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ABSTRACT 
In this paper, we study a novel form of continuous nearest 
neighbor queries in the presence of obstacles, namely continuous 
obstructed nearest neighbor (CONN) search. It considers the 
impact of obstacles on the distance between objects, which is 
ignored by most of spatial queries. Given a data set P, an obstacle 
set O, and a query line segment q in a two-dimensional space, a 
CONN query retrieves the nearest neighbor of each point on q 
according to the obstructed distance, i.e., the shortest path 
between them without crossing any obstacle. We formulate 
CONN search, analyze its unique properties, and develop 
algorithms for exact CONN query processing, assuming that both 
P and O are indexed by conventional data-partitioning indices 
(e.g., R-trees). Our methods tackle the CONN retrieval by 
performing a single query for the entire query segment, and only 
process the data points and obstacles relevant to the final result, 
via a novel concept of control points and an efficient quadratic-
based split point computation algorithm. In addition, we extend 
our solution to handle the continuous obstructed k-nearest 
neighbor (COkNN) search, which finds the k (≥ 1) nearest 
neighbors to every point along q based on obstructed distances. A 
comprehensive experimental evaluation using both real and 
synthetic datasets has been conducted to demonstrate the 
efficiency and effectiveness of our proposed algorithms.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications ⎯ Spatial 
databases and GIS; H.2.4 [Database Management]: Systems ⎯ 
Query processing  

General Terms 
Algorithms, Design, Experimentation, Performance, Theory  

Keywords 
Nearest neighbor, Continuous nearest neighbor, Continuous 
obstructed nearest neighbor, Spatial database, Obstacle  

1. INTRODUCTION  
With the growing popularity of smart mobile devices (e.g., 

PDAs, cellular phones) and the rapid advance of wireless 
communication and positioning technologies (e.g., GPS), more 
and more users issue queries even when they are moving. 
Consequently, the traditional snapshot query might not satisfy the 
real requirements from mobile users, and continuous query 
processing that is based on a moving trajectory instead of a fixed 
point has been investigated. For instance, the continuous nearest 
neighbor (CNN) search is to answer the nearest neighbor query 
issued by clients who are moving. Imagine a client who is driving 
along the highway I-95 issues a CNN query to retrieve the nearest 
gas station from his current location to his destination, as shown 
in Figure 1(a). Here, the data set P contains six gas stations, i.e., a, 
b, c, d, f, g; and the trajectory segment q = [S, E] represents a 
segment of I-95. The output of the CNN search is {〈d, [S, s1]〉, 〈b, 
[s1, s2]〉, 〈g, [s2, s3]〉, 〈c, [s3, E]〉}, meaning that gas station d is the 
nearest one when the client is travelling along the interval [S, s1], 
gas station b is the nearest one along the interval [s1, s2], and so 
on. The points s1, s2, s3 along q are defined as split points, where 
the nearest neighbor (NN) object is changed.  
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(a) CNN search                                    (b) CONN search  

Figure 1: Example of CNN and CONN queries  
 

CNN search has been well-studied [22, 24]. Based on the 
distance metric used to measure the closeness of objects, the 
existing work can be classified into two categories, i.e., Euclidean 
distance based CNN search [22, 23, 24] and network distance 
based CNN search [4, 7, 14]. The former assumes a Euclidean 
space where the objects enjoy totally free and unblocked 
movement and employs the Euclidean distance to indicate the 
proximity of objects, while the latter considers a network space 
where the movements of objects are restricted by the underlying 
networks (e.g., roads, railways, etc.) and utilizes the network 
distance to measure the distance between objects.  

Although the existing work satisfies the requirements of a large 
number of real applications, it does not consider the movement in 
an open space constrained by the obstacles, i.e., obstructed space.  
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For example, a battlefield usually does not have any fixed road 
network structure and tanks/soldiers can move totally free, as long 
as the path is not blocked. Another example is that mobile robots 
help rescue survivors after a disaster (e.g., a devastating 
earthquake). The robots equipped with location-sensing ability as 
well as visual and other sensors can burrow into the rubble and try 
to locate potential survivors, which can facilitate the excavation 
without further injuring survivors. Theoretically, the robot 
navigating the space can take any direction but the physical 
obstacles (e.g., rocks etc.) affect the real distance that a robot has 
to travel in order to reach its destination.  

Consequently, the obstructed space is different from both the 
Euclidean space and the network space. Compared with the 
Euclidean space, it considers the existence of obstacles that may 
block the immediate path from one object to another and hence 
the Euclidean distance between them does not always indicate the 
real travelling distance. On the other hand, compared with the 
network space, it does not assume any underlying fixed network 
structure and still entitles the objects to free movements. 
Correspondingly, the distance between two objects in an 
obstructed space is measured based on the obstructed distance, 
i.e., the shortest path connecting two objects without crossing any 
obstacle. Take the objects a and g shown in Figure 1(b) as an 
example. Their Euclidean distance is the length of segment [a, g], 
whereas their obstructed distance is the summation of the lengths 
of segment [a, m] and segment [m, g], because of the obstruction 
of obstacle o4.  

In this paper, we consider the CNN search in an obstructed 
space, namely continuous obstructed nearest neighbor (CONN) 
search. Given a data set P, an obstacle set O, and a query line 
segment q in a two-dimensional (2D) space, a CONN query 
retrieves the obstructed nearest neighbor (ONN) for every point 
along q according to the obstructed distance. Specifically, the 
CONN retrieval aims at finding a set of 〈p, R〉 tuples, where p ∈ P 
is the ONN for any point in the interval R ⊆ q. Continuing the 
example in Figure 1(b) where the obstacle set O contains four 
rectangular obstacles1 o1, o2, o3, and o4, the CONN query returns 
{〈a, [S, s1′]〉, 〈b, [s1′, s2′]〉, 〈g, [s2′, s3′]〉, 〈c, [s3′, E]〉}, which 
indicates that object a is the ONN for each point along interval [S, 
s1′], object b is the ONN for each point along interval [s1′, s2′], etc. 
Note that the split points s1, s2, and s3 defined by a CNN search 
are different from the split points s1′, s2′, and s3′ defined by a 
CONN search. In addition, the answer objects vary as well. For 
example, object d is the NN for S in a Euclidean space, whereas it 
is not the ONN for S in an obstructed space, due to the blocking 
of obstacle o3.  

CONN search is useful for many real-life applications. 
Consider the example of robots rescuing survivors. Suppose that 
the robots successfully locate some survivors and a 3D map has 
been constructed based on the data collected by robots along their 
way navigating the space. Based on the map information, we can 
identify several routes that are not blocked and invoke CONN 
search to locate the nearest survivors along the path. The number 
of nearest survivors and the distance between the survivors to the 
corresponding points along the path provide critical information 
that can help the emergency personnel to plan the excavation.  We 
focus this paper on the CONN query, not only because the 

                                                                 
1 Although an obstacle can be in any shape (e.g., triangle, 

pentagon, etc.), we assume it is a rectangle in this paper.  

problem is interesting and has a large application base, but also 
because it poses some challenging research issues that are worth 
investigating.  

The first issue is how to calculate the obstructed distance 
efficiently.  Based on the existing work related to robot motion 
planning, the lower bound of the calculation is O (nlogn), with n 
as the total number of obstacle vertices [2]. In practice, a popular 
and practical method based on visibility graph VG [2] has O (n2 
logn) as the worst case time complexity. Compared with 
Euclidean distance which can be derived in constant time, the 
computation cost of the obstructed distance is much more 
expensive. In addition, VG-based approaches need to maintain a 
visibility graph, which requires O (n2) space in the worst case. 
The high space complexity deteriorates its scalability, not to 
mention its extremely high update cost.  

We try to tackle this issue from two aspects, i.e., reducing the 
number of obstructed distance calculations and simplifying the 
obstructed distance calculations. The former objective is achieved 
via effective pruning techniques that can filter out unqualified 
objects as early as possible. As for the second target, we construct 
a local visibility graph to simplify the calculation process. 
Initially, the local visibility graph only contains two endpoints of 
a given query line segment. As we process the query and evaluate 
data points, we incrementally insert the obstacles that might affect 
the query result into the local visibility graph. Due to the small 
size of the local visibility graph, the insertion/deletion/update can 
be efficiently supported.  

The second issue is how to efficiently answer a CONN query. 
A naive approach is to issue an obstructed nearest neighbor 
(ONN) search [31] at every point of a specified query line 
segment q. However, this approach is definitely infeasible as the 
number of points on q is infinite. Motivated by the fact that 
nearby points along the query segment might share the same 
ONN, we adopt an incremental approach to fine-tune the result 
upon the evaluation of each new data point, based on the concept 
of split point (i.e., the points along the query segment bounded by 
two continuous split points share the same ONN). Nevertheless, 
due to the existence of obstacles, existing split point formation 
algorithms developed for CNN search cannot be applied. In this 
paper, we propose a novel concept, namely control point, to 
facilitate the computation of obstructed distances, and design a 
quadratic-based approach to form split points. In addition, several 
pruning strategies have been proposed to further improve the 
search performance.  

In summary, this paper has made five-fold main contributions, 
summarized as follows:  

 We formalize CONN search, a new addition to the family of 
spatial queries in an obstructed space. To the best of our 
knowledge, this paper is the first attempt on this problem.  

 We introduce the concept of control point that significantly 
simplifies the computation and comparison of the obstructed 
distance between two objects.  

 We propose a quadratic-based method to form split points, 
by solving quadratic inequalities.  

 We develop an efficient algorithm for processing CONN 
search which can be extended to handle COkNN retrieval.  

 We conduct extensive experiments using both real and 
synthetic datasets to demonstrate the efficiency and 
effectiveness of the proposed algorithms.  



The rest of this paper is organized as follows. Section 2 
overviews related work. Section 3 formulates the CONN problem, 
introduces the concept of control point, and presents the split 
point computation approach. Section 4 elaborates an efficient 
algorithm for CONN query. Section 5 reports experimental results 
and our findings. Finally, Section 6 concludes the paper with 
some directions for future work.  

2. RELATED WORK  
In this section, we review the existing work related to CONN 

queries, namely, point NN search in the Euclidean space, 
snapshot CNN/CkNN queries, query processing with the existence 
of obstacles, and main-memory obstacle path search.  

2.1 Point NN Search  
A conventional (i.e., point) NN query finds the k (≥ 1) data 

point(s) from a data set that are closest to a specified query point 
q according to Euclidean distance. The algorithms for NN search 
on R-trees [1, 11, 19] follow the branch-and-bound paradigm and 
utilize some metrics to prune the search space. For example, the 
metric mindist(q, N) corresponds to the minimal distance between 
q and any point included by a node N; and thus it gives a lower 
bound of the distance from any point of N to q.  

Existing algorithms for NN search usually follow either best-
first (BF) or depth-first (DF) traversal paradigm. DF algorithms [3, 
18] start from the root, and visit recursively the node with the 
smallest mindist to q until the leaf level where a potential NN is 
reached. Subsequently, the algorithm conducts backtrackings. In 
particular, during backtracking to the upper levels, DF only visits 
those entries whose minimum distances to q are smaller than the 
distance between the NN candidate retrieved so far and the query 
point. As demonstrated in [16], the DF algorithm is suboptimal, 
i.e., it accesses more nodes than necessary.  

BF algorithms [12, 13] achieve the optimal I/O performance by 
visiting only the nodes necessary for obtaining the NN(s). 
Towards this, BF maintains a heap H with the entries visited so 
far, sorted in ascending order of their mindist to q. Starting from 
the root node, BF recursively examines the top entry e of H. If e is 
an intermediate node (i.e., a non-leaf node), its child entries are 
en-heaped for later examination. If e is a data point, it is reported 
as an actual NN of a query point. Both DF and BF can be easily 
extended to retrieve k (> 1) NNs. Furthermore, BF is incremental, 
i.e., it returns the NNs in ascending order of their distances to the 
query point; and hence k does not have to be known in advance, 
which allows different termination conditions to be applied.  

2.2 Snapshot CNN/CkNN Queries  
The CNN search has received considerable attention since it 

was first introduced by Sistla et al. [21] in spatial-temporal 
databases. In the initial work, modeling methods and query 
languages for the expression of CNN queries are presented, but 
not the processing algorithms. The first algorithm for CNN query 
processing, based on periodical sampling technique, is proposed 
in [22]. Due to the inherent shortcoming of sampling, its 
performance highly depends on the number and positions of those 
sampling points and its accuracy cannot be guaranteed. In order to 
conduct exact CNN search, two query processing algorithms are 
proposed in [23, 24], using R-trees as the underlying data 
structure. The first algorithm is based on the concept of time-
parameterized (TP) queries [23], which treats a query line 
segment as the moving trajectory of a query point. Thus, the 

nearest object to the moving query point is valid only for a limited 
duration, and a new TP query is issued to retrieve the next nearest 
object once the valid time of current query expires, i.e., when a 
split point is reached. Although the TP approach avoids the 
drawbacks of sampling, it needs to issue m TP queries with m the 
number of answer objects. In order to improve the performance, 
the second algorithm [24] retrieves all the answer objects for the 
whole query line segment in a single round. Recently, Zheng et al. 
[32] study CNN search in wireless data broadcast systems, where 
mobile clients answer their own CNN search via listening to the 
wireless broadcast channel.  

All the above work on CNN queries use Euclidean distances to 
measure the proximity of objects. As for network distance, the 
first algorithm to process CNN queries in a road network is 
proposed in [7], which tries to find the locations on a path that an 
NN search must be performed. However, it does not support 
CkNN search. Motivated by this, Kolahdouzan and Shahabi [14] 
present two methods, namely, Intersection Examination (IE) and 
Upper Bound Algorithm (UBA). Compared with IE, UBA gains 
better performance by restricting the evaluation of kNN queries to 
only the locations where they are required. An alternative 
approach is proposed in [4]. It retrieves the kNN object sets of all 
network nodes in the query path, and associates them with the 
data objects located along the path.  

As mentioned in Section 1, all the aforementioned algorithms 
do not take into consideration the existence of obstacles and they 
cannot be used to deal with CONN queries efficiently. The main 
difference between CNN search and CONN search has been 
summarized in [31].  

2.3 Queries with Obstacles  
In an obstructed space, the distance between objects is affected 

by the existence of physical obstacles (e.g., buildings, rivers, etc.). 
Zhang et al. [31] propose several algorithms for processing 
common spatial queries such as range queries, NN search, e-
distance join queries, closest pair queries and distance semi-join 
queries, in the obstructed space. Xia et al. [29] present a more 
detailed study of the obstructed nearest neighbor (ONN) query 
which finds the k (≥ 1) NNs of a given query point according to 
the obstructed distance. However, to the best knowledge of the 
authors, the CONN search has not been studied before.  

More recently, the impact of obstacles on the object visibility 
has been studied. Although it does not employ the obstructed 
distance to measure the closeness between objects, it does 
consider the existence of obstacles and two objects are visible to 
each other iff the straight line segment connecting them does not 
pass through any obstacle. Nutanong et al. [15] explore the visible 
k-nearest neighbor (VkNN) search, which returns the k NNs that 
are visible to a specified query point. Further studies along this 
line include visible reverse k-nearest neighbor search [8] and 
continuous VkNN search [9].  

In addition, the problem of spatial clustering in the presence of 
obstacles has attracted considerable attention in recent years. It 
divides a set of 2D data points into smaller homogeneous groups 
(i.e., clusters) by taking into account the influence of obstacles. 
Handling these constraints can lead to effective and fruitful data 
mining by capturing application semantics [26]. A large number 
of clustering algorithms with obstacle constraints have been 
proposed in the literature, including COD_CLARANS [25], 
AUTOCLUST+ [6], DBCLuC [30], DBRS+ [28], DBRS_O [27], 
and DBSCAN_MDO [17], etc.  



2.4 Main-Memory Obstacle Path Queries  
Main-memory based shortest path problem in the presence of 

obstacles has been well-studied in computational geometry [2], 
and the most common approach is based on the visibility graph 
VG. A VG is constructed based on an obstacle set O and the 
source/destination point ps/pe. Its nodes correspond to the vertices 
of the obstacles or source/destination point. Two nodes ni, nj are 
connected iff the straight line segment between them does not 
intersect any obstacle interior.  
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Figure 2: Visibility graph and obstacle path  

 
An example VG is illustrated in Figure 2, where shaded 

polygons represent obstacles. Nodes n2 and n7 are not connected 
as the corresponding straight line segment [n2, n7] intersects with 
the obstacle o2. There are multiple paths available from the source 
point ps to the destination point pe, such as the path via nodes n1, 
n6 and the path via nodes n1, n8, and n7. Among all the available 
paths, the one with the shortest distance is returned, i.e., the path 
via nodes n4, n3, n5 and n6 for this example. Since the shortest 
path contains only the edges of VG (as proved in [2]), a popular 
and practical obstacle path (i.e., shortest path) computation 
approach proceeds in two steps. The first step constructs VG, 
which takes O (n2 logn) based on rotational plane sweep [20], and 
can be optimized to O (m + n logn) with an optimal output-
sensitive algorithm [10]. Here, n is the number of nodes in VG 
and m is the number of edges in VG. The second step computes 
the shortest path in VG using Dijkstra’s algorithm [5], which 
incurs O (m + n logn). Thus, the time and space complexities of 
the approach are O (n2 logn) and O (n2), respectively. Obviously, 
the algorithm has a poor scalability and cannot guarantee the 
efficiency when a large number of obstacles are considered.  

3. PRELIMINARIES  
In this section, we formally define CONN search, introduce the 

concept of control points, and present the quadratic-based split 
point computation algorithm that is crucial to CONN query 
processing. Table 1 summarizes the notations used in the rest of 
this paper.  

Table 1. Symbols and descriptions  
Notation  Description  
P  the set of data points p in a 2D space  
O  the set of obstacles o in a 2D space  
Tp  the R-tree on P  
To  the R-tree on O  
q  the query line segment with q = [S, E]  
VG  the visibility graph  
RL  the result list of a CONN query  
dist(pi, pj)  the Euclidean distance between pi and pj  
H.head  the top entry of a heap H  
e.key  the search key value of a heap entry e  

DEFINITION 1 (VISIBILITY [8]). Given p, p′ ∈ P and O, p and p′ 
are visible to each other iff the straight line connecting them does 
not cut through any obstacle, i.e., ∀ o ∈ O, [p, p′] ∩ o = ∅.       □ 

DEFINITION 2 (VISIBLE REGION). Given p ∈ P, O, and q, the 
visible region of p over q, denoted by VRp,q, is the set of intervals 
R ⊆ q, such that p is visible to all the points along R.                 □  

In a Euclidean space, any two points are visible to each other as 
there are no obstacles. However, this statement does not hold in 
an obstructed space. As shown in Figure 3, the visible region of p 
over q is [S, s1], and the rest (i.e., the segment [s1, E]) is blocked 
by obstacles o1 and/or o2. Point s2 is not located inside the visible 
region of p (i.e., s2 ∉ VRp,q), and hence it is invisible to point p. 
The visible region formation algorithm has been studied in [8, 9].  
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DEFINITION 3 (OBSTACLE-FREE PATH). Given O and two points 

p, p′ ∈ P, a path P(p, p′) = {d1, d2, …, dn} connecting p with p′ 
sequentially passes n nodes (i.e., the vertices of obstacles), 
denoted as di. Let d0 = p, dn+1 = p′, and assume P(p, p′) reaches di 
before di+1. P(p, p′) is an obstacle-free path (path for short) iff ∀ i 
∈ [0, n], di and di+1 are visible to each other. Its distance |P(p, p′)| 
= ∑i∈[0, n] dist(di, di+1).                                                                  □  

DEFINITION 4 (OBSTRUCTED DISTANCE [25]). The obstructed 
distance between two points p, p′ ∈ P, denoted by ||p, p′||, is the 
length of the shortest obstacle-free path (shortest path for short) 
from p to p′, denoted as SP(p, p′), i.e., ∀ P(p, p′), |P(p, p′)| ≥ |SP(p, 
p′)|. Here, ||p, p′|| = |SP(p, p′)|.                                                      □  

Given a set of obstacles, there are usually multiple obstacle-
free paths from a given point p to another point p′. As an example, 
in Figure 3, the path P(p, E) = {c, b} passes c and b before 
reaching E; and P(p, E) = {d} provides an alternative obstacle-
free path from p to E. Among all the obstacle-free paths from p to 
E, the one with the minimal distance, i.e., P(p, E) = {d}, is the 
shortest path SP(p, E). The obstructed distance between p and E is 
the length of the corresponding shortest path, i.e., ||p, E|| = |SP(p, 
E)| = dist(p, d) + dist(d, E).  

DEFINITION 5 (OBSTRUCTED NEAREST NEIGHBOR). For a given 
query point p, point p′ ∈ P is the obstructed nearest neighbor 
(ONN) of p iff ∀ p′′ ∈ P − {p′}, ||p′, p|| ≤ ||p′′, p||.                        □  

DEFINITION 6 (CONTINUOUS OBSTRUCTED NEAREST NEIGHBOR 
QUERY). Given P, O, and q, a continuous obstructed nearest 
neighbor (CONN) query returns the result list RL that contains a 
set of 〈pi, Ri〉 (i ∈ [1, t]) tuples, such that (i) ∪i∈[1, t] Ri = q; (ii) ∀ i, 
j (i ≠ j) ∈ [1, t], Ri ∩ Rj = ∅; and (iii) ∀ 〈pi, Ri〉 ∈ RL, pi is the 
ONN of any point along interval Ri.                                            □  



In this paper, we focus on the processing of CONN search. As 
pointed out in Section 1, a naive approach is to perform ONN 
retrieval [31] at every single point of a specified query line 
segment q. However, it is not feasible due to the unlimited 
number of points along q. It is observed that nearby points along q 
normally share the same ONN. Take a result list RL (= ∪i∈[1, t] 〈pi, 
Ri〉) for a CONN query as an example. The object pi is the ONN 
for every point along Ri. Consequently, it is only necessary to 
issue ONN search at those points where ONN objects change. In 
view of this, the concept of split point is introduced [24], as 
defined in Definition 7.  

DEFINITION 7 (SPLIT POINT FOR CONN). Given q = [a, b], O, 
and p1, p2 ∈ P, let p1 be the ONN to all the points along [a, m] 
and p2 be the ONN for all the points along [m, b], point m is a 
split point where the ONN corresponding to q changes.      □  

Based on the concept of split point, the CONN search can be 
conducted as follows. Initially, the result list RL = 〈∅, q〉. When 
the first data point p is evaluated, p for sure is the ONN for any 
point along the query segment q, i.e., RL = {〈p, q〉}. As more and 
more points are processed, split points are generated and q will be 
decomposed into smaller segments with each having its own ONN. 
In other words, the evaluation of a new data point p′ on the 
current result list RL is converted to check whether the existence 
of p′ introduces any new split point on a region/interval Ri 
included in RL. However, due to the existence of obstacles, the 
computation of split points for CONN query is not a trivial issue, 
and it is different from that for CNN search [24]. In this paper, we 
introduce a novel concept, namely control point that is formally 
defined in Definition 8, to facilitate the formation of split points.  

DEFINITION 8 (CONTROL POINT). Given p ∈ P, O, and an 
interval R, a point cp is the control point of p over R, denoted by 
CPp,R, iff (i) the shortest path from p to any point on R passes 
through cp; and (ii) cp is visible to every point on R.                  □  

As shown in Figure 3, point a is the control point for point p 
over segment [s1, s2], meaning that for any point p′ ∈ [s1, s2], the 
shortest path from p to p′ must pass a, and the obstructed distance 
between p and p′, i.e., ||p, p′||, equals ||p, a|| + dist(a, p′). Based on 
the concept of control point, each point p has its control point list 
over q, denoted as CPLp,q (see Definition 9). Correspondingly, the 
result list RL has to be decomposed further into 〈pi, cpi, Ri〉, which 
indicates that point pi is the ONN to any point along Ri, and the 
shortest paths must pass point cpi. We leave the detailed detection 
algorithm for control points to Section 4, and focus this section on 
how control points can help to find out split points and to provide 
pruning opportunity.  

DEFINITION 9 (CONTROL POINT LIST). Given p ∈ P and q, the 
control point list of p over q, denoted by CPLp,q, contains a set of 
〈cpi, Ri〉 (i ∈ [1, n]) tuples, such that (i) ∪i∈[1, n] Ri = q; (ii) ∀ i, j (i 
≠ j) ∈ [1, n], Ri ∩ Rj = ∅; and (iii) ∀ 〈cpi, Ri〉 ∈ CPLp,q, cpi is the 
control point for p over interval Ri.                                             □  

Given a segment q and two points p, p′, suppose point v is the 
control point of p over q, point u is the control point of p′ over q, 
and ||p, v||, ||p′, u|| are known with ||p, v|| − ||p′, u|| = d. We further 
assume that p is the ONN of q before p′ is accessed, and now we 
are going to evaluate p′. The locations of u, v and the value of d 
have a direct impact on the number/position of the split point(s) 

that are introduced by p′ on q. In the following, we first prove that 
the maximal number of split points introduced by p′ is two, then 
explain how to determine the locations of split points, and finally 
present several pruning strategies.  
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Figure 4: Properties of split points 
 

THEOREM 1. Given two points p, p′, a line segment q = [S, E], 
together with corresponding control points v/u of p/p′ over q, let d 
= ||p, v|| − ||p′, u||. There are at most two points along q with same 
obstructed distance to p and p′.                                                   □  

PROOF. Consider the illustrative example of Figure 4(a), in 
which points m and n are the projections of u and v on q 
respectively, point y is the intersection between q and the 
extended line of segment [u, v], and point z is the intersection 
between the perpendicular bisector ⊥(u, v) of [u, v] and q. We 
further assume that point n is the origin of the XY coordinate 
system as shown in Figure 4(a). Let dist(n, m) = a (> 0), dist(v, n) 
= b, dist(u, m) = c and assume c > b. As we want to find point s 
such that ||p, v|| + dist(v, s) = ||p′, u|| + dist(u, s), we need to find 
points s that satisfy dist(u, s) − dist(v, s) = ||p, v|| − ||p′, u|| = d. 
Assume point sp has coordinate (x, 0), we need to solve following 
quadratic polynomial:  

2222)(),(),( bxcxaspvdistspudistd +−+−=−=         (1) 

Let A = 4a2 − 4d2, B = −4aT, and C = T2 − 4b2d2, with T = a2 + 
c2 − b2 − d2, the roots of Equation (1) can be derived as follows: (i) 
if A = 0, then x = −C/B; otherwise (ii) 2( 4 ) (2 )x B B AC A= − ± −  
Hence, there are at most two points such that ||p, v|| + dist(v, sp) = 
||p′, u|| + dist(u, sp). The proof can be easily adjusted for other 
cases that include (i) a = 0, segment [u, v] is vertical to q; (ii) if b 
= c, [u, v] is parallel to q, and (iii) b > c.                                     ■  

The above Theorem proves that there are at most two points sp 
such that they have the same obstructed distances from p and p′. 
We can also prove that as q is decomposed into smaller segments 
R by points sp, all the points along R must share the same ONN 
(either p or p′), i.e., points sp are split point(s). In order to 
facilitate understanding, we transfer Equation (1) to Equation (2), 
and assume point s is located at (x, 0). The positions of split 
points are corresponding to the x values such that Y(x) = d. Figure 
4(b) plots the distribution of Y(x) under different x values.  

2222)(),(),()( bxcxasvdistsudistxY +−+−=−=    (2) 

Based on the derivative and the limit of Equation (2) w.r.t. a 
variable x, as shown in Equation (3), we can conclude that (i) 
when x < ab/(b−c), Y(x) is monotone increasing and Y ∈ (a, dist(u, 
v)); (ii) when x > ab/(b−c), it is monotone decreasing and Y ∈ (-a, 
dist(u, v)); and (iii) when x = ab/(b−c), Y(x) reaches its maximal 



value2 dist(u, v). The positions of split points can be determined 
as follows, according to the value of d = ||p, v|| − ||p′, u|| and Y(x).  
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Case 1: d ≥ dist(u, v). As Y(x) ≤ dist(u, v), it is for sure that for 
any point s along q, Y(x) = dist(u, s) − dist(v, s) ≤ d = ||p, v|| − ||p′, 
u||. In other words, it indicates ||p′, u|| + dist(u, s) ≤ ||p, v|| + dist(v, 
s), and thus new point p′ will replace p as the ONN for any point 
along q without introducing any new split point.  

Case 2: a < d < dist(u, v). As depicted in Figure 4(b), there will 
be two values x1 and x2 such that Y(x1) = Y(x2) = d, with x1 < 
ab/(b−c) < x2. Let (x1, 0) be s1 and (x2, 0) be s2. For a given point s 
with coordinate (x, 0), when (i) x < x1 or x > x2, Y(x) < d which 
means dist(u, s) − dist(v, s) < ||p, v|| − ||p′, u||, i.e., ||p′, u|| + dist(u, 
s) < ||p, v|| + dist(v, s), and hence point p′ is the ONN for each 
point along the segments [S, s1] and [s2, E]; and (ii) x1 ≤ x ≤ x2, 
Y(x) ≥ d which means dist(u, s) − dist(v, s) ≥ ||p, v|| − ||p′, u||, i.e., 
||p′, u|| + dist(u, s) ≥ ||p, v|| + dist(v, s), and thus point p still is the 
ONN for all the points along the segment [s1, s2]. In this case, p′ 
introduces two split points s1, s2.  

Case 3: -a < d ≤ a. As depicted in Figure 4(b), there will be 
only one value x1 such that Y(x1) = d. Let (x1, 0) be s1. For a given 
point s with coordinate (x, 0), when (i) x < x1, Y(x) > d which 
indicates dist(u, s) − dist(v, s) > ||p, v|| − ||p′, u||, i.e., ||p′, u|| + 
dist(u, s) > ||p, v|| + dist(v, s), and hence point p is still the ONN 
for every point along the segment [S, s1]; and (ii) x ≥ x1, Y(x) ≤ d 
which means dist(u, s) − dist(v, s) ≤ ||p, v|| − ||p′, u||, i.e., ||p′, u|| + 
dist(u, s) ≤ ||p, v|| + dist(v, s), and thus point p′ is the ONN for all 
the points along the segment [s1, E]. In this case, p′ introduces one 
split point s1.  

Case 4: d ≤ -a. As Y(x) > -a, it is for sure that dist(u, s) − dist(v, 
s) ≥ d. In other words, it indicates ||p′, u|| + dist(u, s) ≥ ||p, v|| + 
dist(v, s). Consequently, point p is still the ONN to any point on q.  

In the above discussion, we define a quadratic polynomial 
whose roots can be used to derive the positions and number of 
split points. However, some special case of Case 1/Case 4 can be 
detected by Lemma 1, without any expensive calculation of the 
quadratic polynomial. Its pruning power will be detailed in 
Section 4 where we present the CONN search algorithm.  

LEMMA 1. Given two points p, p′, a line segment q = [S, E], 
together with corresponding control points v and u, let dist⊥(cp, q) 

                                                                 
2 Note that the distribution of Y(x) under other cases (e.g., a = 0, 

b > c) has different trend, i.e., different inflexion points and 
maximal/minimal values.  

be the vertical distance from a control point cp to a line segment 
q, and assume dist⊥(u, q) > dist⊥(v, q). Point p for sure is closer to 
any point along q compared with p′, if it satisfies (i) ||p′, u|| + 
dist(u, S) > ||p, v|| + dist(v, S); and (ii) ||p′, u|| + dist(u, E) > ||p, v|| 
+ dist(v, E).                                                                                  □  

PROOF. Without loss of generality, we assume that there is at 
least one point s along the segment q such that ||p′, s|| < ||p, s||. As 
points v and u are the control points of p and p′ over q 
respectively, ||p′, s|| = ||p′, u|| + dist(u, s) and ||p, s|| = ||p, v|| + dist(v, 
s). ||p′, s|| < ||p, s|| indicates dist(u, s) − dist(v, s) < ||p, v|| − ||p′, u|| = 
d. On the other hand, based on condition (i) and condition (ii), we 
have dist(u, S) − dist(v, S) > d and dist(u, E) − dist(v, E) > d. Let 
Y(t) = dist(u, t) − dist(v, t) with t ∈ [S, E]. As t varies from S to E, 
the value of Y(t) first drops and then increases, which contradicts 
the distribution of Y(t) shown in Figure 4(b). Consequently, our 
assumption that ||p′, s|| < ||p, s|| is invalid, and point p for sure is 
nearer to any point along q than p′.                       ■  

Based on Lemma 1, we introduce a pruning distance, namely 
RLMAX = MAXi∈[1, t](||pi, Ri.l||, ||pi, Ri.r||)3. Given a current result list, 
if all the unexamined objects have their minimal distances to the 
query line segment larger than RLMAX, it is guaranteed that the 
current result list will not be changed by any unexamined object 
(as proved by Lemma 2). In other words, Lemma 2 provides a 
search termination condition which will be utilized in our CONN 
search algorithm that is to be presented in the next section.  

LEMMA 2. Given a result list RL =∪i∈[1, t]〈pi, cpi, Ri〉, a point p, 
and a segment q = [S, E], p for sure cannot change RL if 
mindist(p, q) > RLMAX.                                □  

PROOF. Without loss of generality, we assume that there is at 
least one point s ∈ Ri along q such that ||p, s|| < ||pi, s||. As s is a 
point on Ri, ||p, s|| ≥ dist(p, s) ≥ mindist(p, q). On the other hand, 
||pi, s|| = ||pi, cpi|| + dist(cpi, s). Since cpi is the control point of pi 
over Ri ⊆ q, it is visible to any point along Ri. Consequently, 
dist(cpi, s) ≤ MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)), i.e., ||pi, s|| ≤ ||pi, 
cpi|| + MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)) = MAX(||pi, Ri.l||, ||pi, 
Ri.r||) ≤ RLMAX < mindist(p, q). Hence, ||p, s|| that is larger than 
mindist(p, q) for sure is larger than ||pi, s||. The assumption is 
invalid and the proof completes.                         ■  

4. CONN QUERY PROCESSING  
In this section, we present the detailed CONN query processing 

algorithm. The basic idea is to traverse the data set P in ascending 
order of their Euclidean distances (mindist that is the lower bound 
of the obstructed distance) to the query line segment q, assuming 
that P and O are indexed by two separate R-trees. For each data 
point p ∈ P visited, we first find out all the obstacles that might 
affect the obstructed distances from p to any point along q, then 
identify the control points of p over q, and finally evaluate the 
impact of p on the current result list RL which is initialized to 〈∅, 
∅, q〉. In what follows, we elaborate these three steps, then 
propose the complete CONN search algorithm, and finally discuss 
the flexibility/extension of the search algorithm. To simplify the 

                                                                 
3 If ∃ 〈pi, cpi, Ri〉 ∈ RL with pi = ∅, ||pi, Ri.l|| = ||pi, Ri.r|| = ∞, and 

MAX(a, b) is a function to return (i) a if a ≥ b and (ii) b 
otherwise.  



discussion, we use line segments, but not rectangles, to represent 
obstacles in our running examples, while the ideas can be easily 
extended to rectangles that are sets of line segments.  

4.1 Obstacle Retrieval  
As mentioned in Section 1, the existing VG-based approach 

needs to maintain the visibility graph and its high space and time 
complexities deteriorate its practicability. Actually, for a given 
point p and a given query line segment q = [S, E], only a small 
number of obstacles will affect the obstructed distances from p to 
any point along q. As demonstrated in Theorem 2, once the 
shortest path from p to S and that from p to E are identified, the 
search range for all the obstacles that may affect the obstructed 
distance between p and any point along q, denoted by SRp,q, is 
confirmed; and thus the obstacle retrieval can be safely terminated 
after all the obstacles inside SRp,q are retrieved.  
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THEOREM 2. Given a data point p, a query segment q = [S, E], 

let SRp,q be the range bounded by SP(p, S), SP(p, E), and q. ∀ s ∈ 
q, SP(p, s) only passes vertices of obstacles o ∈ SRp,q.                □  

PROOF. We assume that there is a point s ∈ q such that its 
shortest path SP(p, s) passes a vertex of at least one obstacle o 
outside SRp,q. As o ∉ SRp,q and s ∈SRp,q, SP(p, s) must intersect 
the boundary of SRp,q, and let point x be an intersection. Without 
loss of generality, we assume x is located at SP(p, S). 
Consequently, we have two paths from p to x, i.e., P1(p, x) 
following SP(p, s) and P2(p, x) following SP(p, S) but both 
stopping at x instead of s/S. Take Figure 5 as an example, SP(p, s) 
= {f, g} and SP(p, S) = {a, b}. Correspondingly, P1(p, x) = {f, g} 
and P2(p, x) = {a, b}. If |P1(p, x)| < |P2(p, x)|, |P1(p, x)| + ||x, S|| < 
|P2(p, x)| + ||x, S|| = ||p, S|| which contradicts the fact that ||p, S|| is 
the minimal distance between p and S. Otherwise, |P1(p, x)| ≥ 
|P2(p, x)|, |P1(p, x)| + ||x, s|| ≥ |P2(p, x)| + ||x, s||; and hence the path 
from p to s passing o1 is not the shortest path, which contradicts 
our assumption. Therefore, our assumption is invalid and the 
proof completes.                                                                          ■  

In order to utilize Theorem 2 to bound the search range for all 
the obstacles affecting the obstructed distances from p to any 
point along q = [S, E], both SP(p, S) and SP(p, E) have to be 
identified. Thus, Lemma 3 is developed.  

LEMMA 3. Given a point p, a point s along q, and a path P(p, s) 
from p to s, suppose all the obstacles that have their minimal 
Euclidean distances to q bounded by |P(p, s)| have been retrieved 
and maintained in a set So, i.e., So = {o ∈ O | mindist(o, q) ≤ |P(p, 
s)|}. Let P2(p, s) be the shortest path from p to s obtained based 
on So. If |P2(p, s)| ≤ |P(p, s)|, it is confirmed that P2(p, s) must be 
the real shortest path from p to s, i.e., P2(p, s) = SP(p, s).     □  

PROOF. If P2(p, s) is not the real shortest path from p to s, there 
must be another one P3(p, s) = SP(p, s) with |P3(p, s) | < |P2(p, s)|. 
As P2(p, s) is the shortest one among all the paths from p to s such 
that they only pass the vertices of obstacles inside So, P3(p, s) 
must pass at least one vertex, denoted as v, of some obstacle that 
is not included in So, i.e., located outside the circle cir(s, |P(p, s)|) 
centered at s with |P(p, s)| as radius. We further decompose P3(p, 
s) into two paths via node v, P3(p, v) and P3(v, s). As |P3(p, s)| = 
|P3(p, v)| + |P3(v, s)|, |P3(p, s)| > |P3(v, s)| ≥ dist(v, s) > |P(p, s)|. On 
the other hand, |P2(p, s)| ≤ |P(p, s)| holds. Hence, |P3(p, s)| > |P2(p, 
s)| contradicts our assumption, and the proof completes.             ■  

Based on Theorem 2 and Lemma 3, our Incremental Obstacle 
Retrieval Algorithm (IOR) is developed, with its pseudo-code 
depicted in Algorithm 1. The basic idea is to retrieve the obstacles 
according to ascending order of their minimal distances to q, and 
add them into the local visibility graph VG which initially only 
includes the point p currently processed and two endpoints of q 
(i.e., S and E). Based on local VG, a local shortest path from p to 
endpoint S/E can be identified by Dijkstra’s algorithm [5], 
denoted as P1(p, S) and P2(p, E) (Line 2). It then fetches all the 
obstacles having their smallest distances to q bounded by |P1(p, 
S)| or |P2(p, E)|, and inserts them into local VG (Lines 6-12). Since 
VG is changed, both P1(p, S) and P2(p, E) need to be validated, 
which may trigger the retrieval of more obstacles. The process 
proceeds until the new P1(p, S) and P2(p, E) do not trigger the 
retrieval of any new obstacle. As stated in Lemma 3, P1(p, S) and 
P2(p, E) must represent the real shortest path from p to S/E, i.e., 
P1(p, S) = SP(p, S) and P2(p, E) = SP(p, E). Consequently, the 
range bounded by P1(p, S), P2(p, E) and q corresponds to the 
range SRp,q defined in Theorem 2. In other words, the fact that 
IOR retrieves all the obstacles with their minimal distances to q 
not exceeding MAX(|P1(p, S)|, |P2(p, E)|) means that all the obstacles 
located inside range SRp,q have been retrieved, as demonstrated in 
Lemma 4. Therefore, the correctness of IOR is guaranteed.  

 
Algorithm 1 Incremental Obstacle Retrieval Algorithm (IOR)  
Input:  obstacle R-tree To, min-heap Ho, query line segment q = [S, E],  
             data point p, visibility graph VG, previous search distance d  
  1:  while (1) do  
  2:      P1(p, S) = Dijkstra(VG, p, S) and P2(p, E) = Dijkstra(VG, p, E)  
  3:      d′ = MAX(|P1(p, S)|, |P2(p, E)|)  
  4:      if (d′ > d) then  
  5:          d = d′   // for the next loop  
  6:          while Ho ≠ ∅ and Ho.head.key ≤ d do  
  7:              de-heap the top entry (e, key) of Ho  
  8:              if e is an obstacle then  
  9:                  add e to set So and their vertices to VG  
10:              else   // e is a non-leaf node  
11:                  for each child entry ei ∈ e do  
12:                      insert (ei, mindist(ei, q)) into Ho  
13:      else break  

 
LEMMA 4. Given a query line segment q = [S, E], let d = 

MAX(|SP(p, S)|, |SP(p, E)|). All the obstacles that are inside range 
SRp,q must have their minimal distances to q bounded by d.        □  

PROOF. Suppose there is an obstacle o that is inside the range 
SRp,q with mindist(o, q) > d. Let segment l = [o, s] refer to the 
shortest path from o to q in an Euclidean space which intersects q 
at point s, i.e., mindist(o, q) = dist(o, s). Without loss of generality, 
we extend the segment l to l′ and assume l′ intersects SP(p, S) or 



SP(p, E) at point p′, i.e., l′ = [p′, s]. Since point p′ lies along SP(p, 
S) or SP(p, E), ||p′, s|| ≤ MAX(|SP(p, S)|, |SP(p, E)|) = d. On the 
other hand, dist(o, s) ≤ dist(p′, s) ≤ ||p′, s|| ≤ d. Consequently, our 
assumption that mindist(o, q) = dist(o, s) > d is not valid. The 
proof completes.                                                                          ■  

In addition, we would like to highlight that the local visibility 
graph VG formed by a point p can be reused by a point p′ that is 
accessed/evaluated after p. If p′ does not trigger the retrieval of 
any new obstacle (i.e., current VG has already covered the search 
range SRp′,q), IOR for point p′ can be safely terminated by reusing 
the current VG. Otherwise, it expands the local VG by adding new 
obstacles until the search range SRp′,q has been fully covered. 
Therefore, the IOR for all the points in P will access the obstacle 
set O at most once.  

4.2 Control Point List Computation  
Once the local VG contains all the obstacles that may affect the 

obstructed distances from a specified data point p to q, our next 
step is to find out the control point list of p over q, i.e., CPLp,q. A 
straightforward approach is to utilize the fact that a control point 
over R must be visible to R and invoke Dijkstra’s algorithm to 
form the shortest path from p to every node n that is within the 
SRp,q

4. For each n ∈ SRp,q, we get the visible region VRn,q, and add 
a new tuple 〈n, Rn = VRn,q〉 to CPLp,q, assuming that n is the 
control point of p over VRn,q. If Rn overlaps Rm that is associated 
with some other control point m included in current CPLp,q (i.e., ∃ 
〈m, Rm〉 ∈ CPLp,q with Rn ∩ Rm ≠ ∅), an update is performed. 
Obviously, this method is expensive, especially when the number 
of nodes inside SRp,q is large. In order to handle this issue and 
improve the performance, we propose several Lemmas that can 
simplify the evaluation cost of some nodes n ∈ SRp,q.  

LEMMA 5. Given a point p, a line segment q = [S, E], and a 
node v in VG, we assume the shortest path SP(p, v) visits node u 
right before it reaches v. Let VRu,q and VRv,q be the visible regions 
of u and v over q respectively, v cannot be the control point of p 
over any interval R ⊆ (VRu,q ∩ VRv,q).                                         □  

PROOF. As shown in Figure 6(a), suppose v is the control point 
of p over at least one point x ∈ (VRu,q ∩ VRv,q) and let P1(p, x) be 
the shortest path from p to x via v, i.e., |P1(p, x)| = ||p, v|| + dist(v, 
x) = ||p, u|| + dist(u, v) + dist(v, x) > ||p, u|| + dist(u, x). 
Consequently, P1(p, x) is not the shortest path from p to x, which 
contradicts our assumption. The proof completes.                       ■  
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Figure 6: Optimizations for control point list computation  

                                                                 
4 Note that the current local VG covers an area larger than SRp,q, 

but only those nodes inside SRp,q may have an impact on CPLp,q.  

As Dijkstra’s algorithm gradually expands the search space 
from q (i.e., it always reaches u before v if ||p, u|| < ||p, v||), 
Lemma 5 matches its traversal perfectly. Whenever a node v is 
examined, it must be reached by the shortest path from p, and 
hence the node u visited right before v along the path is known. 
As illustrated in Figure 6(a), the shortest path from p to v passes u 
first and then reaches v. Instead of considering the visible region 
of v (that is entire q), we only need to consider the region that is 
not enclosed by VRu,q (i.e., [s1, E]). However, not all the intervals 
included in (VRv,q − VRu,q) need evaluation, Lemma 6 can further 
shrink the search interval.  

LEMMA 6. Given a point p, a line segment q, and a node v in a 
visibility graph VG, we assume the shortest path SP(p, v) visits 
node u right before it reaches v. Given an interval R = [R.l, R.r] ⊆ 
(VRv,q − VRu,q) such that only endpoints R.l and R.r, but not any 
point on R, are visible to u, if v is located outside the triangle 
formed by u, R.l, and R.r, v cannot become the control point of p 
over R.                                                                                         □  

PROOF. Take R = [s3, s4] ⊆ (VRv,q − VRu,q) shown in Figure 6(b) 
as an example. Although v is outside ∆us3s4, we assume v is the 
control point of p on at least one point x on R. Let P1(p, x) be the 
shortest path from p to x via v. As v is outside the triangle ∆us3s4, 
without loss of generality, we assume P1(p, x) intersects the line 
segment q1 = [u, s3] at point y. |P1(p, x)| = ||p, u|| + dist(u, v) + 
dist(v, x). Let P2(p, x) be the shortest path from p to x via u and 
then via o. Here, o is the vertex of the obstacle o2 that blocks u 
from R. Obviously, |P2(p, x)| = ||p, u|| + dist(u, o) + dist(o, x). 
Since in triangle ∆oxy, dist(o, y) + dist(y, x) > dist(o, x). 
Consequently, |P2(p, x)| < ||p, u|| + dist(u, o) + dist(o, y) + dist(y, x) 
= ||p, u|| + dist(u, y) + dist(y, x) < ||p, u|| + dist(u, v) + dist(v, y) +  
dist(y, x) = ||p, u|| + dist(u, v) + dist(v, x) = |P1(p, x)|. Therefore, 
P1(p, x) cannot be the shortest path (i.e., the shortest path from p 
to x does not pass v), and our assumption is invalid. The proof 
completes.                                                                                    ■  

Take the case depicted in Figure 6(b) as an example. For all the 
intervals included in VRv,q − VRu,q = [s1, s2] ∪ [s3, s4], we can 
confirm that v cannot be the control point of p over [s3, s4] by 
Lemma 6. The above two lemmas are developed to reduce the 
examination cost of each traversed node of local visibility graph 
VG. However, if the number of nodes included in local VG is very 
big, the examination cost is still high. Actually, not all the nodes 
can change the current control point list. In order to terminate the 
traversal early, Lemma 7 is developed.  

LEMMA 7. Given current control point list of p over q, i.e., 
CPLp,q = {〈cpi, Ri〉} with i ∈ [1, m], let CPLMAX = MAXi∈[1, m](||p, 
cpi|| + dist(cpi, Ri.l), ||p, cpi|| + dist(cpi, Ri.r)) 5. A node v for sure 
cannot be included in CPLp,q if ||p, v|| + mindist(v, q) ≥ CPLMAX.□  

PROOF. If v is included in CPLp,q, there must be at least one 
point s ⊆ q, such that the shortest path SP(p, s) from p to s passes 
through v and s is visible to v. We denote this path as P1(p, s) with 
|P1(p, s)| = ||p, v|| + dist(v, s) ≥ ||p, v|| + mindist(v, q) ≥ CPLMAX. On 
the other hand, let 〈cpi, Ri〉 ∈ CPLp,q be a tuple in CPLp,q, such 
that s ∈ Ri, and P2(p, s) be the path from p to s via current control 
point cpi. |P2(p, s)| = ||p, cpi|| + dist(cpi, s). As dist(cpi, s) ≤ 

                                                                 
5 If ∃ 〈cpi, Ri〉 ∈ CPLp,q with cpi = ∅, CPLMAX = ∞.  



MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)), |P2(p, s)| ≤ CPLMAX ≤ |P1(p, s)|, 
and thus P1(p, s) cannot be the shortest path from p to s. The 
proof completes.                                                                          ■  

Lemma 7 serves as the termination condition of Control Point 
List Computation Algorithm (CPLC) that is shown in Algorithm 2. 
CPLC shares the basic idea as the approach we mentioned earlier. 
That is to call Dijkstra’s algorithm to gradually traverse the local 
visibility graph VG and to access nodes v according to ascending 
order of their obstructed distances to p. The p’s control point list 
CPLp,q over q is updated during the traversal. However, different 
from the straightforward method, it employs Lemma 5 and 
Lemma 6 to significantly reduce the node examination cost. The 
Split function invoked (Line 14) is the same as the split point 
computation algorithm presented in Section 3. Before v is 
considered, all the shortest paths from p to any point along Rint 
pass the control point cpi, and now we want to check whether the 
path from p to any point along Rint via v is even shorter.  
 
Algorithm 2 Control Point List Computation Algorithm (CPLC)  
Input:    query line segment q = [S, E], data point p, visibility graph VG  
Output:  p’s control point list CPLp,q over q  
  1:  CPLp,q = {〈∅, [S, E]〉}  
  2:  while there exists a node in VG that has not been visited do  
  3:      let v ∈ VG be the one with the smallest obstructed distance to p  
           among those nodes not yet visited  
  4:      if ||p, v|| ≥ CPLMAX then   // Lemma 7  
  5:          break  
  6:      let u be the node that SP(p, v) passes right before reaching v  
  7:      R = VRv − VRu   // Lemma 5  
  8:      refine R based on Lemma 6  
  9:      for each tuple 〈cpi, Ri〉 in CPLp,q do   // update CPLp,q  
10:          Rint = R ∩ Ri  
11:          if Rint ≠ ∅ and cpi = ∅ then  
12:              replace 〈cpi, Ri〉 with 〈v, Rint 〉 and 〈cpi, Ri − Rint 〉  
13:          else if Rint ≠ ∅ and cpi ≠ ∅ then  
14:              d = ||p, cpi|| − ||p, v|| and Split(p, cpi, p, v, Rint, d)  
15:  return CPLp,q  
 

There are four cases, as discussed in Section 3, with d = ||p, cpi|| 
− ||p, v|| and a as the difference between v’s projection on q and 
cpi’s projection on q: (i) Case 1: d ≥ dist(cpi, v), 〈cpi, Ri〉 is 
replaced with 〈v, Rint〉 (Rint = R ∩ Ri) and 〈cpi, Ri − Rint〉. (ii) Case 
2: a < d < dist(cpi, v), interval Rint will be decomposed into three 
segments by points x1 and x2, with x1 and x2 derived based on 
Equation (1). Thereafter, 〈cpi, Ri〉 is replaced accordingly. (iii) 
Case 3: -a < d ≤ a, Rint will be decomposed into two segments by 
point x1 with x1 derived based on Equation (1) too. Again, 〈cpi, Ri〉 
is replaced accordingly. (iv) Case 4: d ≤ -a, 〈cpi, Ri〉 remains. The 
process proceeds until all the nodes in local VG are traversed or 
the visited node satisfies ||p, v|| ≥ CPLMAX. As nodes in local VG 
are traversed based on ascending order of their obstructed 
distances to p, when currently visited node has its obstructed 
distance to p larger than CPLMAX, all the remaining nodes n in VG 
must satisfy ||p, n|| ≥ CPLMAX. Note that the termination condition 
relaxes Lemma 7 using zero as the lower bound of mindist(n, q).  

EXAMPLE 1. We illustrate the CPLC algorithm with the example 
shown in Figure 7, where the local VG = {S, E, p, u, v, w, z}. 
First, CPLC accesses node p ∈ VG, and updates CPLp,q = {〈p, [S, 
s1]〉, 〈∅, [s1, s3]〉, 〈p, [s3, s4]〉, 〈∅, [s4, E]〉}. Second, it accesses 

node v ∈ VG and obtains its visible region VRv,q = [S, E]. Based 
on Lemma 5, it gets R = [s1, s3] ∪ [s4, E] and refines R to [s1, s3] 
according to Lemma 6. As in current CPLp,q, the control point 
associated with [s1, s3] is ∅, CPLC updates CPLp,q = {〈p, [S, s1]〉, 
〈v, [s1, s3]〉, 〈p, [s3, s4]〉, 〈∅, [s4, E]〉}. Next, it accesses node u ∈ 
VG and obtains its visible region VRu,q = [S, E]. Similarly, it gets 
R = [s1, s3] ∪ [s4, E] based on Lemma 5 and refines R to [s1, s3] 
by Lemma 6. As v is the current control point for the interval [s1, 
s3], the Split function is called. Since ||p, v|| − ||p, u|| = d ∈ [-a, a], 
R is decomposed into two segments [s1, s2] and [s2, s3]. 
Correspondingly, CPLp,q is updated to {〈p, [S, s1]〉, 〈u, [s1, s2]〉, 〈v, 
[s2, s3]〉, 〈p, [s3, s4]〉, 〈∅, [s4, E]〉}. Nodes w and z are evaluated 
similarly, and finally CPLC outputs {〈p, [S, s1]〉, 〈u, [s1, s2]〉, 〈v, 
[s2, s3]〉, 〈p, [s3, s4]〉, 〈w, [s4, E]〉} as the final CPLp,q.                  □  

 

S Es1 s2 s3 s4

S Es1 s2 s3 s4

p

o1

q

〈p, [S, s1]〉

o2

u
v

w

z

obstalce

〈u, [s1, s2]〉CPLp,q

〈v, [s2, s3]〉

〈p, [s3, s4]〉

〈w, [s4, E]〉

control point

 
Figure 7: Example of CPLC algorithm  

 
Algorithm 3 Result List Update Algorithm (RLU)  
Input:     data point p, p’s control point list CPLp,q, current result list RL  
Output:  the updated result list  
  1:  for each tuple 〈pi, cpi, Ri〉 ∈ RL do  
  2:      for each tuple 〈cpi′, Ri′〉 ∈ CPLp,q do  
  3:          if Ri ∩ Ri′ ≠ ∅ then  
  4:              Rint = Ri ∩ Ri′ = [l, r], Rdif = Ri − Rint, Rdif′ = Ri′ − Rint  
  5:              if (Rdif ≠ ∅) then add 〈pi, cpi, Rdif〉 to RL  
  6:              if (Rdif′ ≠ ∅) then add 〈cpi′, Rdif′〉 to CPLp,q  
  7:              if ||pi, l|| ≤ ||p, l|| and ||pi, r|| ≤ ||p, r|| and mindist(pi, Rint)  
                   ≤ mindist(p, Rint) then   // Lemma 1  
  8:                  add 〈pi, cpi, Rint〉 to NRL6  
  9:                  continue  
10:              else  
11:                  d = ||pi, cpi|| − ||p, cpi′|| and Split(pi, cpi, p, cpi′, Rint, d)  
12:                  insert result tuples into NRL  
13:  return NRL  
 

4.3 Result List Update  
Once a new data point p is accessed, and its control point list 

over query segment q is formed, the next step is to evaluate the 
impact of p on the current result list. The basic idea is to evaluate 
whether p will replace the current ONN of some points s along q. 
The Result List Update Algorithm (RLU) is presented in 
Algorithm 3, which utilizes the Split function. RLU scans the 
current result list RL. For each tuple 〈pi, cpi, Ri〉 ∈ RL, it finds the 
corresponding tuple 〈cpi′, Ri′〉 ∈ CPLp,q with Ri ∩ Ri′ = [l, r] ≠ ∅. 
                                                                 
6 When a new tuple 〈cpi, Ri〉 is inserted into NRL, it might be 

merged with existing tuple 〈cpj, Rj〉 if cpi = cpj and intervals Ri, 
Rj are adjacent.  



By solving the Equation (1) (i.e., dist(cpi, x) – dist(cpi′, x) = ||pi, 
cpi|| − ||p, cpi′|| with x ∈ [l, r]), it can update the result list 
accordingly. As the details of split point calculation algorithm 
(i.e., Split) have been already presented in Section 3, we use a 
running example to illustrate the RLU algorithm.  
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Figure 8: Example of RLU algorithm  

 
EXAMPLE 2. As shown in Figure 8, P = {a, b, c}, O = {o1, o2, 

o3}, and q = [S, E]. Suppose that point a has been processed, with 
current RL = {〈a, a, [S, s3]〉, 〈a, v1, [s3, s5]〉, 〈a, v2, [s5, E]〉} and 
data point b is going to be evaluated with its control point list 
CPLb,q = {〈b, [S, s2]〉, 〈v5, [s2, s4]〉, 〈v6, [s4, E]〉}. Now we invoke 
RLU to evaluate the impact of b on RL. First, the tuple 〈a, a, [S, 
s3]〉 ∈ RL is compared with 〈b, [S, s2]〉 ∈ CPLb,q. Based on the 
Split function, Rint (= [S, s3] ∩ [S, s2] = [S, s2]) is partitioned into 
two segments (i.e., Case 3), and NRL = {〈a, a, [S, s1]〉, 〈b, b, [s1, 
s2]〉}. Next, the tuple 〈a, a, [s2, s3]〉 ∈ RL is compared with 〈v5, [s2, 
s4]〉 ∈ CPLb,q. Again, based on the Split function, the entire Rint (= 
[s2, s3] ∩ [s2, s4] = [s2, s3]) is closer to b than to a, and thus NRL = 
{〈a, a, [S, s1]〉, 〈b, b, [s1, s2]〉, 〈b, v5, [s2, s3]〉}. Then, the tuple 〈a, 
v1, [s3, s5]〉 ∈ RL is compared with 〈v5, [s3, s4]〉∈ CPLb,q. Similarly, 
Split function detects that Rint (= [s3, s5] ∩ [s3, s4] = [s3, s4]) is 
closer to b than to a, and hence NRL is updated to {〈a, a, [S, s1]〉, 
〈b, b, [s1, s2]〉, 〈b, v5, [s2, s4]〉}. The process proceeds until all the 
tuples in RL are evaluated, and the final NRL = {〈a, a, [S, s1]〉, 〈b, 
b, [s1, s2]〉, 〈b, v5, [s2, s4]〉, 〈b, v6, [s4, E]〉}.                 □  

 
Algorithm 4 CONN Search Algorithm (CONN)  
Input:     data R-tree Tp, obstacle R-tree To, query line segment q = [S, E]  
Output:  result list RL of the CONN query  
  1:  RL = {〈∅, ∅, [S, E]〉}, RLMAX = ∞, VG = {S, E}, d = 0  
  2:  a min-heap Hp = (root(Tp), 0), a min-heap Ho = (root(To), 0)  
  3:  while Hp ≠ ∅ and Hp.head.key < RLMAX do   // Lemma 2  
  4:      de-heap the top entry (e, key) of Hp  
  5:      if e is a data point then  
  6:          insert e into local visibility graph VG  
  7:          IOR (To, Ho, q, e, VG, d)   // see Algorithm 1  
  8:          CPLe,q = CPLC (q, e, VG)   // see Algorithm 2  
  9:          remove e from VG  
10:          RL = RLU (e, CPLe,q, RL)   // see Algorithm 3  
11:      else   // e is an intermediate (i.e., non-leaf) node  
12:          for each child entry ei ∈ e do  
13:              insert (ei, mindist(ei, q)) into Hp  
14:  return RL  

 

4.4 CONN Search Algorithm  
Our CONN Search Algorithm (CONN) traverses the data set P 

in ascending order of their minimal Euclidean distances to q (i.e., 

mindist). For each accessed data point p ∈ P, it invokes IOR to 
retrieve all the obstacles that might affect the obstructed distances 
from p to any point along q, calls CPLC to get the control point 
list CPLp,q of p over q, and updates the result list via RLU. The 
process proceeds until all the data points in P are evaluated or the 
termination condition is satisfied, that is mindist(p, q) > RLMAX 
(Lemma 2). Algorithm 4 presents the pseudo-code of CONN.  

It is observed that the CONN algorithm traverses the data R-
tree Tp and the obstacle R-tree To at most once. Let |Tp| and |To| be 
the tree size of Tp and To respectively, |VG| be the number of 
nodes in VG, |R| be the maximal number of tuples included in RL, 
CPLp,q (∀ p ∈ P), and VRn,q (∀ n ∈ VG), and N be the number of 
data points accessed during the CONN search. The time 
complexity and the correctness of CONN algorithm are analyzed 
as follows.  

THEOREM 3. The time complexity of the CONN algorithm is O 
(N × log |Tp| × log |To| × |VG| × log |VG|).                                    □ 

PROOF. For every data point p ∈ P visited during the search, the 
CONN algorithm takes O (|VG| × log |VG|) to insert p into VG, 
takes O (log |To| × |VG| × log |VG|) for IOR, takes O (|VG| × log 
|VG| × |R|2) for CPLC, takes O (|R|2) for RLU, and incurs O (|VG| 
× log |VG|) to delete p from VG. Consequently, the time 
complexity of the CONN algorithm is O (N × log |Tp| × (|VG| × 
log |VG| + log |To| × |VG| × log |VG| + |VG| × log |VG| × |R|2 + |R|2 
+ |VG| × log |VG|)) ≈ O (N × log |Tp| × log |To| × |VG| × log |VG|) 
as |VG| << |To| (as demonstrated by our experimental results to be 
presented in Section 5) and |R| << |Tp|.                                        ■  

THEOREM 4. The CONN algorithm retrieves exactly the ONN of 
every point along a given query line segment, i.e., the algorithm 
has no false misses and no false hits.                                          □  

4.5 Discussion  
Our previously proposed CONN algorithm assumes the data set 

P and the obstacle set O are indexed by two different R-trees. 
However, it can be naturally extended to perform CONN search 
when P and O are indexed by a single R-tree. The detailed 
extensions are listed as follows: (i) It requires only one heap H to 
store the candidate entries (including data points, obstacles, and 
nodes), sorted in ascending order of their minimum distances to 
the specified query line segment q. (ii) When processing the top 
entry e de-heaped from H, it distinguishes three cases: (1) e is an 
obstacle. It inserts e into VG. (2) e is a data point. It calls the IOR 
to retrieve all the obstacles that may affect the obstructed distance 
from e to any point on q, gets e’s control point list CPLe,q over q 
via CPLC, and finally updates the result list RL via RLU. It is 
worth noting that during the obstacle retrieval via IOR, it is 
possible to access some data points which will be en-heaped into 
H for later processing. (3) e is an intermediate node, its child 
entries are en-heaped to H for later evaluation.  

In addition, our proposed CONN query processing approaches 
can be easily extended to tackle continuous obstructed k-nearest 
neighbor (COkNN) search, which finds the k (≥ 1) obstructed 
nearest neighbors (ONNs) to every point along a specified query 
line segment. Due to the space limitation, we only list the major 
differences. First, the output of a COkNN query contains a set of 
〈ONNSi, Ri〉 tuples, where ONNSi is the set of ONNs for each 
point on the interval Ri (= [Ri.l, Ri.r]) ⊆ q. Second, the pruning 



distance RLMAX used in Lemma 2 has to be updated to MAXi∈[1, t] 
(maxodist(ONNSi, Ri.l), maxodist(ONNSi, Ri.r)), in which 
maxodist(ONNS, s) represents the maximal obstructed distance 
from any point in set ONNS to point s, i.e., MAXp∈ONNS(||p, s||).  

5. EXPERIMENTAL EVALUATION  
This section evaluates the performance of the proposed 

algorithms. We first describe experimental settings, and then 
present experimental results and our findings. All the algorithms 
were implemented in C++ and the experiments were conducted on 
an Intel Core 2 Duo 2.33 GHz PC with 3.25GB RAM.  

5.1 Experimental Setup  
Our experiments are based on both real and synthetic datasets, 

with the search space fixed at a [0, 10000] × [0, 10000] square 
shaped range. Two real datasets are deployed, namely CA and LA7. 
CA contains 2D points, representing 60,344 locations in 
California; and LA includes 2D rectangles, representing 131,461 
MBRs of streets in Los Angeles. All datasets are normalized in 
order to fit the search range. Synthetic datasets are generated 
based on uniform distribution and zipf distribution, with the 
cardinality varying from 0.1×|LA| to 10×|LA|. The coordinate of 
each point in Uniform datasets is generated uniformly along each 
dimension, and that of each point in Zipf datasets is generated 
according to zipf distribution with skew coefficient α = 0.8. We 
assume a point’s coordinates on both dimensions are mutually 
independent. As COkNN (k ≥ 1) search involves a data set P and 
an obstacle set O, we deploy three different combinations of the 
datasets, namely CL, UL, and ZL, representing (P, O) = (CA, LA), 
(Uniform, LA), and (Zipf, LA), respectively. Note that the data 
points in P are allowed to lie on the boundaries of the obstacles 
but not in their interiors.  

All data and obstacle sets are indexed by an R*-tree [1], with 
the page size fixed at 4KB. The performance metrics in our 
performance study include I/O cost (i.e., number of pages 
accessed), CPU time, query cost (i.e., the sum of the I/O time and 
CPU time, where the I/O time is computed by charging 10ms for 
each page fault), visibility graph size |SVG| (i.e., number of 
vertices in visibility graph), number of points evaluated (NPE) 
during search, and number of obstacles evaluated (NOE) during 
search. Unless specifically stated, the size of LRU buffer is 0 in 
the experiments, i.e., the I/O cost is determined by the number of 
nodes accessed. We investigate the efficiency and effectiveness of 
our proposed algorithms under various parameters, which are 
summarized in Table 2. The numbers in bold represent default 
settings. In each experiment, we evaluate the impact of one 
parameter while others are fixed at their default values, and run 
100 COkNN queries with their average performance reported. The 
starting point and the orientation (in [0, 2π)) of the query line 
segment are randomly generated, while its length is controlled by 
the parameter ql.  
 

Table 2. Parameter ranges and default values  
Parameter  Range  
query length ql (% of data space side)  1.5, 3, 4.5, 6, 7.5  
k  1, 3, 5, 7, 9  
|P|/|O|  0.1, 0.2, 0.5, 1, 2, 5, 10  
buffer size bs (% of the tree size)  0, 1, 2, 4, 8, 16, 32  

                                                                 
7 CA and LA are available in the site: http://www.rtreepo rtal.org.  

5.2 Performance Study  
The first set of experiments studies the effect of query length ql 

(% of data space side). Figure 9 shows the efficiency of the 
COkNN algorithm as a function of ql, by fixing k = 5. It is 
observed that the total query time (breaking into I/O and CPU 
cost), NPE, and NOE grow with ql. The reason behind is that, as 
the query segment becomes longer, the number of candidate data 
points processed, the number of obstacles encountered, and the 
number of split points generated increase, which results in more 
distance computation, more control point list computation, and 
more result list update. Figure 9(b) illustrates the size of visibility 
graph (i.e., |SVG|) with respect to ql. As all the obstacles are in 
rectangular shapes, there are 4 × |O| = 525,844 vertexes in a 
global visibility graph when O = LA, denoted as FULL in Figure 
9(b). Notice that although |SVG| ascends with the growth of ql, its 
size is much smaller than the size of FULL, as also demonstrated 
in the subsequent experimental results. This further demonstrates 
the effectiveness of our proposed incremental obstacle retrieval 
(IOR) algorithm in reducing the number of obstacle traversals.  
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(a) CL (k = 5)                                       (b) CL (k = 5)  

Figure 9: Performance vs. ql (% of data space side)  
 
Figure 10 depicts the performance of the COkNN algorithm 

with respect to k, with ql fixed at 4.5%. As expected, all costs 
involving total query time, NPE, NOE, and |SVG| increase with k. 
This is because a larger value of k implies a larger search range 
(for both data points and obstacles) and hence more distance 
computations are incurred. Furthermore, as k grows, the number 
of answer points in the final result list increases, which results in 
more frequent update operations and thus more expensive 
maintenance cost of the result list.  
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(a) CL (ql = 4.5%)                               (b) CL (ql = 4.5%)  

Figure 10: Performance vs. k  
 
Figure 11 plots the efficiency of the COkNN algorithm as a 

function of the ratio of the cardinality of the data set P to that of 
the obstacle set O, i.e., |P|/|O|, with k = 5 and ql = 4.5%. A crucial 
observation is that the cost of the COkNN algorithm first drops 
and then increases as |P|/|O| varies from 0.1 to 10. In particular, 
the query time of COkNN decreases when |P|/|O| increases (e.g., 



from 0.1 to 0.5 in Figure 11(c)). This is because, as the density of 
data set P grows, the search space of COkNN becomes smaller. 
Accordingly, the number of obstacles that might affect the 
obstructed distances from data points to any point on a given 
query line segment is decreased (i.e., the IOR algorithm retrieves 
less obstacles), which is indicated by NOE in Figures 11(a) and 
11(c). However, as |P|/|O| continues ascending (e.g., from 1 to 10 
in Figure 11(c)), the cost of COkNN gradually increases. This is 
because the interval dominated by each data point becomes 
shorter, and the result list contains more answer points. In other 
words, more candidate data points need evaluation as implied by 
NPE in Figures 11(a) and 11(c), which in turn increases the split 
point computation overhead and the result list update cost. 
Observe that when P and O share similar cardinalities (e.g., |P|/|O| 
= 0.5), COkNN incurs the shortest query time. Since the search 
space of COkNN decreases as |P|/|O| increases, |SVG| drops with 
|P|/|O| as shown in Figures 11(b) and 11(d).  
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(a) UL (k = 5, ql = 4.5%)                     (b) UL (k = 5, ql = 4.5%)  
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(c) ZL (k = 5, ql = 4.5%)                      (d) ZL (k = 5, ql = 4.5%)  

Figure 11: Performance vs. |P|/|O|  
 
All the previous experiments are conducted without any buffer 

(i.e., the size of LRU buffer is 0). In this set of experiments, we 
examine the influence of buffer size bs on the COkNN search 
performance, with bs varying from 1% to 32% of each R-tree size. 
The results are plotted in Figure 12, by fixing k = 5 and ql = 4.5%. 
To obtain stable statistics, we use the first 50 queries to warm up 
the buffer and only report the average performance of the last 50 
queries. It is observed that non-zero buffer can only improve I/O 
performance, but not others.  
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Figure 12: Performance vs. bs (% of the tree size)  
 
In all the above experiments, we assume data set P and obstacle 

set O are indexed by two separate R-trees. However, as 
mentioned in Section 4.5, our proposed CONN search algorithm 
is very flexible, and it can support the case where both P and O 
are indexed by a single R-tree. In the last set of experiments, we 
compare the performance of COkNN retrieval when P and O are 
indexed by two different R-trees (denoted as 2T) against that 
under the scenario where they are indexed by one unified R-tree 
(denoted as 1T), and the experimental results are shown in Figure 
13. It shows that 1T is more efficient than 2T in most cases. This 
is because when both data points and obstacles are indexed by one 
R-tree, only one traversal of the unified R-tree is required. Data 
points and obstacles that are close to each other could be found in 
the same leaf node of the R-tree. Based on this result, when we 
perform expensive spatial data mining tasks, it is more beneficial 
to build a single R-tree for both data points and obstacles.  
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(c) CL (ql = 4.5%)                               (d) UL (ql = 4.5%)  
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(e) UL (k = 5, ql = 4.5%)                    (f) ZL (k = 5, ql = 4.5%)  

Figure 13: COkNN on two R-trees vs. its on one R-tree  



6. CONCLUSIONS  
In this paper, for the first time, we identify and solve a novel 

type of CNN queries, namely continuous obstructed nearest 
neighbor (CONN) search, which considers the impact of obstacles 
on the distances between objects. CONN queries are not only 
interesting from a research point of view, but also useful in many 
applications such as location-based services, geographic 
information systems, and spatial data analysis. We carry out a 
systematic study of CONN retrieval. First, we provide a formal 
definition of the problem. Then, we present several effective 
pruning strategies and develop efficient algorithms for CONN 
query processing. Next, we extend our techniques to handle 
COkNN search, a natural generalization of CONN query. Finally, 
we conduct extensive experiments to verify the efficiency and 
effectiveness of our proposed algorithms using both real and 
synthetic datasets.  

This work also motivates several directions for future research. 
We plan to extend our methods to other CONN query variations 
such as trajectory CONN which aims at retrieving the ONN of 
every point on a specified moving trajectory that consists of 
several consecutive line segments, and it would be also interesting 
to investigate CONN queries for moving objects. In addition, it is 
a challenging yet exciting topic to explore other forms of spatial 
queries with obstacle constraints (e.g., obstructed reverse nearest 
neighbor search, etc.).  
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