
Ranked Reverse Nearest Neighbor Search
Ken C.K. Lee, Baihua Zheng, Member, IEEE, and Wang-Chien Lee, Member, IEEE

Abstract—Given a set of data points P and a query point q in a multidimensional space, Reverse Nearest Neighbor (RNN) query finds

data points in P whose nearest neighbors (NNs) are q. Reverse k-NN ðRkNNÞ query (where k � 1) generalizes RNN query to find data

points whose kNNs include q. For RkNN query semantics, q is said to have an influence on all those answer data points. The degree of

q’s influence on a data point p ð2 PÞ is denoted by �p, where q is the �pth NN of p. We introduce a new variant of RNN query, namely,

Ranked RNN (RRNN) query, that retrieves t data points most influenced by q, i.e., the t data points having the smallest �s with respect

to q. To answer this RRNN query efficiently, we propose two novel algorithms, �-Counting and �-Browsing that are applicable to both

monochromatic and bichromatic scenarios and are able to deliver results progressively. Through an extensive performance evaluation,

we validate that the two proposed RRNN algorithms are superior to solutions derived from algorithms designed for RkNN query.

Index Terms—Reverse Nearest Neighbor query, ranking, search algorithm.

Ç

1 INTRODUCTION

1.1 Definitions and Motivations

THE Reverse Nearest Neighbor (RNN) search problem
has received a lot of attentions from the database

research community for its broad application base such as
marketing, decision support, resource allocation, and data
mining since its introduction [8]. Given a set of data points
P and a query point q in a multidimensional space, RNN
query finds every data point in P with q as its nearest
neighbor (NN). Such RNN query is also called monochro-
matic RNN since the answer data points and their NNs are
all from the same set of data points, i.e., P.1 On the other
hand, bichromatic RNN searches answer data points from
one set of data points, P, with their NNs taken from another
set of data points, say Q. Reverse k-NN ðRkNNÞ with k � 1
generalizes RNN to find data points whose kNN include q.
RkNN query is different from (and even more complicated
than) kNN query because of asymmetric NN relationship
between two data points in a data set. That means if a query
point q has found the NN point p ð2 PÞ, p may have other
data points else (i.e., other than q) as its NNs.

The primary goal of RkNN query is to determine the

influence set, i.e., a subset of data points in P considered to be

influenced by a given query point q if q is the immediate NN

to them. The term degree of influence, denoted as �p, is defined

in Definition 1 to quantify the influence of a query point q on

a data point p in P. In this paper, we assume that data points

and query point are in euclidean space. Hence, when q is the

NN to a data point p, q is said to have the most significant

influence on p and the corresponding �p is 1. When q is the
second NN of another data point p0, q is the second most
influential point to p0 and �p0 is 2, and so on. Based on the
definition of �, RkNN query can be interpreted as to retrieve
data points with their �s not exceeding a given threshold
parameter k as formally stated in Definition 2.

Definition 1: Degree of influence. Given a data set P and a
query point q, the degree of influence of q on p ð2 PÞ denoted
by �p is the number of data points not farther than
q to p. Formally, �p ¼

��fp0 j p0 2 X [fqg ^ distðp0; pÞ �
distðp0; qÞg

�� where X ¼ P � fpg (monochromatic) or X ¼ Q
(bichromatic).2

Definition 2: RkNN query. Given a data set P (and Q when
bichromatic RkNN is considered) and a query point q,
RkNN query returns a set of data points whose �s do
not exceed k, an influence threshold setting, i.e.,
RkNNðqÞ ¼ fp j p 2 P ^ �p � kg.

RkNN query has no control of the answer set size since
the setting of k does not determine the answer set size. For
example, as reported in [15], a monochromatic R1NN query
in a 2D space may return none or up to six answer data
points. For high-dimensional space and bichromatic scenar-
io, the number of answer data points can vary a lot. Besides,
RkNN is not very informative about the influences of a
query point on answer data points. It is hard to differentiate
one answer data point from another upon influence
received from the query point. Therefore, it is useful to
determine an influence rank, a predetermined number of
influenced data points (with their �s provided) ordered by
their �s. This search has a wide application base. For
example, a company has some limited quantity of product
samples to send to potential customers for promotion.
Assume that the promoted product, other competitors’
products, and customers’ preferences are all captured as
data points in a multidimensional feature space. Suppose

894 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

. K.C.K. Lee and W.-C. Lee are with the Department of Computer Science
and Engineering, Pennsylvania State University, University Park, PA
16802. E-mail: {cklee, wlee}@cse.psu.edu.

. B. Zheng is with the School of Information Systems, Singapore Manage-
ment University, Singapore. E-mail: bhzheng@smu.edu.sg.

Manuscript received 23 Aug. 2007; revised 25 Dec. 2007; accepted 17 Jan.
2008; published online 28 Jan. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-08-0429.
Digital Object Identifier no. 10.1109/TKDE.2008.36.

1. For the rest of this paper, we refer to the data points in the answer set
as answer data points.

2. distðx; yÞ denotes the Euclidean distance between x and y.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

that customers are more likely to purchase a product if it is
closer to their preferences in the feature space. Given the
number of available samples t, kNN query with k ¼ t finds
customers whose preferences match well with the product,
but the product may not receive high ranks to those
customers due to the existence of other products. RkNN can
be adopted to find potential customers. Independent of t, it
cannot find exact t potential customers to send the samples.
Besides, both kNN and RkNN cannot tell which potential
customers are the most (or least) suitable targets. This
necessitates a new query that searches the t most influenced
data points ranked based on the degree of influence.

In this paper, we propose the Ranked RNN (RRNN)
query, formally defined in Definition 3, to retrieve from
P the t data points most influenced by a query point q,
where t is a query parameter. When t is set to 1, RRNN
query returns a data point p that q has the most influence
on. Notice that �p may not necessarily be 1. When t ¼ jPj
(i.e., the cardinality of the data set), RRNN renders a
sorted list of all data points according to their degrees of
influence. Since �s are not necessarily unique, the
distance between the data points and the query point is
used as the tiebreaker. Revisit our previous example. An
RRNN query with t set to the number of available
samples, say 100, one hundred customers best matched
with the promoted product are retrieved.

Definition 3: RRNN query. Given a data set P (and Q when
bichromatic scenario is considered), a query point q, and a
requested number of answer data points t, RRNN query
returns t tuples ðp; �pÞ, where p 2 P, and �p is p’s degree of
influence. Formally, RRNNtðqÞ ¼ fðp; �pÞ j p 2 P0 ^ jP0j ¼
t ^ P0 � P ^ 8x2ðP�P0Þ�p < �xg.

The RRNN query, a new RNN variant, is functionally
more powerful and more informative than RkNN as it can
report the top t most influenced data points with their
degrees of influence. This RRNN supports impact analysis
as well. Let us consider other examples. A logistic company
plans to set up a service center at a given location. An
impact analysis based on geographical proximity to their
customer bases may be performed at the planning stage.
Assume that customers’ preferences for logistic services are
based on distance. RRNN can show the distribution of
impact within a specified number (or percentage) of most
influenced subjects. For example, among the top 100 po-
tential customers, how the new center is ranked among
existing centers. In this case, RkNN can only figure out the
set of potential customers within a specified impact
controlled by k. Another interesting RRNN application is
in the matching service. When a new member joins, a group
of existing members who may be interested in the new
member can be notified by running RkNN query based on
the calculated matching degree. RRNN query can identify a
given number of top-matched candidates, along with their
corresponding matching degrees.

1.2 Possible Solutions

Although RkNN query is also based on the degrees of
influence (see Definitions 2 and 3), none of the existing

algorithms proposed for RkNN search can be directly
adopted to efficiently support the RRNN query. An
intuitive approach, called �-Probing, is to iteratively invoke
an RkNN algorithm by increasing the query parameter k
from 1 until t most influenced data points are obtained.
First, an R1NN query (where k ¼ 1) is first evaluated. The
answer set is recorded and the corresponding � of each
answer data point is 1. Next, an R2NN query is reissued.
Notice that the query result of the R2NN query subsumes
that of the R1NN query in the previous run. Therefore, the
answer data points excluding those obtained from the
previous run have their corresponding �s equal to 2. This
process repeats with incremented k at each run until t
answer data points and their �s are obtained, which clearly
suffers from redundant processing among different runs. A
slight improvement can be made by exponentially increas-
ing the ks in the series of RkNN invocations, e.g., setting k to
1, 2, 4, 8, . . . and so forth. If more than t answer data points
are collected, the algorithm gradually reduces k to smaller
values until t answer data points are found.

From our analysis of the RRNN query, the degree of
influence with respect to the query point q for a data point p,
�p, can be determined by counting the number of data
points closer to p than q (i.e., p’s NNs). If we draw a circle
cirðp; qÞ rooted at p using distance between p and q, i.e.,
distðp; qÞ, as the radius, �p is equal to the number of data
points, including q, fallen inside the circle. Thus, a naive
approach to processing an RRNN query is to count the
number of NNs for all data points exhaustively as
aforementioned. However, an RRNN query is only inter-
ested in the t top-ranked data points most influenced by q.
Consequently, it is a waste to figure out the �s for all the
other points. In other words, we should only evaluate a set
of potential candidates. This fosters a straightforward
approach called filter-and-rank (FR), serving as a baseline
in this paper. FR is similar to the filter-and-refine query
processing paradigm commonly used by RkNN search
algorithms (to be discussed in Section 2). It has two phases:
1) in the filter phase, it retrieves K NN data points ðt � KÞ
to a query point as result candidates and 2) then in the rank
phase, for each candidate, p, a circle cirðp; qÞ is formed and
the number of data points (i.e., �p) inside cirðp; qÞ is derived.
At last, t candidates with the smallest �s are returned.
However, this approach cannot guarantee the result
accuracy. It may return an inaccurate result if K is not
large enough to cover all potential answer points (i.e., false
miss) in the filter phase, and thus, some other data points
among candidates are mistaken as t most influenced data
points. Setting K to a large value may avoid false miss, but
this makes the search suffer a serious performance penalty.

1.3 Our Proposed Algorithms

Motivated by the value of the RRNN query and the lack of
efficient algorithms, in this paper, we propose two novel and
efficient algorithms, namely, �-Counting and �-Browsing,
that progressively obtain �s for a subset of the data points.
The key difference between these two algorithms lies in the
adopted ordering functions and the number of data points
visited to process the query.

Since data points with small �s intuitively have short
distances to q (i.e., small circles formed), the �-Counting

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 895

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

algorithm examines data points based on their distances to
the query point q. While we determine the � of one data point
at a time, the �s of many other data points are incrementally
obtained based on the findings of the data point under
processing. The algorithm elegantly explores the property
of the index structure to determine the access order of data
points. However, because of asymmetric NN relationship,
data points having short distance to the query point might
not necessarily have small �s and, hence, are excluded from
the answer set. Thus, �-Counting algorithm, based on
distance order, needs to process more data points. The
details about this algorithm will be discussed in Section 3.

The �-Browsing algorithm aims at optimizing the number
of data points processed by visiting data points in the order
of their degrees of influence (i.e., �). A notion of min� is
introduced and used in the algorithm to facilitate the
efficient processing of the RRNN query. The min� of a data
point is a low bound estimation of � based on distance
metrics and aggregated counts on aR-tree [10]. Several
heuristics are obtained via the knowledge of min� to prune
the search space and to retrieve answer data points. Details
about min� and developed optimization techniques for
�-Browsing are discussed in Section 4.

Both the �-Counting and the �-Browsing algorithms
support multidimensional data sets. Other than R-tree/
aR-tree maintenance, they do not incur any preprocessing
overhead, making our algorithms suitable for highly
dynamic environments. Moreover, our algorithms are I/O
efficient as they look up a required portion of an index only
once. Besides, our design of algorithms is compatible to
both monochromatic and bichromatic application scenarios.
Further, they can support RkNN with minor modification
and provide progressive result delivery, which was not
achieved by existing RNN=RkNN algorithms. To validate
our proposals, we conduct a comprehensive set of experi-
ments via simulation with a wide range of settings, such as
different cardinality/dimensionality of the data set and
various values of t (the required number of answer points).
The result indicates that the �-Browsing algorithm generally
performs the best in terms of I/O costs and elapsed time.

1.4 Organization of This Paper

The remainder of this paper is organized as follows:
Section 2 reviews R-tree and existing RNN=RkNN search
algorithms. Sections 3 and 4 present �-Counting and
�-Browsing algorithms, respectively. For ease of illustration,
the discussion of the algorithms is based on a 2D space,
while our algorithms can support RRNN search in a
multidimensional space. The performance evaluation of
our algorithms is conducted and presented in Section 5.
Finally, Section 6 concludes this paper.

2 RELATED WORK

This section briefly reviews R-tree [6], an efficient index for
many NN and RNN=RkNN search algorithms, and the
existing search algorithms for RNN=RkNN query.

2.1 R-tree and MBB Distance Metrics

R-tree (including its variants R�-tree [2] and aR-tree [10]) is
a data partitioning index that clusters closely located data

points and abstracts them as minimum bounding boxes
(MBBs). Because of tightly bounding enclosed data points,
each side of an MBB must touch at least one enclosed data
point. Consequently, many useful distance metrics, such as
mindist, minmaxdist, and maxdist, have been identified [13].
As shown in Fig. 1a, mindistðq;NÞ and maxdistðq;NÞ
represent the lower and upper bounds of the distance
between any data point inside an MBB N and a single point
q; minmaxdistðq;NÞ defines the upper bound of the
distance between a point q and its NN inside an MBB N .
In other words, a point q should have at least one point
located inside MBB N whose distance does not exceed
minmaxdistðq;NÞ.

Besides, another set of distance metrics is defined
between two MBBs. With the same terminologies, mindist,
minmaxdist, and maxdist [4] are exemplified in Fig. 1b.
mindistðN1; N2Þ and minmaxdistðN1; N2Þ are, respectively,
referred to as the lower and upper bounds of the distance
between the closest pair of data points from MBBs N1 and
N2. maxdist ðN1; N2Þ is the upper bound distance of the
farthest pair of data points in respective MBBs. In addition,
minExistDNNN2

ðN1Þ [20] represents the minimal upper
bound of distance from any point in MBB N1 to its NN in
MBB N2. As shown in Fig. 1b, an MBB N1 is partitioned by a
perpendicular bisector ?ða;bÞ, where a and b are diagonal
points in N2, into two portions, P1 (shaded) and P2 (not
shaded). Conservatively, any data point in P1 (or P2) should
have its NN not farther than b (or a, respectively). Here,
minExistDNNN2

ðN1Þ is distðx; aÞ, the distance from x to a.
minExistDNN is asymmetric that minExistDNNN2

ðN1Þ
and minExistDNNN1

ðN2Þ are different. All these distance
metrics are useful to derive min� in the �-Browsing
algorithm to be discussed later.

2.2 RNN=RkNN Search Algorithms

Here, we discuss RNN=RkNN search algorithms that can be
broadly categorized as precomputation-based approaches and
dynamic approaches.

2.2.1 Precomputation-Based RNN=RkNN Search

Algorithms

Precomputation-based approaches preexecute kNN search
for each point p and determine distðp; p0Þ between p and its
kth NN point p0 based on a given k. Further, for each point
p, a vicinity circle cirðp; p0Þ, centered at p with distðp; p0Þ as
the radius, is created. If a query point q is inside cirðp; p0Þ, p
is the RkNN answer data point. To facilitate the lookup of
answer data points, all the vicinity circles are indexed using

896 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 1. Distance metrics. (a) Between a data point and an MBB.

(b) Between two MBBs.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

RNN-tree [8], an R-tree variant specific for vicinity circles.
Rather than physically including the vicinity circle, RdNN-
tree [22], another R-tree variant, was proposed to keep both
data points and their vicinity circle radius. This RdNN-tree
can efficiently support both NN and RNN searches
simultaneously. Fig. 2a depicts four MBBs of an RdNN-
tree containing eight data points fp1; � � � ; p8g. Given a query
point, q, RNN search locates N2 and N3 for potential answer
data points as their extended MBBs cover q. Then, p1 and p5

are retrieved as the answer data points. However, these
approaches are limited to support RkNN queries for a fixed
k and they incur a very high index construction and update
overhead [12]. To support various k, Achtert et al. [1] and
Xia et al. [18] suggested to estimate kNN distance at the run
time instead of maintaining actual possible kNN distances.

2.2.2 Dynamic RNN=RkNN Search Algorithms

Dynamic RNN search algorithms perform search based on a
general index like R-tree that can be efficiently updated [11],
[21]. Stanoi et al. [16] derives Voronoi cells based on R-tree
to determine bichromatic RNNs. Other proposed mono-
chromatic RNN=RkNN algorithms adopt a filter-and-refine
query processing paradigm [14], [15], [17], in which the
search is separated into filter phase and refine phase. In the
filter phase, potential RNN=RkNN answers are identified as
candidates from the entire data set, which may include false
hits. In the refine phase, all candidates are evaluated with
kNN search and those candidates with more than kNNs
found are removed.

Stanoi et al. [15] suggested to partition a 2D search space
centered at the query point into six equal-sized sectors. It is
proved that those NN objects of q found in each sector are the
only candidates of the RNNs. Thus, in the filter step,
constrained NN search [5] is conducted to find the NN data
point in each sector. The efficiency of Stanoi’s algorithm is
owing to the small number of candidates, at most six for
monochromatic RNN in 2D space. When the dimensionality
increases, the number of subspaces for candidates increases
exponentially. Singh et al. [14] proposed another algorithm
to alleviate the curse of dimensionality. Their algorithm first
retrieves KNN data points to the query point as candidates,
where K (reasonably larger than k of RkNN query) is
randomly selected. However, the accuracy and performance
of this algorithm is highly dependent on K. The larger K is,
the more candidates are identified. Consequently, it is more
likely that a complete answer set is returned but with a
higher processing cost. A smallK favors the efficiency, but it
may incur many false misses. The FR algorithm (discussed in
Section 1.2) borrows this idea.

To guarantee the completeness of results, Tao et al. [17]
proposed the TPL algorithm that exploits a half-plane
property in space to locate RkNN candidates. The algorithm
examines data points based on distance browsing [7]. Every
time when an unexplored NN data point p to a query point,
q, is identified, a half-plane is constructed along the
perpendicular bisector ?ðq;pÞ between p and q. It is
guaranteed that any object p0 (or node) falling inside the
half-plane containing p must have p closer than q to it. Thus,
if a data point is covered by k or more half-planes, it should
not be an RkNN answer data point, thus can be safely
discarded from detail examination. The filter phase termi-
nates when all candidate data points are collected and the
others are discarded. As depicted in Fig. 2b, four objects p1,
p2, p3, and p5 are identified as the candidates for R1NN and
other data points (e.g., p4 and p6) or MBBs (e.g., N4 that
encloses a set of data points) inside the (shadowed) half-
planes of candidates are filtered out. Later in the refine step,
NN search is performed on these candidates to remove the
false hits. The final result set is fp1; p5g.

2.3 Other RNN Algorithms

Various RNN=RkNN algorithms consider different applica-
tion scenarios, such as data stream [9], graph network [24],
moving objects [3], ad hoc subspace [23], and object
monitoring [19]. Unlike all those reviewed RNN algorithms
that identify influenced data set with � � k, our work in this
paper focuses on searching for top t influenced data points
ranked with respect to a query point. Besides, the work of
influential site ranking [20] is for bichromatic RNN
scenarios, aiming at finding a rank list of data points from
a set of query points, Q, that influence most of the data
points in P. In other words, this work intends to find the
most influential query points. Different from this work, our
work finds the most influenced data points to a single query
point and ranks them.

3 �-COUNTING ALGORITHM

This section details the �-Counting algorithm. We give an
overview of the algorithm followed by the detail of how the
algorithm operates for both monochromatic and bichro-
matic application scenarios. Finally, we discuss its strength
and weakness.

3.1 Overview

Based on an intuition that the � of a data point p is
somewhat related to the size of cirðp; qÞ, which centers at p
with distðp; qÞ as the radius, the �-Counting algorithm
gradually expands the search space starting from a query
point, q, outward to visit the closest data points in P.
Additionally, we associate a �cnt, a counter for the number
of NNs, with every single data point, initialized to one.
While the search space is expanded, the �cnts of some data
points are incremented (if some other points are found to be
closer to them than q) and/or finalized (if they are not
affected any more by later examined data points). Those
data points with the smallest finalized �cnts (that equal to
�s) are collected as answer data points. The algorithm keeps
expanding the search space and incrementing the �cnts of
data points until t answer data points are obtained.

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 897

Fig. 2. RNN algorithms. (a) RdNN-tree. (b) TPL algorithm.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

We use half-planes as [17] to determine whose �cnts
need updating. When the search space expands to a data
point, p, we divide the whole space along the perpendicular
bisector, ?ðq;pÞ between p and q, into two half-planes,
denoted by HPqðq; pÞ and HPpðq; pÞ. All the data points fall
inside the half-plane containing p, i.e., HPpðq; pÞ must have
p closer to them than q, so the �cnts of those data points are
incremented by one. With the use of half-planes, the �cnt of
a data point p is equal to the number of half-planes that
cover p. For notational convenience, we use HPq in place of
HPqðq; pÞ hereafter.

To facilitate expanding the search space and counting
�cnts of individual data points or groups of data points, we
adopt the R-tree index. An example is illustrated in Fig. 3a,
where the �cnts of data points or MBBs are denoted in
braces. When a perpendicular bisector ?ðq;pÞ is formed
between the query point q and its first nearest point p, both
data point p1 and MBB N that represents all enclosed data
points, falling inside HPp, have their �cnts incremented by
one. On the other hand, p2 is outside HPp so its �cnt
remains one.

As shown in Fig. 3b, after examining three data
points, p, p1, and p2, the �cnts of p, p1, p2, and N are
updated to 2, 3, 2, and 2, respectively. It is noteworthy
that some of N ’s children N 0 may lie inside HPp3

,
though N is not entirely inside it. Consequently, the
�cnts associated with N 0s may be greater than, but
definitely not less than, that of N .

Certainly, after examining all data points/half-planes,
the �cnts of all data points can be finalized (converged and
equal to �s). However, since only the t most influenced data
points (i.e., those with smallest �s) are needed, a compre-
hensive checking (that examines all the data points)
incurring a large processing overhead is clearly unneces-
sary. To improve the search efficiency, early �cnt finalization
is desirable. Following the nondecreasing distance order,
the �cnt’s can be finalized earlier according to the following
lemma.

Lemma 1. The �cnt of a data point p is finalized if distðp0; qÞ of
all unexamined data points p0 to the query point q is greater
than 2� distðp; qÞ.

Proof. Since the perpendicular bisector, i.e., the boundary of
a half-plane, formed between a query point q and any
point p0 must be at least distðp0; qÞ=2 away from q, the
half-plane cannot cover any data point, p, whose
distðp; qÞ < distðp0; qÞ=2 (see Fig. 3a). Thus, p’s �cnt can
be finalized and equals �. tu

Though the �cnts of some data points can be finalized

earlier, it is not guaranteed that those points with early

finalized �cnts must be the RRNN query answers. Until

their �s are certain to be the smallest, they will not be

output as a part of the RRNN query result. In Sections 3.2

and 3.3, we present �-Counting algorithm for monochro-

matic and bichromatic RRNN application scenarios.

3.2 �-Counting Algorithm for Monochromatic RRNN

The �-Counting algorithm for monochromatic RRNN is

based on distance browsing [7], as described in the

pseudocode in Fig. 4. In this algorithm, data points have

to be examined through three stages, namely, queued

(pending for examination), examined (examined but with

nonfinalized �s), and finalized (examined with finalized �s),

before they can be included as RRNN query results. A

priority queue ðP Þ, a candidate set ðCÞ, and a finalized

candidate set ðF Þ are used to maintain data points in these

respective stages. In addition, a half-plane set ðHÞmaintains

all the half-planes of examined data points. We also adopt a

histogram to facilitate the decision on whether the finalized

�cnt of a data point p is the smallest. For each value of �cnt,

we record the number of data points/index nodes p 2
P [C with �cntp ¼ �cnt. When a data point or an index

node changes its �cnt from �old to �new, the number

associated with value �old is reduced by one while that

with value �new is increased by one. When the numbers for

all �cnts in the histogram smaller than p’s �cnt reach zero,

p’s �cnt is guaranteed to be the smallest. Moreover, the

histogram is very update efficient.

898 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 3. Basic idea of �-Counting algorithm. (a) Bisector ?ðq;pÞ. (b) �cnt of

all points and node.

Fig. 4. �-Counting algorithm for monochromatic RRNN.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

The algorithm starts with P filled with the root of the
index and C, F , and H set to empty. Thereafter, it iteratively
takes out the head entry of P , that is, the closest
unexamined entry � (either a data point or an index node)
to the query point. In each round, � is checked (lines 2-23). If
� is a data point, a half-plane HP� is created and preserved
in H (line 14). Next, all pending data points and index
nodes in P and all data points in C falling inside this half-
plane increase their �cnt by one (lines 15-18). Finally, � is
kept in C as a candidate (line 19). Otherwise, � must be an
index node. It is explored and all its children c are placed
back to P . The �cnt of each newly inserted entry c is
counted by comparing c against all half-planes in H (lines 8-
12). Besides, the mindist of � is compared against the
distances between q and all data points in C. The data
points in C with their �cnts finalized according to Lemma 1
are moved to F (lines 4-6). Further, those data points in F
with the smallest �cnts are output as the partial RRNN
query result immediately (lines 20-23). As long as t answer
data points are collected, the algorithm terminates.

Fig. 5 shows a sample run of the �-Counting algorithm.
Suppose an RRNN query (with t ¼ 1) issued at q searches
for one data point with the smallest �. The queue P
currently contains three points, p1, p2, and p3, and one index
node, N , after some steps of index traversal, and the sets H,
F , and C are empty. First, p1, the head of P and having
�cnt ¼ 1, is examined. A half-plane HPp1

, formed based on
?ðq;p1Þ, is inserted into H. Since p2, p3, and N in P fall inside
HPp1

, their corresponding �cnt’s are increased by 1. p1 is
thereafter moved to C. Next, p2 is examined and its half-
plane HPp2

covers p1, p3, and N . Thus, the �cnt of p1, p3, and
N are changed to 2, 3, and 3, respectively. p2 and HPp2

are
inserted into sets C and H accordingly to complete the
second round.

When p3 is inspected, the �cnt of p1 is finalized (based on
Lemma 1) since mindistðq; p3Þ is twice more than distðp1; qÞ,
and hence, it is moved from C to F . As p3’s half-plane,
HPp3

, covers p2 and N , �cnt associated with p2 is increased
to 3 and that with N is incremented to 4. As p1s finalized �
is smaller than that of the rest of the data points (i.e., p2, p3,
and N), it is output as the RRNN query result to complete
the search.

3.3 �-Counting Algorithm for Bichromatic RRNN

The �-Counting algorithm for bichromatic RRNN query
considers two data sets P and Q. The answer data points
are retrieved from P while their NNs are obtained from Q.
The logic is pretty much the same as that for monochro-
matic RRNN query. We associate �cnts with all data points
and index nodes from P. Data points in P have to go

through three stages, as described in Section 3.2. Thus, a
priority queue ðP Þ, a candidate set ðCÞ, and a finalized
candidate set ðF Þ are maintained. Examined data points in
Q form half-planes, which are stored in H. As the
examination follows the distance order, we put data points
and index nodes from Q and P into P to provide a global
distance order. Every time an entry dequeued from P is
being examined, one of the following operations is
performed accordingly.

. Case 1. If the entry is an index node from Q, it is
explored and all its children nodes are pushed back
to P for later examination.

. Case 2. If the entry is a data point s from Q, it forms
a half-plane HPs based on perpendicular bisector
?ðq;sÞ. Those entries in C and P (data points/index
nodes of P) falling inside HPs increase their �cnts by
1. The newly formed half-plane HPs is then
maintained in H.

. Case 3. If the entry is an index node from P, it is
explored. All its children are checked against all
half-planes in H, update their �cnts, and are
enqueued to P.

. Case 4. If the entry is a data point p from P, it is put
into C.

As previously discussed, the �cnt of a candidate data
point p ð2 CÞ can be finalized when the mindist of the
current head entry (and, hence, of all the other queued
entries) to q is greater than the double of distðp; qÞ according
to Lemma 1. Next, p, as its �cnt is finalized, is moved from
C to F . Further, when its finalized �cnt is smaller than all
others in P and C, p is removed from F and delivered as
one of the query results. To efficiently determine whether
the finalized �cnts of some data points in F are the smallest,
we maintain a histogram of �cnts of data points in C and P .
The algorithm terminates when t RRNN answer data points
are collected.

As it is similar to that for monochromatic RRNN query,
the pseudocode of the �-Counting algorithm for bichromatic
RRNN query is omitted to save space. Fig. 6 provides an
illustrative example, where t, the number of required data
points, is set to 1. Assume that after certain traversal steps,
P contains ½s1; p1; s2; s3; NS; p2	, with s1 being the head and
C, F , and H being empty. First, s1 is examined, a half-plane,
HPs1

, is created with respect to s1 and q, and the �cnts of
both p1 and p2 are incremented to 2. Second, p1 is examined
and buffered in C. Third, s2 is examined and its half-plane
HPs2

covers p1 and p2. As a result, the �cnts of both p1 and
p2 become 3. Then, s3 is dequeued. Its mindist is twice
greater than distðp1; qÞ, so p1’s �cnt is finalized and it is

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 899

Fig. 5. Example of �-Counting for monochromatic RRNN. Fig. 6. Example of �-Counting for bichromatic RRNN.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

moved from C to F . Besides, HPs3
covers p2, and p2’s �cnt is

therefore incremented to 4. At last, p1 in F with the smallest
�cnt is confirmed to be the final result. It is delivered and
the search ends.

3.4 Discussion

It is pretty straightforward to adapt the �-Counting
algorithm to support RkNN query by collecting data points
with their finalized �cnt’s (i.e., �) not exceeding k and
terminating the search when all the remaining data points
(i.e., those in the priority queue and the candidate set) are
confirmed to have �cnt’s greater than k. By doing so, the
�-Counting algorithm can provide progressive result deliv-
ery that none of the existing RkNN algorithms can offer.
Besides, the �-Counting algorithm can operate without
specifying t, defaulting t ¼ 1. This actually sorts all the
points according to ascending order of �, i.e., the degree of
influence received from q.

The �-Counting algorithm can outperform those pre-
viously discussed solutions, namely, �-Probing and FR. It
does not repeatedly access the same data set as the
�-Probing; it does not need to access extra data points as
FR; and it can guarantee the result correctness. Fig. 7a
shows a scenario, where a monochromatic RRNN query is
issued at q and t is set to 1. FR examines 2NN points as its
candidates. Here, a, whose � is 1, is the RRNN but not b. In
the rank phase, index nodes, N2 and N3, are visited as they
intersect cirðb; qÞ, thereby incurring extra I/O costs. For
bichromatic scenario, the �-Counting algorithm can also
perform reasonably better than FR. Fig. 7b shows a scenario
where an RRNN query is issued at q and p1 is the answer
point. FR retrieves both p1 and p2 as initial candidates.
Based on their circles, other points like s1 and index nodes
S2 and S3 from Q are accessed. However, for the same
situation, the �-Counting algorithm does not need to explore
that many index nodes of Q and does not even need to
examine p2. It accesses s1, s2, p1, and then p2 according to
the global distance order. When p2 is accessed, p1’s �cnt is
finalized. At this time, no other data points have smaller
�cnt than p1s, thus the �-Counting algorithm terminates
earlier.

However, the �-Counting algorithm, based on an intui-
tion that the � of a data point is related to its distance to a
query point, could be less efficient for skewed data sets. As
illustrated in Fig. 8a, p0 is the answer data point, but it is far
away from q. According to the mindist metric, the
�-Counting algorithm scans data points to form half-planes
that are used to update the �cnts of covered points. As a
result, it has to scan all the data points on the right side of q
before visiting p0. From this, we can see that processing

RRNN query by means of distance ordering is not
necessarily a good strategy. In the next section, we present
�-Browsing, our second algorithm using min�s to order the
access of candidate data points/index nodes for RRNN
query processing.

4 �-Browsing ALGORITHM

In this section, we detail the �-Browsing algorithm, which is
based on a notion of min�, a lower bound estimation of �
for a data point. To facilitate the calculation of min�s, we
adopt aR-tree [10], which is widely used to support
aggregation query. For RRNN and RkNN, determining �s
that counts the number of NNs with respect to a data point
is a sort of aggregation. aR-tree is an R-tree variant with
every index node associated with a count indicating the
number of data points indexed beneath the node. Specifi-
cally, the count associated with a leaf node records the
number of enclosed data points and the count associated
with a nonleaf node is equal to the sum of counts of all its
child (descendent) nodes. In the following, we discuss the
basic idea of the �-Browsing algorithm and then introduce
the notion of min� and its properties, followed by the
description of the �-Browsing algorithm for monochromatic
and bichromatic RRNN scenarios.

4.1 Overview

The key idea of the �-Browsing algorithm is to order the
access of data points/index points based on their like-
lihoods of being/containing the answer data points. To
illustrate the idea of the algorithm, let us consider Fig. 8b
(which depicts the same scenario as Fig. 8a). Based on two
unexplored data points p and p0, it is reasonable to examine
the data point p0 before p, as we can visualize from the
figure that �p0 is smaller than �p. However, the exact �p and
�p0 are unknown without exploring other data points/index
nodes around p and p0. Thus, a challenging issue that the
�-Browsing algorithm faces is how to determine the access
order between p and p0 (and other data points and index
nodes) without exactly knowing their �s. To tackle this
problem, we introduce a notion of min�, associated with
every data point and index node, to represent the minimal
number of data points being closer to its associated data
point or index node (i.e., all the data points inside the MBB
of the index node) than q, estimated based on available but
limited knowledge of the data point distribution. In other
words, it is the lower bound of � of a data point or all data
points inside an index node. A data point/index node with
a relatively large min� is obviously less likely to be/contain
the most influenced data point(s), and thus, the access

900 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 7. Scenario about FR. (a) Monochromatic RRNN. (b) Bichromatic

RRNN.
Fig. 8. Skewed data set. (a) �-Counting. (b) �-Browsing.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

priority should be given to those with smaller min�s. With
min�s, the �-Browsing algorithm can also efficiently prune
the search space. As illustrated in Fig. 8b, we can figure out,
based on knowledge discovered during the query proces-
sing, that p’s min� is larger than that of p0. Then, the search
can decide to process p0 before p and all its neighboring data
points and index nodes, thus alleviating the processing
overhead. Further, as �p0 is smaller than the min�’s of p and
its surrounding data points, p0 can immediately be output
and the search terminates.

4.2 Notion of min�

The estimation of min�s is proceeded along with the index
traversal. The state of the index under examination can be
represented by a set of index nodes and data points
(denoted by V). The data points and index nodes in V ,
logically constituting the whole data set, are not nested. The
initial state of V contains only the root node of the index. As
the �-Browsing algorithm traverses and expands index
nodes, V evolves into new sets of data points and index
nodes that provide more precise knowledge of data
distribution in space.

Given a data point p, its min� indicates the minimum
possible number of data points closer to p itself than a query
point q, based on the knowledge embedded in the current
state of V . Fig. 9a shows an illustrative example of how
min� of p is estimated. Rooted at p, a circle cirðp; qÞ that
covers some MBBs and data points is drawn. First, a data
point p0, inside the circle, is guaranteed to be closer to p than
q and, hence, is counted toward min� of p. Similarly, N1 is
fully covered by the circle (i.e., maxdistðp;N1Þ � distðp; qÞ),
which means that all the data points enclosed by N1 are
definitely closer to p than q. We count N1:cnt (that denotes
the count associated with N1) toward min�. Conversely, N2,
N3, and N4 are partially covered. With minmaxdist, we can
assure each of N2 and N3 can contribute at least 1 toward
min� of p because each of them has at least one side
completely inside cirðp; qÞ. Finally, only a corner (rather
than a complete side) of N4 is covered, and conservatively,
no contribution from N4 to min� is assumed. As a result,
min� is estimated as ð1þ 3þN1:cntÞ. Notice that we need
to add 1 for q to min�.

Hence, based on a given V (i.e., the current state of
explored data space in terms of index nodes and data
points), the following expression calculates the min� of a
data point p and Lemma 2 states the condition where the
min� can be finalized and converged to �:

min�ðq; p; V Þ ¼ 1þ
X
v2V

countðp; vÞ; ð1Þ

where

countðp; vÞ ¼
1 if v is a data point ^ distðp; vÞ � distðp; qÞ;
v:cnt if v is an index node ^maxdistðp; vÞ � distðp; qÞ;
1 if v is an index node ^

minmaxdistðp; vÞ � distðp; qÞ < maxdistðp; vÞ;
0 otherwise:

8>>>>>><
>>>>>>:

Lemma 2. Given a data point p, a query point q, and a set of

index nodes and data points maintained in V , min�ðq; p; V Þ is

equal to �p if all touched index node N ð2 V Þ are fully covered

by cirðp; qÞ, i.e.,

8N2V jmindistðp;NÞ�distðp;qÞmaxdistðp;NÞ � distðp; qÞ:

Proof. As no index node is partially covered by cirðp; qÞ,
data points and index nodes enclosed completely

contribute their counts to the min�ðq; p; V Þ. Thus, the

min� of p is finalized and equal to �p. tu

Given an index node N , the min� of N indicates the

minimum possible number of data points that must be

closer to all the data points inside N than q wherever they

are located inside N . Compared with that for a single data

point, the calculation of min� for an index node is more

complicated. Since the exact positions of data points inside

an index node are unknown but they are certainly bounded

by MBBs, we estimate min�s based on heuristics derived

from MBB distance metrics as discussed in Section 2. There

are three possible cases that all the data points inside MBB

can find another point closer to them than q, as stated in the

following lemmas.

Lemma 3. A data point p0 is not farther to all data points inside

an index node N than q if maxdistðN; p0Þ � mindistðN; qÞ.
Proof. Let p be a data point anywhere inside N . Since

distðp; p0Þ � maxdistðN; p0Þ and mindistðN; qÞ � distðp; qÞ;

maxdist ðN; p0Þ � mindistðN; qÞ guarantees distðp; p0Þ �
distðp; qÞ. tu

Lemma 4. An entire index node N 0 (i.e., all data points inside

N 0) is not farther to another index node N (i.e., any data point

inside N) than q if maxdistðN;N 0Þ � mindistðN; qÞ.
Proof. Assume that p is a data point located inside N . Due

to the fact that

distðp;N 0Þ � maxdistðN;N 0Þ and mindistðN; qÞ � distðp; qÞ;

maxdistðN;N 0Þ � mindistðN; qÞ ensures dist ðp;N 0Þ �
distðp; qÞ. tu

Lemma 5. At least one data point in an index node N 0 is not

farther to all data points inside an index node N than q if

minExistDNNN 0 ðNÞ � mindistðN; qÞ.

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 901

Fig. 9. Examples of min�. (a) min�ðq; p;V). (b) min�ðq;N;VÞ.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

Proof. Consider that a data point p is inside N , its NN point

p0 is in N 0 and their distance is distðp; p0Þ. Since

distðp; p0Þ � minExistDNNN 0 ðNÞ, distðp; p0Þ � distðp; qÞ
is ensured, according to the stated condition:

minExistDNNN 0 ðNÞ � mindistðN; qÞ

and mindistðN; qÞ � distðp; qÞ. tu
Based on Lemmas 3, 4, and 5, the following expression can

be obtained to determine themin� of an index nodeN (given

a query point q and a set of data points/index nodes V):

min�ðq;N; V Þ ¼ 1þ
X
v2V

countðN; vÞ; ð2Þ

where

countðN; vÞ ¼
1 if v is a data point ^maxdistðN; vÞ � mindistðN; qÞ;
v:cnt if v is an index node ^maxdistðN; vÞ �

mindistðN; qÞ;
1 if v is an index node ^minExistDNNvðNÞ �

mindistðN; qÞ < maxdistðN; vÞ;
0 otherwise:

8>>>>>>>><
>>>>>>>>:

Fig. 9b depicts the min� of an index node N . In the

figure, the data point p0 is closer to the entire N than q and,

hence, contributes 1 to N ’s min�. N1, due to the smaller

maxdistðN;N1Þ ð< mindist ðN; qÞÞ, contributes N1:cnt to

the min�. Besides, both N2 and N3 certainly have at least

one point each closer to any point inside N than q, since

minExistDNNN2
ðNÞ and minExistDNNN3

ðNÞ are smaller

than mindistðN; qÞ. In brief, the corresponding min� is

1þ 3þN1:cnt. Further, we explore the monotone proper-

ties of min� (defined in Lemmas 6 and 7) that is useful to

the �-Browsing algorithm.

Lemma 6. Given a set of data points/index nodes in V and a

query point q, if Nc is a child (or descendent) of N ,

min�ðq;Nc; V Þ � min�ðq;N; V Þ.
Proof. As Nc is a child (descendent) of N , mindistðNc; qÞ �
mindistðN; qÞ. In addition, other upper distance metrics

(i.e., maxdist and minExistDNN) of Nc to another data

point/index node could be smaller (definitely not great-

er) than that of N . By (1) and (2), Nc will cover either the

same set of data points/index nodes as N does, or more

data points/index nodes or larger portions of index

nodes than N . Hence, the same or greater min� is

expected. tu
Lemma 7. Given a query point, q, a set of data points/index nodes

in V , an index node N 0 in V is explored and replaced with its

n descendants N 01; . . . ; N 0n, resulting in V 0. For any data point

p or index node N , the following two statements should be

true:

1. min�ðq;N; V 0Þ � min�ðq;N; V Þ,
2. min�ðq; p; V 0Þ � min�ðq; p; V Þ.

Proof. Without losing generality, we assume V 0 ¼ V �
fN 0g [f[ni¼1N

0
ig. Let � denote the difference between

min�ðq;N; V 0Þ and min�ðq;N; V Þ, i.e.,

� ¼
Xn
i¼1

countðN;N 0iÞ � countðN;N 0Þ:

There are four possible conditions that N may contribute

to min�ðq;N; V Þ:

1. maxdistðN;N 0Þ � mindistðN; qÞ. The countðN;N 0Þ
isN:cnt. Since allN 0i
 N 0, allmaxdistðN;N 0iÞmust
not be greater than maxdistðN;N 0Þ and the total
counts of all children must be equal to N 0:cnt.
Hence ,

Pn
i¼1 countðN;N 0iÞ ¼ countðN;N 0Þ and

� ¼ 0.
2. minExistDNNN 0 ðNÞ � mindistðN; qÞ < maxdist
ðN;N 0Þ. The countðN;N 0Þ is 1. Since there is no N 0i
such that

minExistDNNN 0i
ðNÞ > minExistDNNN 0 ðNÞ:

By (2), Ni can provide at least 1 to min� as N

does. Hence, � � 0.
3. mindistðN; qÞ < minExistDNNN 0 ðNÞ. countðN;N 0Þ

is 0. Because there would be N 0i whose

minExistDNNN 0i
ðNÞ

is not greater than minExistDNNN 0 ðNÞ and may

be smaller than mindistðN; qÞ, so at least 1 is

counted. Even more, some Ni may have

maxdistðN;N 0iÞ < mindistðN; qÞ, resulting in the

contribution of N 0i :cnt to min�. Hence, � � 0.
4. mindistðN; qÞ < mindistðN;N 0Þ. In this case, N 0

and all its children would not contribute to the
min� of N , thus � ¼ 0.

As a result, the difference � is guaranteed to be

nonnegative for all possible conditions, and hence,

min�ðq;N;V0Þ � min�ðq;N;VÞ. A similar proof can be

conducted for a data point p. To save space, the proof is

omitted. tu

4.3 �-Browsing Algorithm for Monochromatic RRNN

The �-Browsing algorithm for monochromatic RRNN con-

siders only one data set, P. In the algorithm, a priority

queue P is adopted to keep unexamined data points/index

nodes according to the nondecreasing order of their min�s.

In the case of a tie that two or more data points/index

nodes have the same min�s, the one with the smallest

mindist is ordered first. Besides, a set V is maintained to

capture the current knowledge of the data point ð2 PÞ
distribution via a set of data points/index nodes, based on

which the min� of each entry ð2 P Þ is estimated.

The algorithm always dequeues the head entry for

examination until t data points with the smallest �s are

retrieved. For monochromatic RRNN, all the data points/

index nodes in V (except p itself) contribute to the min� of

point p. As a result, the min� of a data point p based on the

set V is represented by min�ðq; p; V � fpgÞ. The min� of an

index node N based on the set V is represented by

min�ðq;N; V � fNgÞ þ scðq;NÞ, where scðq;NÞ counts the

number of other data points p0 inside N that are closer to a

point p than q, with p0, p 2 N , and p 6¼ p0. More specifically,

902 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

scðq;NÞ ¼ N:cnt� 1 if diagdistðNÞ � mindistðN; qÞ;
0 otherwise;

�

where diagdistðNÞ is the diagonal distance of N .
Let us see how the �-Browsing algorithm runs as

exemplified in Fig. 10. Suppose an RRNN (with t ¼ 1) is
issued at a query point q. Initially, the root of P , root, is
enqueued into a priority queue P with its associated min�
set to 1. A set V also takes frootg as the starting content. The
algorithm begins. It retrieves root from P and explores its
children N1 and N2. Then, the set V is updated to fN1; N2g
accordingly. The explored N1 and N2 with associated min�s
(¼ 1) are enqueued to P . Due to its smaller mindist, N1 is
dequeued and its children NB and NC are retrieved.
Consequently, V is updated to fN2; NB;NCg. Again, NB

with updated min� ¼ 2 and NC with unchanged min� ¼ 1
are inserted back to P . N2 becomes the head as it has the
smallest min� and shortest mindist to q. N2 is dequeued,
followed by NC and then point c, with V and corresponding
min� updated accordingly, as shown in Fig. 10. When c is
dequeued, its min� is equal to 1, which is the smallest
among all the queued entries. Because there is no other data
point inside cirðc; qÞ, the min� of c is finalized (i.e., actually
�c), according to Lemma 2. Furthermore, based on
Lemmas 6 and 7, the min�s associated with other entries
might increase but certainly not decrease. Therefore, c is
safely reported as the RRNN query result to complete the
search.

The min�s of entries in P might be changed whenever V
is updated, resulting in a high min� update (processing)
cost, especially when the priority queue is long, the number
of entries maintained in the view is large, and/or view
update rate is high. In order to reduce the update cost for all
queued entries and to maintain the efficiency of the
�-Browsing algorithm, we propose an on-demand min�
update scheme. This scheme is motivated by an observation
that many entries in the queue will not be examined in
detail. It tries to defer the min� update of the queued entry
until it is needed. In support of the �-Browsing algorithm,
the head entry of the priority queue must have the smallest
min�. Therefore, when an entry is dequeued, its min� is
updated based on the current V content and compared
against that of the second entry whose min� is the smallest
among the rest of the entries in the queue. According to
Lemmas 6 and 7, the updated V does not reduce min�s of
the queued entries. As a result, the first entry with updated
min� smaller than the second entry is guaranteed to have
the smallest min�, and hence, it can be dispatched safely.

Otherwise, the head entry with the new min� is pushed
back to the queue, and the new head is examined. This may
iterate until a head entry with the smallest updated min� is
found. The function DequeueWithUpdate that makes use of
basic queue operations is defined in Fig. 11.

In addition to the update of min�s, index traversal is
another important issue. When a data point p is explored, its
min� cannot be finalized unless all touched MBBs are fully
covered by cirðp; qÞ. In this case, partially covered MBBs
need to be explored. Exploring all of those partially covered
MBBs at the time p is explored is certainly not a good
strategy, especially if p is not the answer data point. Instead,
we select one of those partially covered MBBs to explore at a
time. If p is an answer data point, all those MBBs are
eventually explored any way. On the other hand, if p is not
the answer, exploring all the partially covered nodes only
causes extra I/O costs. Here, our selection strategy explores
the index node with the largest overlap with cirðp; qÞ. This
index node has a higher potential to contribute more data
points to min�, thus narrowing the difference between
min� and actual �. After a node is explored, V is updated
and p is reinserted into P with updated min� for next
examination.

We depict the pseudocode of the �-Browsing algorithm
for the monochromatic RRNN in Fig. 12. It takes a query
point, q, the root node, root, of the aR-tree of a data set P,
and the number of requested answer data points, t, as the
inputs. It first initializes V with root and the priority queue
P with root associated with initial min� (lines 1-2). Then, it
explores the head entry, which has the smallest min� until
t answer data points are reported (lines 3-20). If the entry is
an index node, the corresponding entry in V is first replaced
by all its children nodes and then the children are inserted
into P (lines 6-9). Otherwise, a point p is explored. Among
all MBBs that are partially covered by cirðp; qÞ if any, the
one with the largest overlap area is selected to explore
(lines 12-17), or the min� is finalized to � and guaranteed to
be the smallest. Finally, the data point is output as one
answer point (line 19).

4.4 �-Browsing Algorithm for Bichromatic RRNN

The logic of the �-Browsing algorithm for bichromatic
RRNN scenario is similar to that for monochromatic RRNN
scenario. We omitted the pseudocode for this algorithm to
save space. In a high-level description, it uses a priority
queue PP to keep track of data points/index nodes in the
nondecreasing order of min�s and a set VQ to preserve the
knowledge regarding another set of data points, Q, to
support determination of min�.

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 903

Fig. 10. Example of �-Browsing for monochromatic RRNN.

Fig. 11. Function DequeueWithUpdate.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

Though two data sets are involved and they interact with
each other in the estimation of min�, the algorithm still
examines the head entry � of the priority queue PP in every
round. An expansion of VQ is triggered upon the examina-
tion of �. If � is a data point, index nodes maintained in VQ
that are partially covered by cirð�; qÞ need to be explored. As
explained previously, instead of exploring all of them at a
time, our node exploring strategy explores the one with the
largest overlap with cirð�; qÞ. Thereafter, VQ is updated and
the entry � is put back to PP for later examination. If there is
no index node in VQ that is partially covered by the vicinity
circle, the min� of � actually equals �. Consequently, � is
returned as one of the final results since it has the smallest
finalized min� value.

On the other hand, if � is an index node NP , some index
nodes NQ in VQ may contribute to its min�. A question
raised is which index node (NP or NQ) is good to explore
next. Recall that in (2), if

maxdistðNP ; N 0QÞ � mindistðNP ; qÞ;

node N 0Q is contributing all its N 0Q:cnt points to min�.
Otherwise, N 0Q is considered to contribute at most 1 to
min�, which causes min� to be underestimated a lot,
even if a large portion of NQ is closer to NP than q. To
decide which node (NQ or NP) to explore, we compare
minExistDNNNQðNPÞ and mindistðNP ; qÞ. If

minExistDNNNQðNPÞ

is greater than mindistðNP ; qÞ, NP is explored. Otherwise,
NQ is explored since NQ would have a few data points
closer to NP than q. If multiple partially covered nodes are
involved, we select one with the largest minExistDNN to
compare with NP .

The detailed search algorithm is illustrated through a
running example in Fig. 13. For simplicity, the details of
some nodes are omitted. Suppose that a bichromatic RRNN
query with t ¼ 1 is issued at a query point q, and two data
sets, namely, P and Q, are considered, with the answer

point from P. In the first place, PP contains ½ðNP ; 1Þ	 and VQ
contains fNQ; N 0Qg. By dequeuing PP , NP is being exam-
ined. It is replaced by its two children NP1 and NP2. Since
NP2 has minExistDNNN 0Q

ðNP1Þ smaller than

mindistðNP1; qÞ;

there must be at least one data point inN 0Q closer to any point
in NP1 than q. Therefore, its min� is 2. Now in PP , NP2 is the
head entry and itsmin� is 1. ExploringNP2 obtains p3 and p4.
Again, since p3’s minmaxdistðp3; NQÞ is smaller than
mindistðp3; qÞ, p3’s min� is 2. p4’s min� retains 1 as
cirðp4; qÞ covers a small portion ofNQ. They both are pushed
back to PP . Next, p4 whose min� is the smallest is retrieved.
As NQ is the only node covered by p4, NQ is explored into
NQ1 and NQ2, which in turn are placed back to VQ. Again, p4

with smallest min� is dequeued, and now, no node is
partially covered by cirðp4; qÞ. p4’s min� is finalized, and it is
the final result.

4.5 Discussion

The �-Browsing algorithm can efficiently process RRNN
query because the use of min� helps guide the algorithm to
explore the index nodes that are more likely to contain
answer data points. In addition, it is expected to perform
better than the �-Counting algorithm in terms of result
delivery progressiveness. Consider Fig. 8. Suppose t is
greater than 1, the �-Browsing algorithm first identifies p0

and outputs it and then looks for the second most
influenced point p. However, the �-Counting algorithm
has to visit p and other nearest points prior to reaching p0.
Until p0 is found, both p and p0 are returned.

On the other hand, the efficiency of the �-Browsing
algorithm relative to the �-Counting algorithm would
degrade if data points are uniformly distributed and/or in
high data dimensionality. When data point distribution is
uniform, min� of p (or N) will be closely proportional to
mindistðp; qÞ or ðmindistðp;NÞÞ. As a result, the access
order based on min�s makes no significant difference from
that based on mindist as adopted by the �-Counting
algorithm. Even worse, additional min� calculation at every
index level consumes considerable processing overhead.
Besides, for high data dimensionality, min� based on MBB
distance metric heuristics may provide overly conservative
estimation. As a result, many index nodes with more or less

904 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 12. �-Browsing for monochromatic RRNN.

Fig. 13. Example of �-Browsing for bichromatic RRNN.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

the same min� are eventually accessed. We study all those
factors in our experiments.

5 PERFORMANCE EVALUATION

In this section, we evaluate our proposed RRNN search
algorithms, namely, the �-Counting and �-Browsing algo-
rithms in comparison with the �-Probing algorithm and the
FR described in Section 1. We measure the performance of
all the algorithms based on two commonly used metrics, I/O
cost and elapsed time, with respect to three factors, namely,
the number of requested answer data points ðtÞ, the data set
cardinality ðnÞ, and the data dimensionality ðdÞ. The I/O cost
(in units of number of pages accessed) is measured as the
number of index nodes accessed from the disk. The elapsed
time is measured as the time duration (in units of seconds)
from the query initiation to query completion that all
answer data points are collected. In our experiments, we
also estimate the optimal performance by traversing indices
only for answer data points (obtained by the other
evaluated algorithms) and their NNs.

We employ synthetic and real data sets in this evaluation,
as summarized in Table 1. The data spaces for all data sets
are normalized to ½0; 1Þd. Synthetic data sets are generated
following uniform (labeled as Uniform) and Gaussian
distributions (labeled as Skewed). The mean and standard
deviation of Gaussian distribution are fixed at 0.5 and 0.2,
respectively. The data set cardinality is varied from 10k, 50k,
100k, 500k, 1,000k, 5,000k, and 10,000k (i.e., 10 million) and it
is defaulted at 100k; and the data set dimensionality ranged
from 2 to 8 and defaulted at 3. Real data sets include Church,
School, Wave3A, Wave3B, Wave4A, and Wave4B. Church
and School are the 2D geographical coordinates of churches
and schools in US, respectively, obtained from the US
Census Bureau;3 Wave3A and Wave3B (Wave4A and
Wave4B) are three (four) wave directions sampled hourly,
which are obtained from the National Data Buoy Center.4

We build R�-tree [2] to support the �-Counting algorithm,
the FR, and the �-Probing algorithm, and aR-tree [10] to
support the �-Browsing algorithm. For the �-Probing algo-
rithm, we increase k by a factor of 2 in each round. When
more than t answer data points are found, we gradually
decrease k until t answer data points are collected. In
addition, we implement TPL [17], the currently known
efficient RkNN algorithm, as its underlying RkNN algo-
rithm. For FR, KNN is selected as initial RRNN candidates.
To decide K that has to be large enough to prevent a false
miss, we, based on [17], adopt 10� d�MAX�, where d is
the data dimensionality, and MAX� is the largest � among

all answer data points obtained from other algorithms for
the same experiment settings. Besides, we adopt an
aggregated count query [18] to determine the number of
points inside individual circular ranges, which counts
enclosed data points for multiple candidates’ circular ranges
in one index scan. In our experiments, the size of a page (i.e.,
an index node) is fixed at 4 Kbytes. We implement an index
cache of 50 pages that uses LRU as the cache replacement
policy. This cache alleviates some I/O costs for the �-Probing
algorithm and FR that access indices multiple times. Every
run starts with a cold cache. Since both the �-Counting and
�-Browsing algorithms need one index lookup, they are not
impacted by the cache size at all.

We implemented all these algorithms with GNU C++
and conducted all experiments on Linux 2.6.9 on Intel Xeon
3.2-GHz computers with 4-Gbyte RAM. Each experimental
result to be presented is the average of 100 runs on query
points uniformly distributed in the data space. In what
follows, we present the experiment settings, results, and
our findings for monochromatic and bichromatic RRNN
scenarios.

5.1 Experiments for Monochromatic RRNN

Our first experiment set focuses on monochromatic RRNN
scenarios, where answer data points and their NNs are from
one data set. First, we evaluate the algorithms with
synthetic data sets under various number of requested
answer points ðtÞ, data set cardinality ðnÞ, and data set
dimensionality ðdÞ. Next, we evaluate their practicality
using the real data sets.

5.1.1 Evaluation of the Number of Answer Data

Points ðtÞ
We first evaluate all the algorithms by varying the number
of requested answer points, t (ranged from 1 to 64). The
data cardinality ðnÞ and dimensionality ðdÞ of data sets are
fixed at 100k and 3, respectively. The results are plotted in
Figs. 14 and 15. We observe from the figures that both the I/
O cost and elapsed time (in log scale) for all the algorithms
increase with t. This is because of the expanded search
range in the data space.

Among all the evaluated algorithms, both the �-Counting
and �-Browsing algorithms are observed to be more efficient
than FR and �-Probing algorithms in terms of the I/O cost
and the elapsed time. They access fewer pages to retrieve
candidates and finalize their �s with one index lookup. They
terminate as soon as t RRNN answer points are determined.
However, the FR would access some index nodes twice for
candidates and their NNs, and it terminates only when all
index nodes covered by the circular ranges of all candidate

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 905

3. http://www.census.gov/geo/www/tiger.
4. http://www.ndbc.noaa.gov/historical_data.shtml.

TABLE 1
Data Set Settings

Fig. 14. The evaluation of the number of answer data points ðtÞ on I/O

cost. (a) Uniform data set. (b) Skewed data set.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

points are visited. This makes the FR consume a longer
elapsed time and access more pages than the �-Counting and
�-Browsing algorithms. These observations are consistent for
both Uniform and Skewed data sets. We can also see that the
I/O cost of the �-Browsing algorithm performs the closest to
the optimal one because min� estimation provides a near
optimal access order of candidates. However, it would take
slightly longer time than the �-Counting algorithm for both
Uniform and Skewed data sets due to expensive min�
computation. In contrast, the �-Probing algorithm is incom-
parably worst among all the algorithms for both metrics due
to repeated invocations of underlying RkNN algorithms. We
omit it to save space in the rest of the following discussion.

5.1.2 Evaluation of the Data Set Cardinality ðnÞ
The second part of this experiment evaluates the perfor-
mance under different data set cardinalities (from 10k up to
10;000k), while d and t are fixed at 3 and 8, respectively. As
the size of the data space is fixed, the change of data set
cardinality affects the density of data points (i.e., the
number of data points in a unit volume), which in turn
has an impact on the expected �s of data points. Thus, the
�-Counting and �-Browsing algorithms have to examine
more data points/index nodes before they can finalize the
�s of answer points. In the meantime, the FR includes a
larger pool of candidates.

The results, depicted in Figs. 16 and 17, show that the I/
O cost and the elapsed time grow as the data set sizes
increase. For Skewed distribution, the improvement of the
�-Counting and �-Browsing algorithms over the FR in terms
of both I/O cost and elapsed time is more significant than
that for Uniform distribution. It is because in Uniform data
sets, an increase of the data set cardinality affects the
density of data points, thus increasing the �s of data points.
Consequently, the �-Counting and �-Browsing algorithms
explore larger search spaces to find RRNN candidates and
finalize �s of RRNN candidates. On the other hand, the

increased data set cardinality in the Skewed data sets has a

smaller impact on the density of data points around query

points if they are far away from the cluster of data points. In

larger data sets, the extents of index nodes are usually

smaller than that in smaller data sets. As a result, the

�-Browsing algorithm can considerably save I/O costs by

exploiting the counts associated with aR-tree index nodes

rather than exploring all those index nodes.

5.1.3 Evaluation of the Data Set Dimensionality ðdÞ
The third part examines the sensitivity of the algorithms to

data set dimensionality. In this experiment, we fix n and t at

100k and 8, respectively. An increase of dimensionality

expands the data space volume. While the data set size is

unchanged, the density of data points is reduced, according

to our previous argument. However, as the dimensionality

grows, the underlying R-tree/aR-tree becomes less efficient

(this phenomenon is known as the curse of dimensionality)

and it would result in more false hits that index nodes

appear closer to a query point but not their enclosed data

points. The performances, in terms of I/O cost and elapse

time, are depicted in Figs. 18 and 19, respectively.

5.1.4 Evaluation on Real Data Sets

Next, we examine the practicality of our algorithms by

using real data sets that include Church, School, Wave3A,

Wave3B, Wave4A, and Wave4B data sets with t varied from

1 to 64. Figs. 20 and 21 show that both the �-Counting and

�-Browsing algorithms achieve desirably good performance,

and both are consistently better than the FR. The �-Browsing

algorithm is again the most I/O efficient, but its elapsed

time could be slightly longer than that of the �-Counting

algorithm. These observations are consistent to what we

obtained from synthetic data sets.

906 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 15. The evaluation of the number of answer data points ðtÞ on

elapsed time. (a) Uniform data set. (b) Skewed data set.

Fig. 16. The evaluation of data cardinality ðnÞ on I/O cost. (a) Uniform

data set. (b) Skewed data set.

Fig. 17. The evaluation of data cardinality ðnÞ on elapsed time.

(a) Uniform data set. (b) Skewed data set.

Fig. 18. The evaluation of data dimensionality ðdÞ on I/O cost.

(a) Uniform data set. (b) Skewed data set.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

5.2 Experiments for Bichromatic RRNN

The second experiment set evaluates the performance of our
algorithms for bichromatic RRNN query where answer data
points are retrieved from a data set, P, while their NNs are
obtained in another data set, Q. Our evaluation studies the
performance of the algorithms over synthetic data sets,
followed by real data sets. In this experiment, the �-Probing
algorithm is omitted since it works on TPL that is only
applicable for monochromatic RkNN. The FR, as a baseline
algorithm, is included for comparison in this evaluation. It
first retrieves a number of candidates from P, independent
of Q, and then performs aggregated counting queries upon
Q. We also measure the optimal performance by traversing
an index of P for answer data points obtained by other
algorithms and traversing another index of Q for answer
data points’ NN points.

For synthetic data sets, two Uniform data sets (and two
Skewed data sets) are used. One is used as P and the other
as Q. They are generated independently. We study the
performance of the algorithms against the number of
answer data points ðtÞ, data set cardinality ðnÞ, and data
set dimensionality ðdÞ.

5.2.1 Evaluation of Number of Answer Data Points ðtÞ
Figs. 22 and 23 show the results obtained from synthetic data
sets with various t while the cardinality and dimensionality

are fixed at 100k and 3, respectively. The �-Counting and
�-Browsing algorithms considerably outperform the FR,
mainly because they carefully examine the two queried data
sets in a synchronized fashion so that they can effectively
retrieve answer data points and can terminate earlier.
However, the FR filters candidates from P independently
of Q, resulting in redundant index node accesses.

As shown in the figure, the �-Browsing algorithm
performs considerably better than the �-Counting algorithm
in terms of I/O costs due to two reasons. First, aR-tree
provides counts associated with index nodes to facilitate the
�-Browsing algorithm to estimate min�s instead of direct
point counting. The exploring of certain index nodes in Q
can be saved for determining the �s of answer data points,
which alleviates some I/O costs. Second, the �-Browsing
algorithm selectively explores index nodes of Q when they
are partially covered by a candidate data point with the
smallest min�. However, the �-Counting algorithm has to
completely expand the search space around answer data
points.

5.2.2 Evaluation of Data Set Cardinality ðnÞ and

Dimensionality ðdÞ
The second experiment set examines the impact of data

cardinality ðnÞ. We vary the data size from 10k up to

10,000 K while keeping the data dimensionality ðdÞ and

the number of answer data points ðtÞ fixed at 3 and 8,

respectively. The results are plotted in Figs. 24 and 25.

The third experiment investigates the effect of data

dimensionality by varying the dimensionality from 2 to

8 and fixing t and n at 8 and 100k, respectively. Figs. 26

and 27 show the experimental results. In all these

experiments, the FR is the weakest candidate among all

the evaluated algorithms; while the �-Browsing algorithm

outperforms the �-Counting algorithm in terms of I/O

costs but reverse in terms of elapsed time due to the

reasons explained previously in monochromatic RRNN

scenarios.

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 907

Fig. 19. The evaluation of data dimensionality ðdÞ on elapsed time.

(a) Uniform data set. (b) Skewed data set.

Fig. 20. The evaluation of real data sets on I/O cost. (a) Church (2D). (b) Wave3A (3D). (c) Wave4A (4D). (d) School (2D). (e) Wave3B (3D).

(f) Wave4B (4D).

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

5.2.3 Evaluation on Real Data Sets

At last, we evaluate the performance of algorithms over

real data sets. Here, we evaluate a pair of data sets for

each setting. For instance, for 2D data set, we use School as

P and Church as Q for one setting and reverse for another.

Similarly, we evaluate Wave3A and Wave3B for 3D cases

and Wave4A and Wave4B for 4D cases. The results with

varied t (from 1 to 64) are shown in Figs. 28 and 29. For all

the evaluation cases, the �-Browsing algorithm consistently

performs the best.

As concluded from this evaluation, the �-Browsing

algorithm is the best algorithm for both monochromatic

and bichromatic RRNN searches for all evaluated settings.

Despite the �-Counting algorithm is generally not better

than �-Browsing, it performs substantially better than the

other straightforward approaches, namely, the FR and the

�-Probing algorithms. As R-tree/aR-tree performance dete-

riorates as data set dimensionality increases, all the

algorithms developed on it also deteriorate. We shall study

alternative indices and algorithms for RRNN query for

high-dimensional data sets as our future work.

6 CONCLUSION

RNN and its direct variant RkNN have received consider-

able interests from the database research community in the

908 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 21. The evaluation of real data sets on elapsed time. (a) Church (2D). (b) Wave3A (3D). (c) Wave4A (4D). (d) School (2D). (e) Wave3B (3D).

(f) Wave4B (4D).

Fig. 22. The evaluation of the number of answer data points ðtÞ on I/O

cost. (a) Uniform data sets. (b) Skewed data sets.

Fig. 23. The evaluation of the number of answer data points ðtÞ on

elapsed time. (a) Uniform data sets. (b) Skewed data sets.

Fig. 25. The evaluation of data cardinality ðnÞ on elapsed time.

(a) Uniform data set. (b) Skewed data set.

Fig. 24. The evaluation of data cardinality ðnÞ on I/O cost. (a) Uniform

data set. (b) Skewed data set.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

past few years. In this paper, we have examined some

unexplored aspects of RNN=RkNN and make the following

contributions:

. We present a new RNN variant, namely, RRNN, that
complements the conventional RNN query. RRNN
distinguishes itself from the existing RNN=RkNN by
1) discovering the influence of a query point to a
specified number of data points, 2) rendering a
ranked answer set based on the degrees of influence,
and 3) returning the corresponding degrees of
influence along with answer data points.

. We propose two innovative algorithms, �-Counting
and �-Browsing, for efficient RRNN query proces-
sing. The �-Counting algorithm processes data
points in the order of their distances to the query
point, and the �-Browsing algorithm processes data
points/index nodes based on their estimated de-
grees of influence. Both algorithms support multi-
dimensional data sets, require single index lookup,
provide progressive result delivery, and answer
both monochromatic and bichromatic RRNN var-
iants. In addition, with minor modification, our
proposed algorithms can support RkNN with all
above merits that none of existing proposals can
achieve.

. Through extensive experiments on various synthetic
and real data sets, the �-Browsing and �-Counting
algorithms are shown to significantly outperform FR
(the baseline approach) and the k-Probing algorithm
(based on conventional RNN) in terms of I/O costs
and elapsed time. Overall, the �-Browsing is the best

LEE ET AL.: RANKED REVERSE NEAREST NEIGHBOR SEARCH 909

Fig. 26. The evaluation of data dimensionality ðdÞ on I/O cost.

(a) Uniform data sets. (b) Skewed data sets.

Fig. 27. The evaluation of data dimensionality ðdÞ on elapsed time.

(a) Uniform data sets. (b) Skewed data sets.

Fig. 28. The evaluation of real data sets on I/O cost. (a) Church ðPÞ,
School ðQÞ. (b) School ðPÞ, Church ðQÞ. (c) Wave3A ðPÞ, Wave3B ðQÞ.
(d) Wave3B ðPÞ, Wave3A ðQÞ. (e) Wave4A ðPÞ, Wave4B ðQÞ.
(f) Wave4B ðPÞ, Wave4A ðQÞ.

Fig. 29. The evaluation of real data sets on elapsed time. (a) Church ðPÞ,
School ðQÞ. (b) School ðPÞ, Church ðQÞ. (c) Wave3A ðPÞ, Wave3B ðQÞ.
(d) Wave3B ðPÞ, Wave3A ðQÞ. (e) Wave4A ðPÞ, Wave4B ðQÞ.
(f) Wave4B ðPÞ, Wave4A ðQÞ.

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

choice for processing RRNN query. Its I/O cost is
the closest to the optimal among all the evaluated
algorithms.

ACKNOWLEDGMENTS

Wang-Chien Lee and Ken C.K. Lee were supported in part

by the US National Science Foundation under Grant IIS-

0328881, Grant IIS-0534343, and Grant CNS-0626709.

REFERENCES

[1] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M.
Renz, “Efficient Reverse k-Nearest Neighbor Search in Arbitrary
Metric Spaces,” Proc. ACM SIGMOD ’06, pp. 515-526, June 2006.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R�-Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD ’90, pp. 322-331, May 1990.

[3] R. Benetis, C.S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
Neighbor and Reverse Nearest Neighbor Queries for Moving
Objects,” Proc. Int’l Database Eng. and Applications Symp. (IDEAS
’02), pp. 44-53, July 2002.

[4] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, “Closest Pair Queries in Spatial Databases,” Proc. ACM
SIGMOD ’00, pp. 189-200, May 2000.

[5] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. El Abbadi,
“Constrained Nearest Neighbor Queries,” Proc. Seventh Int’l Symp.
Advances in Spatial and Temporal Databases (SSTD ’01), pp. 257-278,
July 2001.

[6] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD ’84, pp. 47-57, June 1984.

[7] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database System (TODS), vol. 24, no. 2,
pp. 265-318, 1999.

[8] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” Proc. ACM SIGMOD ’00, pp. 201-212,
May 2000.

[9] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse Nearest
Neighbor Aggregates over Data Streams,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB ’02), pp. 814-825, Aug. 2002.

[10] I. Lazaridis and S. Mehrotra, “Progressive Approximate Aggre-
gate Queries with a Multi-Resolution Tree Structure,” Proc. ACM
SIGMOD ’01, pp. 401-412, May 2001.

[11] M.-L. Lee, W. Hsu, C.S. Jensen, B. Cui, and K.L. Teo, “Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach,” Proc. 29th
Int’l Conf. Very Large Data Bases (VLDB ’03), pp. 608-619, Sept.
2003.

[12] K.-I. Lin, M. Nolen, and C. Yang, “Applying Bulk Insertion
Techniques for Dynamic Reverse Nearest Neighbor Problems,”
Proc. Seventh Int’l Database Eng. and Applications Symp. (IDEAS ’03),
pp. 290-297, July 2003.

[13] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD ’95, pp. 71-79, May 1995.

[14] A. Singh, H. Ferhatosmanoglu, and A. Saman Tosun, “High
Dimensional Reverse Nearest Neighbor Queries,” Proc. ACM Int’l
Conf. Information and Knowledge Management (CIKM ’03), pp. 91-98,
Nov. 2003.

[15] I. Stanoi, D. Agrawal, and A. El Abbadi, “Reverse Nearest
Neighbor Queries for Dynamic Databases,” Proc. ACM SIGMOD
Workshop Research Issues in Data Mining and Knowledge Discovery
(DMKD), 2000.

[16] I. Stanoi, M. Riedewald, D. Agrawal, and A. El Abbadi,
“Discovery of Influence Sets in Frequently Updated Databases,”
Proc. 27th Int’l Conf. Very Large Data Bases (VLDB ’01), pp. 99-108,
Sept. 2001.

[17] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in
Arbitrary Dimensionality,” Proc. 30th Int’l Conf. Very Large Data
Bases (VLDB ’04), pp. 744-755, Aug.-Sept. 2004.

[18] C. Xia, W. Hsu, and M.-L. Lee, “ERkNN: Efficient Reverse
k-Nearest Neighbors Retrieval with Local kNN-Distance Estima-
tion,” Proc. ACM Int’l Conf. Information and Knowledge Management
(CIKM ’05), pp. 533-540, Oct.-Nov. 2005.

[19] T. Xia and D. Zhang, “Continuous Reverse Nearest Neighbor
Monitoring,” Proc. 22nd Int’l Conf. Data Eng. (ICDE ’06), p. 77, Apr.
2006.

[20] T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing Top-t
Most Influential Spatial Sites,” Proc. 31st Int’l Conf. Very Large Data
Bases (VLDB ’05), pp. 946-957, Aug.-Sept. 2005.

[21] X. Xiong and W.G. Aref, “R-Trees with Update Memos,” Proc.
22nd Int’l Conf. Data Eng. (ICDE ’06), p. 22, Apr. 2006.

[22] C. Yang and K.-I. Lin, “An Index Structure for Efficient Reverse
Nearest Neighbor Queries,” Proc. 17th Int’l Conf. Data Eng. (ICDE
’01), pp. 485-492, Apr. 2001.

[23] M.L. Yiu and N. Mamoulis, “Reverse Nearest Neighbors Search in
Ad-Hoc Subspaces,” Proc. 22nd Int’l Conf. Data Eng. (ICDE ’06),
p. 76, Apr. 2006.

[24] M.L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao, “Reverse Nearest
Neighbors in Large Graphs,” Proc. 21st Int’l Conf. Data Eng. (ICDE
’05), pp. 186-187, 2005.

Ken C.K. Lee received the BA and MPhil
degrees in computing from Hong Kong Poly-
technic University, Hong Kong. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science and Engineering,
Pennsylvania State University, University Park,
where he is also a member of the PDA Group.
His research interest includes spatial database,
mobile and pervasive computing, and location-
based services.

Baihua Zheng received the PhD degree in
computer science from the Hong Kong Univer-
sity of Science and Technology, Hong Kong.
She is currently an assistant professor in the
School of Information Systems, Singapore Man-
agement University, Singapore. Her research
interests include mobile and pervasive comput-
ing and spatial databases. She is a member of
the IEEE and the ACM.

Wang-Chien Lee received the BS degree from
the National Chiao Tung University, Hsinchu,
Taiwan, R.O.C., the MS degree from the
Indiana University, Bloomington, and the PhD
degree from the Ohio State University, Colum-
bus. He is an associate professor of computer
science and engineering at Pennsylvania State
University, University Park, where he also leads
the Pervasive Data Access Research Group to
perform cross-area research in database sys-

tems, pervasive/mobile computing, and networking. Prior to joining
Pennsylvania State University, he was a principal member of the
technical staff at Verizon/GTE Laboratories. He is particularly interested
in developing data management techniques (including accessing,
indexing, caching, aggregation, dissemination, and query processing)
for supporting complex queries in a wide spectrum of networking and
mobile environments such as peer-to-peer networks, mobile ad hoc
networks, wireless sensor networks, and wireless broadcast systems.
Meanwhile, he has worked on XML, security, information integration/
retrieval, and object-oriented databases. His research has been
supported by US National Science Foundation and industry grants.
Most of his research results have been published in prestigious journals
and conference proceedings in the fields of databases, mobile
computing, and networking. He has served as a guest editor for
several journal special issues on mobile database-related topics,
including the IEEE Transactions on Computer, IEEE Personal Com-
munications Magazine, ACM MONET, and ACM WINET. He was the
founding program committee cochair for the International Conference
on Mobile Data Management. He is a member of the IEEE and the
ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

910 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Authorized licensed use limited to: Singapore Management University. Downloaded on May 21, 2009 at 01:21 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

