, we
study the effect of the jP j=jOj ratio on the VRNN algorithm
using two data set combinations (including UL and ZL).
Fig. 9 plots the total query cost (in seconds) of the VRNN
algorithm as a function of jP j=jOj, fixing k ¼ 1. In Fig. 9,
each result is broken into two components, corresponding
to the filter step and the refinement step, respectively. The
percentage inside the bar indicates the ratio of cost incurred
in the filter step to that of the overall query cost. In addition,
we show the percentage of I/O time in the entire query cost,
denoted by I/O percent; the cardinality of the candidate set,
denoted as jScj; and the number of node accesses on the
data R-tree Tp, denoted by NðTp). For example, as shown in
Fig. 9a, when jP j=jOj ¼ 1, VRNN accesses 497 out of
2,629 nodes of Tp; its I/O cost contributes to 92 percent of
overall query cost; and the candidate set Sc has 8.3 objects
on average. The total query cost is around 37 seconds, while
the filtering step takes 92 percent of the time.

It is observed that the filter step actually dominates the
overall overhead (>90 percent), especially when the jP j=jOj
ratio is small (e.g., 0.1, 0.2). This is because: 1) the filter step of
VRNN needs to traverse the obstacle R-tree ToðjScj þ 1Þ times
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7. LB, NA, and LA are available at http://www.maproom.psu.edu/dcw;
and Cities and Rivers are available at http://www.rtreeportal.org.

TABLE 3
Description of Real Data Sets Used in Experiments

TABLE 4
Parameter Ranges and Default Values

Fig. 8. Variations of VRNN queries with constraints. (a) �-VRNN search.

(b) CVRNN search.



(according to Lemma 2), incurring expensive I/O cost and a
large number of visible region computation operations;
2) VRNN reuses all the points and nodes pruned from the
filter step to perform candidate verification in the refinement
step, and thus, duplicated accesses to the same points/nodes
are avoided; and 3) most candidates in Sc are eliminated as
false hits directly by other candidates in Sc or points/nodes
maintained in the refinement set Sp or Sn, which does not
cause any data access. The remaining candidates can be
validated by visiting a limited number of additional nodes.
This observation is also confirmed by the rest of experiments.
In addition, we observe that the cost of VRNN demonstrates
a stepwise behavior. Specifically, it increases slightly as
jP j=jOj changes from 0.1 to 1, but then ascends much faster as
jP j=jOj grows further. The reason behind is that as the
density of data set P grows, the number of the candidates
retrieved in the filter step increase as well, which results in
more traversals of To, more visibility checks, and more
candidate verifications.

Finally, we examine the performance of the VRNN
algorithm in the presence of an LRU buffer, by fixing k to 1
and varying the buffer size from 0 to 60 percent of the tree
size. To obtain stable statistics, we measure the average cost
of the last 100 queries, after the first 100 queries have been
performed for warming up the buffer. The results under UL
and ZL data set combinations are depicted in Fig. 10. The
overall query cost is reduced as buffer size increases. In
particular, as the buffer size enlarges, it is observed that the
VRNN-Filter cost drops, whereas the VRNN-Refinement
cost almost remains the same. This is because the filter step

of VRNN requires traversing the obstacle R-tree ToðjScj þ 1Þ
times. Consequently, it may access the same nodes (e.g., the
root node of To) multiple times, and hence, a buffer space
can improve the search performance by keeping the nodes
locally available.

6.3 Results on VRkNN Queries

The second set of experiments evaluates the efficiency and
effectiveness of VRkNN query processing algorithm. First,
we inspect the impact of k value on the performance of the
VRkNN algorithm, using LL and NL data set combinations.
Fig. 11 illustrates the total query cost of the VRkNN
algorithm with respect to k which varies from 1 to 16. As
expected, the overhead of VRkNN grows with k, due to the
significant increase in the cost of VRkNN-Filter. Notice that
the number of candidates retrieved during the filter step
increases almost linearly with k.

In the following experiments, we investigate the effect of
different parameters, including the jP j=jOj ratio and buffer
size, on the performance of the VRkNN algorithm, with UL
and ZL data set combinations. In Fig. 12, we show the
efficiency of the algorithm for VRkNN queries, by fixing
k ¼ 4 and varying jP j=jOj between 0.1 and 10. In Fig. 13, we
plot the cost of the VRkNN algorithm as a function of the
buffer size. As the observations are similar to those made
from the VRNN retrieval, we save the detailed explanation
due to the space limitation.

6.4 Results on �-VRkNN Queries

The third set of experiments explores the influence of the
maximal visible distance � constraint on the efficiency of the

GAO ET AL.: VISIBLE REVERSE k-NEAREST NEIGHBOR QUERY PROCESSING IN SPATIAL DATABASES 1325

Fig. 10. VRNN cost versus buffer size (k ¼ 1; jOj ¼ 131;461). (a) UL

(jP j=jOj ¼ 1). (b) ZL (jP j=jOj ¼ 1).

Fig. 11. VRkNN cost versus k (jOj ¼ 131;461). (a) LL. (b) NL.
Fig. 9. VRNN cost versus jP j=jOj (k ¼ 1; jOj ¼ 131;461). (a) UL. (b) ZL.

Fig. 12. VRkNN cost versus jP j=jOj (k ¼ 4; jOj ¼ 131;461). (a) UL.

(b) ZL.



�-VRkNN query processing algorithm. We fix k at 4 and
change � values from 6 to 30 percent of the side length of the
search space. Fig. 14 shows the overall query cost of the �-
VRkNN search algorithm with respect to � for LL and NL
data set combinations. Obviously, � has a direct impact on
the performance of �-VRkNN retrieval, since it controls the
size of the search region. In particular, the cost of the
algorithm increases gradually as � grows. This is because
the number of candidates retrieved in the filter step ascends
with the growth of �.

6.5 Results on CVRkNN Queries

The last set of experiments investigates the effect of the
constrained region CR size on the performance of CVRkNN
query processing algorithm. We deploy real data sets, i.e.,
LL and NL data set combinations, fix k to 4, vary the size of
CR from 10 to 50 percent of the whole data space, and
present all the experimental results in Fig. 15. As expected,
the cost of the algorithm increases with the growth of CR.
The reason behind is that as constrained region grows, the
size of search space enlarges and the number of candidates
obtained in the filter step increases, which leads to more
traversals of the obstacle R-tree To, more visibility checks,
and more candidate examinations.

7 CONCLUSIONS

In this paper, we identify and solve a novel type of reverse
nearest neighbor queries, namely, VRNN search. Although
both RNN search and VNN search have been studied, there is
no previous work that considers both the visibility and the
reversed spatial proximity relationship between objects. On

the other hand, VRNN retrieval is useful in many decision
support applications involving spatial data and physical
obstacles. Consequently, we propose an efficient algorithm
for VRNN query processing, assuming that both the data set
P and the obstacle set O are indexed by R-trees. We employ
half-plane property and visibility check to prune the search
space, analyze the cost of the proposed VRNN algorithm, and
prove its correctness. In addition, we extend our techniques
to tackle three interesting VRNN query variations, including
VRkNN, �-VRkNN, and CVRkNN queries. An extensive
experimental evaluation with both real and synthetic data
sets has been conducted which demonstrates the perfor-
mance of our proposed algorithms for handling VRNN
search and its variants, under various experimental settings.

This work motivates several directions for future work.
First, we plan to study the VRkNN query with respect to
multiple query points. Second, we focus only on a 2D space
in this paper, and hence, how to extend our solution to a
multidimensional space is a challenging topic that is worth
further studying. Finally, it would be particularly interesting
to develop analytical models for estimating the query cost of
VRNN search and its variants. Such models will not only
facilitate query optimization, but may also reveal new
problem characteristics that could lead to even better
algorithms.
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