
Continuous Obstructed Nearest Neighbor Queries
in Spatial Databases

Yunjun Gao

School of Information Systems
Singapore Management University

yjgao@smu.edu.sg

Baihua Zheng
School of Information Systems

Singapore Management University
bhzheng@smu.edu.sg

ABSTRACT
In this paper, we study a novel form of continuous nearest
neighbor queries in the presence of obstacles, namely continuous
obstructed nearest neighbor (CONN) search. It considers the
impact of obstacles on the distance between objects, which is
ignored by most of spatial queries. Given a data set P, an obstacle
set O, and a query line segment q in a two-dimensional space, a
CONN query retrieves the nearest neighbor of each point on q
according to the obstructed distance, i.e., the shortest path
between them without crossing any obstacle. We formulate
CONN search, analyze its unique properties, and develop
algorithms for exact CONN query processing, assuming that both
P and O are indexed by conventional data-partitioning indices
(e.g., R-trees). Our methods tackle the CONN retrieval by
performing a single query for the entire query segment, and only
process the data points and obstacles relevant to the final result,
via a novel concept of control points and an efficient quadratic-
based split point computation algorithm. In addition, we extend
our solution to handle the continuous obstructed k-nearest
neighbor (COkNN) search, which finds the k (≥ 1) nearest
neighbors to every point along q based on obstructed distances. A
comprehensive experimental evaluation using both real and
synthetic datasets has been conducted to demonstrate the
efficiency and effectiveness of our proposed algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications ⎯ Spatial
databases and GIS; H.2.4 [Database Management]: Systems ⎯
Query processing

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
Nearest neighbor, Continuous nearest neighbor, Continuous
obstructed nearest neighbor, Spatial database, Obstacle

1. INTRODUCTION
With the growing popularity of smart mobile devices (e.g.,

PDAs, cellular phones) and the rapid advance of wireless
communication and positioning technologies (e.g., GPS), more
and more users issue queries even when they are moving.
Consequently, the traditional snapshot query might not satisfy the
real requirements from mobile users, and continuous query
processing that is based on a moving trajectory instead of a fixed
point has been investigated. For instance, the continuous nearest
neighbor (CNN) search is to answer the nearest neighbor query
issued by clients who are moving. Imagine a client who is driving
along the highway I-95 issues a CNN query to retrieve the nearest
gas station from his current location to his destination, as shown
in Figure 1(a). Here, the data set P contains six gas stations, i.e., a,
b, c, d, f, g; and the trajectory segment q = [S, E] represents a
segment of I-95. The output of the CNN search is {〈d, [S, s1]〉, 〈b,
[s1, s2]〉, 〈g, [s2, s3]〉, 〈c, [s3, E]〉}, meaning that gas station d is the
nearest one when the client is travelling along the interval [S, s1],
gas station b is the nearest one along the interval [s1, s2], and so
on. The points s1, s2, s3 along q are defined as split points, where
the nearest neighbor (NN) object is changed.

s1 s2 s3 E

a
b

c

d
f

g

split point

S q

S E

a
b

c

d
f

g

o3

o1 o2

o4

obstacle

split point

q
s2' s3'm

s1'

(a) CNN search (b) CONN search

Figure 1: Example of CNN and CONN queries

CNN search has been well-studied [22, 24]. Based on the
distance metric used to measure the closeness of objects, the
existing work can be classified into two categories, i.e., Euclidean
distance based CNN search [22, 23, 24] and network distance
based CNN search [4, 7, 14]. The former assumes a Euclidean
space where the objects enjoy totally free and unblocked
movement and employs the Euclidean distance to indicate the
proximity of objects, while the latter considers a network space
where the movements of objects are restricted by the underlying
networks (e.g., roads, railways, etc.) and utilizes the network
distance to measure the distance between objects.

Although the existing work satisfies the requirements of a large
number of real applications, it does not consider the movement in
an open space constrained by the obstacles, i.e., obstructed space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, RI, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

For example, a battlefield usually does not have any fixed road
network structure and tanks/soldiers can move totally free, as long
as the path is not blocked. Another example is that mobile robots
help rescue survivors after a disaster (e.g., a devastating
earthquake). The robots equipped with location-sensing ability as
well as visual and other sensors can burrow into the rubble and try
to locate potential survivors, which can facilitate the excavation
without further injuring survivors. Theoretically, the robot
navigating the space can take any direction but the physical
obstacles (e.g., rocks etc.) affect the real distance that a robot has
to travel in order to reach its destination.

Consequently, the obstructed space is different from both the
Euclidean space and the network space. Compared with the
Euclidean space, it considers the existence of obstacles that may
block the immediate path from one object to another and hence
the Euclidean distance between them does not always indicate the
real travelling distance. On the other hand, compared with the
network space, it does not assume any underlying fixed network
structure and still entitles the objects to free movements.
Correspondingly, the distance between two objects in an
obstructed space is measured based on the obstructed distance,
i.e., the shortest path connecting two objects without crossing any
obstacle. Take the objects a and g shown in Figure 1(b) as an
example. Their Euclidean distance is the length of segment [a, g],
whereas their obstructed distance is the summation of the lengths
of segment [a, m] and segment [m, g], because of the obstruction
of obstacle o4.

In this paper, we consider the CNN search in an obstructed
space, namely continuous obstructed nearest neighbor (CONN)
search. Given a data set P, an obstacle set O, and a query line
segment q in a two-dimensional (2D) space, a CONN query
retrieves the obstructed nearest neighbor (ONN) for every point
along q according to the obstructed distance. Specifically, the
CONN retrieval aims at finding a set of 〈p, R〉 tuples, where p ∈ P
is the ONN for any point in the interval R ⊆ q. Continuing the
example in Figure 1(b) where the obstacle set O contains four
rectangular obstacles1 o1, o2, o3, and o4, the CONN query returns
{〈a, [S, s1′]〉, 〈b, [s1′, s2′]〉, 〈g, [s2′, s3′]〉, 〈c, [s3′, E]〉}, which
indicates that object a is the ONN for each point along interval [S,
s1′], object b is the ONN for each point along interval [s1′, s2′], etc.
Note that the split points s1, s2, and s3 defined by a CNN search
are different from the split points s1′, s2′, and s3′ defined by a
CONN search. In addition, the answer objects vary as well. For
example, object d is the NN for S in a Euclidean space, whereas it
is not the ONN for S in an obstructed space, due to the blocking
of obstacle o3.

CONN search is useful for many real-life applications.
Consider the example of robots rescuing survivors. Suppose that
the robots successfully locate some survivors and a 3D map has
been constructed based on the data collected by robots along their
way navigating the space. Based on the map information, we can
identify several routes that are not blocked and invoke CONN
search to locate the nearest survivors along the path. The number
of nearest survivors and the distance between the survivors to the
corresponding points along the path provide critical information
that can help the emergency personnel to plan the excavation. We
focus this paper on the CONN query, not only because the

1 Although an obstacle can be in any shape (e.g., triangle,

pentagon, etc.), we assume it is a rectangle in this paper.

problem is interesting and has a large application base, but also
because it poses some challenging research issues that are worth
investigating.

The first issue is how to calculate the obstructed distance
efficiently. Based on the existing work related to robot motion
planning, the lower bound of the calculation is O (nlogn), with n
as the total number of obstacle vertices [2]. In practice, a popular
and practical method based on visibility graph VG [2] has O (n2
logn) as the worst case time complexity. Compared with
Euclidean distance which can be derived in constant time, the
computation cost of the obstructed distance is much more
expensive. In addition, VG-based approaches need to maintain a
visibility graph, which requires O (n2) space in the worst case.
The high space complexity deteriorates its scalability, not to
mention its extremely high update cost.

We try to tackle this issue from two aspects, i.e., reducing the
number of obstructed distance calculations and simplifying the
obstructed distance calculations. The former objective is achieved
via effective pruning techniques that can filter out unqualified
objects as early as possible. As for the second target, we construct
a local visibility graph to simplify the calculation process.
Initially, the local visibility graph only contains two endpoints of
a given query line segment. As we process the query and evaluate
data points, we incrementally insert the obstacles that might affect
the query result into the local visibility graph. Due to the small
size of the local visibility graph, the insertion/deletion/update can
be efficiently supported.

The second issue is how to efficiently answer a CONN query.
A naive approach is to issue an obstructed nearest neighbor
(ONN) search [31] at every point of a specified query line
segment q. However, this approach is definitely infeasible as the
number of points on q is infinite. Motivated by the fact that
nearby points along the query segment might share the same
ONN, we adopt an incremental approach to fine-tune the result
upon the evaluation of each new data point, based on the concept
of split point (i.e., the points along the query segment bounded by
two continuous split points share the same ONN). Nevertheless,
due to the existence of obstacles, existing split point formation
algorithms developed for CNN search cannot be applied. In this
paper, we propose a novel concept, namely control point, to
facilitate the computation of obstructed distances, and design a
quadratic-based approach to form split points. In addition, several
pruning strategies have been proposed to further improve the
search performance.

In summary, this paper has made five-fold main contributions,
summarized as follows:

 We formalize CONN search, a new addition to the family of
spatial queries in an obstructed space. To the best of our
knowledge, this paper is the first attempt on this problem.

 We introduce the concept of control point that significantly
simplifies the computation and comparison of the obstructed
distance between two objects.

 We propose a quadratic-based method to form split points,
by solving quadratic inequalities.

 We develop an efficient algorithm for processing CONN
search which can be extended to handle COkNN retrieval.

 We conduct extensive experiments using both real and
synthetic datasets to demonstrate the efficiency and
effectiveness of the proposed algorithms.

The rest of this paper is organized as follows. Section 2
overviews related work. Section 3 formulates the CONN problem,
introduces the concept of control point, and presents the split
point computation approach. Section 4 elaborates an efficient
algorithm for CONN query. Section 5 reports experimental results
and our findings. Finally, Section 6 concludes the paper with
some directions for future work.

2. RELATED WORK
In this section, we review the existing work related to CONN

queries, namely, point NN search in the Euclidean space,
snapshot CNN/CkNN queries, query processing with the existence
of obstacles, and main-memory obstacle path search.

2.1 Point NN Search
A conventional (i.e., point) NN query finds the k (≥ 1) data

point(s) from a data set that are closest to a specified query point
q according to Euclidean distance. The algorithms for NN search
on R-trees [1, 11, 19] follow the branch-and-bound paradigm and
utilize some metrics to prune the search space. For example, the
metric mindist(q, N) corresponds to the minimal distance between
q and any point included by a node N; and thus it gives a lower
bound of the distance from any point of N to q.

Existing algorithms for NN search usually follow either best-
first (BF) or depth-first (DF) traversal paradigm. DF algorithms [3,
18] start from the root, and visit recursively the node with the
smallest mindist to q until the leaf level where a potential NN is
reached. Subsequently, the algorithm conducts backtrackings. In
particular, during backtracking to the upper levels, DF only visits
those entries whose minimum distances to q are smaller than the
distance between the NN candidate retrieved so far and the query
point. As demonstrated in [16], the DF algorithm is suboptimal,
i.e., it accesses more nodes than necessary.

BF algorithms [12, 13] achieve the optimal I/O performance by
visiting only the nodes necessary for obtaining the NN(s).
Towards this, BF maintains a heap H with the entries visited so
far, sorted in ascending order of their mindist to q. Starting from
the root node, BF recursively examines the top entry e of H. If e is
an intermediate node (i.e., a non-leaf node), its child entries are
en-heaped for later examination. If e is a data point, it is reported
as an actual NN of a query point. Both DF and BF can be easily
extended to retrieve k (> 1) NNs. Furthermore, BF is incremental,
i.e., it returns the NNs in ascending order of their distances to the
query point; and hence k does not have to be known in advance,
which allows different termination conditions to be applied.

2.2 Snapshot CNN/CkNN Queries
The CNN search has received considerable attention since it

was first introduced by Sistla et al. [21] in spatial-temporal
databases. In the initial work, modeling methods and query
languages for the expression of CNN queries are presented, but
not the processing algorithms. The first algorithm for CNN query
processing, based on periodical sampling technique, is proposed
in [22]. Due to the inherent shortcoming of sampling, its
performance highly depends on the number and positions of those
sampling points and its accuracy cannot be guaranteed. In order to
conduct exact CNN search, two query processing algorithms are
proposed in [23, 24], using R-trees as the underlying data
structure. The first algorithm is based on the concept of time-
parameterized (TP) queries [23], which treats a query line
segment as the moving trajectory of a query point. Thus, the

nearest object to the moving query point is valid only for a limited
duration, and a new TP query is issued to retrieve the next nearest
object once the valid time of current query expires, i.e., when a
split point is reached. Although the TP approach avoids the
drawbacks of sampling, it needs to issue m TP queries with m the
number of answer objects. In order to improve the performance,
the second algorithm [24] retrieves all the answer objects for the
whole query line segment in a single round. Recently, Zheng et al.
[32] study CNN search in wireless data broadcast systems, where
mobile clients answer their own CNN search via listening to the
wireless broadcast channel.

All the above work on CNN queries use Euclidean distances to
measure the proximity of objects. As for network distance, the
first algorithm to process CNN queries in a road network is
proposed in [7], which tries to find the locations on a path that an
NN search must be performed. However, it does not support
CkNN search. Motivated by this, Kolahdouzan and Shahabi [14]
present two methods, namely, Intersection Examination (IE) and
Upper Bound Algorithm (UBA). Compared with IE, UBA gains
better performance by restricting the evaluation of kNN queries to
only the locations where they are required. An alternative
approach is proposed in [4]. It retrieves the kNN object sets of all
network nodes in the query path, and associates them with the
data objects located along the path.

As mentioned in Section 1, all the aforementioned algorithms
do not take into consideration the existence of obstacles and they
cannot be used to deal with CONN queries efficiently. The main
difference between CNN search and CONN search has been
summarized in [31].

2.3 Queries with Obstacles
In an obstructed space, the distance between objects is affected

by the existence of physical obstacles (e.g., buildings, rivers, etc.).
Zhang et al. [31] propose several algorithms for processing
common spatial queries such as range queries, NN search, e-
distance join queries, closest pair queries and distance semi-join
queries, in the obstructed space. Xia et al. [29] present a more
detailed study of the obstructed nearest neighbor (ONN) query
which finds the k (≥ 1) NNs of a given query point according to
the obstructed distance. However, to the best knowledge of the
authors, the CONN search has not been studied before.

More recently, the impact of obstacles on the object visibility
has been studied. Although it does not employ the obstructed
distance to measure the closeness between objects, it does
consider the existence of obstacles and two objects are visible to
each other iff the straight line segment connecting them does not
pass through any obstacle. Nutanong et al. [15] explore the visible
k-nearest neighbor (VkNN) search, which returns the k NNs that
are visible to a specified query point. Further studies along this
line include visible reverse k-nearest neighbor search [8] and
continuous VkNN search [9].

In addition, the problem of spatial clustering in the presence of
obstacles has attracted considerable attention in recent years. It
divides a set of 2D data points into smaller homogeneous groups
(i.e., clusters) by taking into account the influence of obstacles.
Handling these constraints can lead to effective and fruitful data
mining by capturing application semantics [26]. A large number
of clustering algorithms with obstacle constraints have been
proposed in the literature, including COD_CLARANS [25],
AUTOCLUST+ [6], DBCLuC [30], DBRS+ [28], DBRS_O [27],
and DBSCAN_MDO [17], etc.

2.4 Main-Memory Obstacle Path Queries
Main-memory based shortest path problem in the presence of

obstacles has been well-studied in computational geometry [2],
and the most common approach is based on the visibility graph
VG. A VG is constructed based on an obstacle set O and the
source/destination point ps/pe. Its nodes correspond to the vertices
of the obstacles or source/destination point. Two nodes ni, nj are
connected iff the straight line segment between them does not
intersect any obstacle interior.

ps

pe

obstacle

the shortest pathn1

n2

n3n4

o1
o2

n5 n6

n8 n7
Figure 2: Visibility graph and obstacle path

An example VG is illustrated in Figure 2, where shaded

polygons represent obstacles. Nodes n2 and n7 are not connected
as the corresponding straight line segment [n2, n7] intersects with
the obstacle o2. There are multiple paths available from the source
point ps to the destination point pe, such as the path via nodes n1,
n6 and the path via nodes n1, n8, and n7. Among all the available
paths, the one with the shortest distance is returned, i.e., the path
via nodes n4, n3, n5 and n6 for this example. Since the shortest
path contains only the edges of VG (as proved in [2]), a popular
and practical obstacle path (i.e., shortest path) computation
approach proceeds in two steps. The first step constructs VG,
which takes O (n2 logn) based on rotational plane sweep [20], and
can be optimized to O (m + n logn) with an optimal output-
sensitive algorithm [10]. Here, n is the number of nodes in VG
and m is the number of edges in VG. The second step computes
the shortest path in VG using Dijkstra’s algorithm [5], which
incurs O (m + n logn). Thus, the time and space complexities of
the approach are O (n2 logn) and O (n2), respectively. Obviously,
the algorithm has a poor scalability and cannot guarantee the
efficiency when a large number of obstacles are considered.

3. PRELIMINARIES
In this section, we formally define CONN search, introduce the

concept of control points, and present the quadratic-based split
point computation algorithm that is crucial to CONN query
processing. Table 1 summarizes the notations used in the rest of
this paper.

Table 1. Symbols and descriptions
Notation Description
P the set of data points p in a 2D space
O the set of obstacles o in a 2D space
Tp the R-tree on P
To the R-tree on O
q the query line segment with q = [S, E]
VG the visibility graph
RL the result list of a CONN query
dist(pi, pj) the Euclidean distance between pi and pj
H.head the top entry of a heap H
e.key the search key value of a heap entry e

DEFINITION 1 (VISIBILITY [8]). Given p, p′ ∈ P and O, p and p′
are visible to each other iff the straight line connecting them does
not cut through any obstacle, i.e., ∀ o ∈ O, [p, p′] ∩ o = ∅. □

DEFINITION 2 (VISIBLE REGION). Given p ∈ P, O, and q, the
visible region of p over q, denoted by VRp,q, is the set of intervals
R ⊆ q, such that p is visible to all the points along R. □

In a Euclidean space, any two points are visible to each other as
there are no obstacles. However, this statement does not hold in
an obstructed space. As shown in Figure 3, the visible region of p
over q is [S, s1], and the rest (i.e., the segment [s1, E]) is blocked
by obstacles o1 and/or o2. Point s2 is not located inside the visible
region of p (i.e., s2 ∉ VRp,q), and hence it is invisible to point p.
The visible region formation algorithm has been studied in [8, 9].

S s2 s3 s4 E

p

a
b

c
d

o1

o2

obstacle
control point

s1

q

Figure 3: Example of control point list

DEFINITION 3 (OBSTACLE-FREE PATH). Given O and two points

p, p′ ∈ P, a path P(p, p′) = {d1, d2, …, dn} connecting p with p′
sequentially passes n nodes (i.e., the vertices of obstacles),
denoted as di. Let d0 = p, dn+1 = p′, and assume P(p, p′) reaches di
before di+1. P(p, p′) is an obstacle-free path (path for short) iff ∀ i
∈ [0, n], di and di+1 are visible to each other. Its distance |P(p, p′)|
= ∑i∈[0, n] dist(di, di+1). □

DEFINITION 4 (OBSTRUCTED DISTANCE [25]). The obstructed
distance between two points p, p′ ∈ P, denoted by ||p, p′||, is the
length of the shortest obstacle-free path (shortest path for short)
from p to p′, denoted as SP(p, p′), i.e., ∀ P(p, p′), |P(p, p′)| ≥ |SP(p,
p′)|. Here, ||p, p′|| = |SP(p, p′)|. □

Given a set of obstacles, there are usually multiple obstacle-
free paths from a given point p to another point p′. As an example,
in Figure 3, the path P(p, E) = {c, b} passes c and b before
reaching E; and P(p, E) = {d} provides an alternative obstacle-
free path from p to E. Among all the obstacle-free paths from p to
E, the one with the minimal distance, i.e., P(p, E) = {d}, is the
shortest path SP(p, E). The obstructed distance between p and E is
the length of the corresponding shortest path, i.e., ||p, E|| = |SP(p,
E)| = dist(p, d) + dist(d, E).

DEFINITION 5 (OBSTRUCTED NEAREST NEIGHBOR). For a given
query point p, point p′ ∈ P is the obstructed nearest neighbor
(ONN) of p iff ∀ p′′ ∈ P − {p′}, ||p′, p|| ≤ ||p′′, p||. □

DEFINITION 6 (CONTINUOUS OBSTRUCTED NEAREST NEIGHBOR
QUERY). Given P, O, and q, a continuous obstructed nearest
neighbor (CONN) query returns the result list RL that contains a
set of 〈pi, Ri〉 (i ∈ [1, t]) tuples, such that (i) ∪i∈[1, t] Ri = q; (ii) ∀ i,
j (i ≠ j) ∈ [1, t], Ri ∩ Rj = ∅; and (iii) ∀ 〈pi, Ri〉 ∈ RL, pi is the
ONN of any point along interval Ri. □

In this paper, we focus on the processing of CONN search. As
pointed out in Section 1, a naive approach is to perform ONN
retrieval [31] at every single point of a specified query line
segment q. However, it is not feasible due to the unlimited
number of points along q. It is observed that nearby points along q
normally share the same ONN. Take a result list RL (= ∪i∈[1, t] 〈pi,
Ri〉) for a CONN query as an example. The object pi is the ONN
for every point along Ri. Consequently, it is only necessary to
issue ONN search at those points where ONN objects change. In
view of this, the concept of split point is introduced [24], as
defined in Definition 7.

DEFINITION 7 (SPLIT POINT FOR CONN). Given q = [a, b], O,
and p1, p2 ∈ P, let p1 be the ONN to all the points along [a, m]
and p2 be the ONN for all the points along [m, b], point m is a
split point where the ONN corresponding to q changes. □

Based on the concept of split point, the CONN search can be
conducted as follows. Initially, the result list RL = 〈∅, q〉. When
the first data point p is evaluated, p for sure is the ONN for any
point along the query segment q, i.e., RL = {〈p, q〉}. As more and
more points are processed, split points are generated and q will be
decomposed into smaller segments with each having its own ONN.
In other words, the evaluation of a new data point p′ on the
current result list RL is converted to check whether the existence
of p′ introduces any new split point on a region/interval Ri
included in RL. However, due to the existence of obstacles, the
computation of split points for CONN query is not a trivial issue,
and it is different from that for CNN search [24]. In this paper, we
introduce a novel concept, namely control point that is formally
defined in Definition 8, to facilitate the formation of split points.

DEFINITION 8 (CONTROL POINT). Given p ∈ P, O, and an
interval R, a point cp is the control point of p over R, denoted by
CPp,R, iff (i) the shortest path from p to any point on R passes
through cp; and (ii) cp is visible to every point on R. □

As shown in Figure 3, point a is the control point for point p
over segment [s1, s2], meaning that for any point p′ ∈ [s1, s2], the
shortest path from p to p′ must pass a, and the obstructed distance
between p and p′, i.e., ||p, p′||, equals ||p, a|| + dist(a, p′). Based on
the concept of control point, each point p has its control point list
over q, denoted as CPLp,q (see Definition 9). Correspondingly, the
result list RL has to be decomposed further into 〈pi, cpi, Ri〉, which
indicates that point pi is the ONN to any point along Ri, and the
shortest paths must pass point cpi. We leave the detailed detection
algorithm for control points to Section 4, and focus this section on
how control points can help to find out split points and to provide
pruning opportunity.

DEFINITION 9 (CONTROL POINT LIST). Given p ∈ P and q, the
control point list of p over q, denoted by CPLp,q, contains a set of
〈cpi, Ri〉 (i ∈ [1, n]) tuples, such that (i) ∪i∈[1, n] Ri = q; (ii) ∀ i, j (i
≠ j) ∈ [1, n], Ri ∩ Rj = ∅; and (iii) ∀ 〈cpi, Ri〉 ∈ CPLp,q, cpi is the
control point for p over interval Ri. □

Given a segment q and two points p, p′, suppose point v is the
control point of p over q, point u is the control point of p′ over q,
and ||p, v||, ||p′, u|| are known with ||p, v|| − ||p′, u|| = d. We further
assume that p is the ONN of q before p′ is accessed, and now we
are going to evaluate p′. The locations of u, v and the value of d
have a direct impact on the number/position of the split point(s)

that are introduced by p′ on q. In the following, we first prove that
the maximal number of split points introduced by p′ is two, then
explain how to determine the locations of split points, and finally
present several pruning strategies.

Y

X
S E

u

v

sy zn ma

b

c

⊥(u, v)

ab
b c−

2 2 2

2
a c b

a
+ −

q

control point

X

Y

Y=dist(u, v)

Y=a

Y=-a

d≥dist(u, v)

a<d<dist(u, v)

-a<d≤a

d≤-a

y zS E

(a) Example (b) Y(x) = dist(u, s) − dist(v, s)

Figure 4: Properties of split points

THEOREM 1. Given two points p, p′, a line segment q = [S, E],
together with corresponding control points v/u of p/p′ over q, let d
= ||p, v|| − ||p′, u||. There are at most two points along q with same
obstructed distance to p and p′. □

PROOF. Consider the illustrative example of Figure 4(a), in
which points m and n are the projections of u and v on q
respectively, point y is the intersection between q and the
extended line of segment [u, v], and point z is the intersection
between the perpendicular bisector ⊥(u, v) of [u, v] and q. We
further assume that point n is the origin of the XY coordinate
system as shown in Figure 4(a). Let dist(n, m) = a (> 0), dist(v, n)
= b, dist(u, m) = c and assume c > b. As we want to find point s
such that ||p, v|| + dist(v, s) = ||p′, u|| + dist(u, s), we need to find
points s that satisfy dist(u, s) − dist(v, s) = ||p, v|| − ||p′, u|| = d.
Assume point sp has coordinate (x, 0), we need to solve following
quadratic polynomial:

2222)(),(),(bxcxaspvdistspudistd +−+−=−= (1)

Let A = 4a2 − 4d2, B = −4aT, and C = T2 − 4b2d2, with T = a2 +
c2 − b2 − d2, the roots of Equation (1) can be derived as follows: (i)
if A = 0, then x = −C/B; otherwise (ii) 2(4) (2)x B B AC A= − ± −
Hence, there are at most two points such that ||p, v|| + dist(v, sp) =
||p′, u|| + dist(u, sp). The proof can be easily adjusted for other
cases that include (i) a = 0, segment [u, v] is vertical to q; (ii) if b
= c, [u, v] is parallel to q, and (iii) b > c. ■

The above Theorem proves that there are at most two points sp
such that they have the same obstructed distances from p and p′.
We can also prove that as q is decomposed into smaller segments
R by points sp, all the points along R must share the same ONN
(either p or p′), i.e., points sp are split point(s). In order to
facilitate understanding, we transfer Equation (1) to Equation (2),
and assume point s is located at (x, 0). The positions of split
points are corresponding to the x values such that Y(x) = d. Figure
4(b) plots the distribution of Y(x) under different x values.

2222)(),(),()(bxcxasvdistsudistxY +−+−=−= (2)

Based on the derivative and the limit of Equation (2) w.r.t. a
variable x, as shown in Equation (3), we can conclude that (i)
when x < ab/(b−c), Y(x) is monotone increasing and Y ∈ (a, dist(u,
v)); (ii) when x > ab/(b−c), it is monotone decreasing and Y ∈ (-a,
dist(u, v)); and (iii) when x = ab/(b−c), Y(x) reaches its maximal

value2 dist(u, v). The positions of split points can be determined
as follows, according to the value of d = ||p, v|| − ||p′, u|| and Y(x).

2 2

2 2

2 2 2 2

2 2

2 2

1 1
1 1

()

() 0
()

1 1 0
1 1

() ()

x a
c b

x a x
x a xY x x a

a x c x b

x
c b

a x x

⎧
− >⎪

⎪
+ +⎪ −⎪

⎪ −⎪′ = − ≤ ≤⎨
− + +⎪

⎪ − −⎪ − <
⎪

+ +⎪
− −⎪⎩

, (3)

lim ()
x

Y x a
→+∞

= − , and lim ()
x

Y x a
→−∞

=

Case 1: d ≥ dist(u, v). As Y(x) ≤ dist(u, v), it is for sure that for
any point s along q, Y(x) = dist(u, s) − dist(v, s) ≤ d = ||p, v|| − ||p′,
u||. In other words, it indicates ||p′, u|| + dist(u, s) ≤ ||p, v|| + dist(v,
s), and thus new point p′ will replace p as the ONN for any point
along q without introducing any new split point.

Case 2: a < d < dist(u, v). As depicted in Figure 4(b), there will
be two values x1 and x2 such that Y(x1) = Y(x2) = d, with x1 <
ab/(b−c) < x2. Let (x1, 0) be s1 and (x2, 0) be s2. For a given point s
with coordinate (x, 0), when (i) x < x1 or x > x2, Y(x) < d which
means dist(u, s) − dist(v, s) < ||p, v|| − ||p′, u||, i.e., ||p′, u|| + dist(u,
s) < ||p, v|| + dist(v, s), and hence point p′ is the ONN for each
point along the segments [S, s1] and [s2, E]; and (ii) x1 ≤ x ≤ x2,
Y(x) ≥ d which means dist(u, s) − dist(v, s) ≥ ||p, v|| − ||p′, u||, i.e.,
||p′, u|| + dist(u, s) ≥ ||p, v|| + dist(v, s), and thus point p still is the
ONN for all the points along the segment [s1, s2]. In this case, p′
introduces two split points s1, s2.

Case 3: -a < d ≤ a. As depicted in Figure 4(b), there will be
only one value x1 such that Y(x1) = d. Let (x1, 0) be s1. For a given
point s with coordinate (x, 0), when (i) x < x1, Y(x) > d which
indicates dist(u, s) − dist(v, s) > ||p, v|| − ||p′, u||, i.e., ||p′, u|| +
dist(u, s) > ||p, v|| + dist(v, s), and hence point p is still the ONN
for every point along the segment [S, s1]; and (ii) x ≥ x1, Y(x) ≤ d
which means dist(u, s) − dist(v, s) ≤ ||p, v|| − ||p′, u||, i.e., ||p′, u|| +
dist(u, s) ≤ ||p, v|| + dist(v, s), and thus point p′ is the ONN for all
the points along the segment [s1, E]. In this case, p′ introduces one
split point s1.

Case 4: d ≤ -a. As Y(x) > -a, it is for sure that dist(u, s) − dist(v,
s) ≥ d. In other words, it indicates ||p′, u|| + dist(u, s) ≥ ||p, v|| +
dist(v, s). Consequently, point p is still the ONN to any point on q.

In the above discussion, we define a quadratic polynomial
whose roots can be used to derive the positions and number of
split points. However, some special case of Case 1/Case 4 can be
detected by Lemma 1, without any expensive calculation of the
quadratic polynomial. Its pruning power will be detailed in
Section 4 where we present the CONN search algorithm.

LEMMA 1. Given two points p, p′, a line segment q = [S, E],
together with corresponding control points v and u, let dist⊥(cp, q)

2 Note that the distribution of Y(x) under other cases (e.g., a = 0,

b > c) has different trend, i.e., different inflexion points and
maximal/minimal values.

be the vertical distance from a control point cp to a line segment
q, and assume dist⊥(u, q) > dist⊥(v, q). Point p for sure is closer to
any point along q compared with p′, if it satisfies (i) ||p′, u|| +
dist(u, S) > ||p, v|| + dist(v, S); and (ii) ||p′, u|| + dist(u, E) > ||p, v||
+ dist(v, E). □

PROOF. Without loss of generality, we assume that there is at
least one point s along the segment q such that ||p′, s|| < ||p, s||. As
points v and u are the control points of p and p′ over q
respectively, ||p′, s|| = ||p′, u|| + dist(u, s) and ||p, s|| = ||p, v|| + dist(v,
s). ||p′, s|| < ||p, s|| indicates dist(u, s) − dist(v, s) < ||p, v|| − ||p′, u|| =
d. On the other hand, based on condition (i) and condition (ii), we
have dist(u, S) − dist(v, S) > d and dist(u, E) − dist(v, E) > d. Let
Y(t) = dist(u, t) − dist(v, t) with t ∈ [S, E]. As t varies from S to E,
the value of Y(t) first drops and then increases, which contradicts
the distribution of Y(t) shown in Figure 4(b). Consequently, our
assumption that ||p′, s|| < ||p, s|| is invalid, and point p for sure is
nearer to any point along q than p′. ■

Based on Lemma 1, we introduce a pruning distance, namely
RLMAX = MAXi∈[1, t](||pi, Ri.l||, ||pi, Ri.r||)3. Given a current result list,
if all the unexamined objects have their minimal distances to the
query line segment larger than RLMAX, it is guaranteed that the
current result list will not be changed by any unexamined object
(as proved by Lemma 2). In other words, Lemma 2 provides a
search termination condition which will be utilized in our CONN
search algorithm that is to be presented in the next section.

LEMMA 2. Given a result list RL =∪i∈[1, t]〈pi, cpi, Ri〉, a point p,
and a segment q = [S, E], p for sure cannot change RL if
mindist(p, q) > RLMAX. □

PROOF. Without loss of generality, we assume that there is at
least one point s ∈ Ri along q such that ||p, s|| < ||pi, s||. As s is a
point on Ri, ||p, s|| ≥ dist(p, s) ≥ mindist(p, q). On the other hand,
||pi, s|| = ||pi, cpi|| + dist(cpi, s). Since cpi is the control point of pi
over Ri ⊆ q, it is visible to any point along Ri. Consequently,
dist(cpi, s) ≤ MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)), i.e., ||pi, s|| ≤ ||pi,
cpi|| + MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)) = MAX(||pi, Ri.l||, ||pi,
Ri.r||) ≤ RLMAX < mindist(p, q). Hence, ||p, s|| that is larger than
mindist(p, q) for sure is larger than ||pi, s||. The assumption is
invalid and the proof completes. ■

4. CONN QUERY PROCESSING
In this section, we present the detailed CONN query processing

algorithm. The basic idea is to traverse the data set P in ascending
order of their Euclidean distances (mindist that is the lower bound
of the obstructed distance) to the query line segment q, assuming
that P and O are indexed by two separate R-trees. For each data
point p ∈ P visited, we first find out all the obstacles that might
affect the obstructed distances from p to any point along q, then
identify the control points of p over q, and finally evaluate the
impact of p on the current result list RL which is initialized to 〈∅,
∅, q〉. In what follows, we elaborate these three steps, then
propose the complete CONN search algorithm, and finally discuss
the flexibility/extension of the search algorithm. To simplify the

3 If ∃ 〈pi, cpi, Ri〉 ∈ RL with pi = ∅, ||pi, Ri.l|| = ||pi, Ri.r|| = ∞, and

MAX(a, b) is a function to return (i) a if a ≥ b and (ii) b
otherwise.

discussion, we use line segments, but not rectangles, to represent
obstacles in our running examples, while the ideas can be easily
extended to rectangles that are sets of line segments.

4.1 Obstacle Retrieval
As mentioned in Section 1, the existing VG-based approach

needs to maintain the visibility graph and its high space and time
complexities deteriorate its practicability. Actually, for a given
point p and a given query line segment q = [S, E], only a small
number of obstacles will affect the obstructed distances from p to
any point along q. As demonstrated in Theorem 2, once the
shortest path from p to S and that from p to E are identified, the
search range for all the obstacles that may affect the obstructed
distance between p and any point along q, denoted by SRp,q, is
confirmed; and thus the obstacle retrieval can be safely terminated
after all the obstacles inside SRp,q are retrieved.

S E

p

a

b

c

d

f

g

s
x

o1

obstalce

q
shortest path from p to S

shortest path from p to E

SRp,q

Figure 5: The obstacle search range

THEOREM 2. Given a data point p, a query segment q = [S, E],

let SRp,q be the range bounded by SP(p, S), SP(p, E), and q. ∀ s ∈
q, SP(p, s) only passes vertices of obstacles o ∈ SRp,q. □

PROOF. We assume that there is a point s ∈ q such that its
shortest path SP(p, s) passes a vertex of at least one obstacle o
outside SRp,q. As o ∉ SRp,q and s ∈SRp,q, SP(p, s) must intersect
the boundary of SRp,q, and let point x be an intersection. Without
loss of generality, we assume x is located at SP(p, S).
Consequently, we have two paths from p to x, i.e., P1(p, x)
following SP(p, s) and P2(p, x) following SP(p, S) but both
stopping at x instead of s/S. Take Figure 5 as an example, SP(p, s)
= {f, g} and SP(p, S) = {a, b}. Correspondingly, P1(p, x) = {f, g}
and P2(p, x) = {a, b}. If |P1(p, x)| < |P2(p, x)|, |P1(p, x)| + ||x, S|| <
|P2(p, x)| + ||x, S|| = ||p, S|| which contradicts the fact that ||p, S|| is
the minimal distance between p and S. Otherwise, |P1(p, x)| ≥
|P2(p, x)|, |P1(p, x)| + ||x, s|| ≥ |P2(p, x)| + ||x, s||; and hence the path
from p to s passing o1 is not the shortest path, which contradicts
our assumption. Therefore, our assumption is invalid and the
proof completes. ■

In order to utilize Theorem 2 to bound the search range for all
the obstacles affecting the obstructed distances from p to any
point along q = [S, E], both SP(p, S) and SP(p, E) have to be
identified. Thus, Lemma 3 is developed.

LEMMA 3. Given a point p, a point s along q, and a path P(p, s)
from p to s, suppose all the obstacles that have their minimal
Euclidean distances to q bounded by |P(p, s)| have been retrieved
and maintained in a set So, i.e., So = {o ∈ O | mindist(o, q) ≤ |P(p,
s)|}. Let P2(p, s) be the shortest path from p to s obtained based
on So. If |P2(p, s)| ≤ |P(p, s)|, it is confirmed that P2(p, s) must be
the real shortest path from p to s, i.e., P2(p, s) = SP(p, s). □

PROOF. If P2(p, s) is not the real shortest path from p to s, there
must be another one P3(p, s) = SP(p, s) with |P3(p, s) | < |P2(p, s)|.
As P2(p, s) is the shortest one among all the paths from p to s such
that they only pass the vertices of obstacles inside So, P3(p, s)
must pass at least one vertex, denoted as v, of some obstacle that
is not included in So, i.e., located outside the circle cir(s, |P(p, s)|)
centered at s with |P(p, s)| as radius. We further decompose P3(p,
s) into two paths via node v, P3(p, v) and P3(v, s). As |P3(p, s)| =
|P3(p, v)| + |P3(v, s)|, |P3(p, s)| > |P3(v, s)| ≥ dist(v, s) > |P(p, s)|. On
the other hand, |P2(p, s)| ≤ |P(p, s)| holds. Hence, |P3(p, s)| > |P2(p,
s)| contradicts our assumption, and the proof completes. ■

Based on Theorem 2 and Lemma 3, our Incremental Obstacle
Retrieval Algorithm (IOR) is developed, with its pseudo-code
depicted in Algorithm 1. The basic idea is to retrieve the obstacles
according to ascending order of their minimal distances to q, and
add them into the local visibility graph VG which initially only
includes the point p currently processed and two endpoints of q
(i.e., S and E). Based on local VG, a local shortest path from p to
endpoint S/E can be identified by Dijkstra’s algorithm [5],
denoted as P1(p, S) and P2(p, E) (Line 2). It then fetches all the
obstacles having their smallest distances to q bounded by |P1(p,
S)| or |P2(p, E)|, and inserts them into local VG (Lines 6-12). Since
VG is changed, both P1(p, S) and P2(p, E) need to be validated,
which may trigger the retrieval of more obstacles. The process
proceeds until the new P1(p, S) and P2(p, E) do not trigger the
retrieval of any new obstacle. As stated in Lemma 3, P1(p, S) and
P2(p, E) must represent the real shortest path from p to S/E, i.e.,
P1(p, S) = SP(p, S) and P2(p, E) = SP(p, E). Consequently, the
range bounded by P1(p, S), P2(p, E) and q corresponds to the
range SRp,q defined in Theorem 2. In other words, the fact that
IOR retrieves all the obstacles with their minimal distances to q
not exceeding MAX(|P1(p, S)|, |P2(p, E)|) means that all the obstacles
located inside range SRp,q have been retrieved, as demonstrated in
Lemma 4. Therefore, the correctness of IOR is guaranteed.

Algorithm 1 Incremental Obstacle Retrieval Algorithm (IOR)
Input: obstacle R-tree To, min-heap Ho, query line segment q = [S, E],
 data point p, visibility graph VG, previous search distance d
 1: while (1) do
 2: P1(p, S) = Dijkstra(VG, p, S) and P2(p, E) = Dijkstra(VG, p, E)
 3: d′ = MAX(|P1(p, S)|, |P2(p, E)|)
 4: if (d′ > d) then
 5: d = d′ // for the next loop
 6: while Ho ≠ ∅ and Ho.head.key ≤ d do
 7: de-heap the top entry (e, key) of Ho
 8: if e is an obstacle then
 9: add e to set So and their vertices to VG
10: else // e is a non-leaf node
11: for each child entry ei ∈ e do
12: insert (ei, mindist(ei, q)) into Ho
13: else break

LEMMA 4. Given a query line segment q = [S, E], let d =

MAX(|SP(p, S)|, |SP(p, E)|). All the obstacles that are inside range
SRp,q must have their minimal distances to q bounded by d. □

PROOF. Suppose there is an obstacle o that is inside the range
SRp,q with mindist(o, q) > d. Let segment l = [o, s] refer to the
shortest path from o to q in an Euclidean space which intersects q
at point s, i.e., mindist(o, q) = dist(o, s). Without loss of generality,
we extend the segment l to l′ and assume l′ intersects SP(p, S) or

SP(p, E) at point p′, i.e., l′ = [p′, s]. Since point p′ lies along SP(p,
S) or SP(p, E), ||p′, s|| ≤ MAX(|SP(p, S)|, |SP(p, E)|) = d. On the
other hand, dist(o, s) ≤ dist(p′, s) ≤ ||p′, s|| ≤ d. Consequently, our
assumption that mindist(o, q) = dist(o, s) > d is not valid. The
proof completes. ■

In addition, we would like to highlight that the local visibility
graph VG formed by a point p can be reused by a point p′ that is
accessed/evaluated after p. If p′ does not trigger the retrieval of
any new obstacle (i.e., current VG has already covered the search
range SRp′,q), IOR for point p′ can be safely terminated by reusing
the current VG. Otherwise, it expands the local VG by adding new
obstacles until the search range SRp′,q has been fully covered.
Therefore, the IOR for all the points in P will access the obstacle
set O at most once.

4.2 Control Point List Computation
Once the local VG contains all the obstacles that may affect the

obstructed distances from a specified data point p to q, our next
step is to find out the control point list of p over q, i.e., CPLp,q. A
straightforward approach is to utilize the fact that a control point
over R must be visible to R and invoke Dijkstra’s algorithm to
form the shortest path from p to every node n that is within the
SRp,q

4. For each n ∈ SRp,q, we get the visible region VRn,q, and add
a new tuple 〈n, Rn = VRn,q〉 to CPLp,q, assuming that n is the
control point of p over VRn,q. If Rn overlaps Rm that is associated
with some other control point m included in current CPLp,q (i.e., ∃
〈m, Rm〉 ∈ CPLp,q with Rn ∩ Rm ≠ ∅), an update is performed.
Obviously, this method is expensive, especially when the number
of nodes inside SRp,q is large. In order to handle this issue and
improve the performance, we propose several Lemmas that can
simplify the evaluation cost of some nodes n ∈ SRp,q.

LEMMA 5. Given a point p, a line segment q = [S, E], and a
node v in VG, we assume the shortest path SP(p, v) visits node u
right before it reaches v. Let VRu,q and VRv,q be the visible regions
of u and v over q respectively, v cannot be the control point of p
over any interval R ⊆ (VRu,q ∩ VRv,q). □

PROOF. As shown in Figure 6(a), suppose v is the control point
of p over at least one point x ∈ (VRu,q ∩ VRv,q) and let P1(p, x) be
the shortest path from p to x via v, i.e., |P1(p, x)| = ||p, v|| + dist(v,
x) = ||p, u|| + dist(u, v) + dist(v, x) > ||p, u|| + dist(u, x).
Consequently, P1(p, x) is not the shortest path from p to x, which
contradicts our assumption. The proof completes. ■

S Es1x

u

v

p

q

o1

o2

obstacle

 S Es2s1

q
x s4s3

o1 o2

obstacle

y
v

u

p

R.l R.r

o

(a) v is not control point of [S, s1] (b) v is not control point of [s3, s4]

Figure 6: Optimizations for control point list computation

4 Note that the current local VG covers an area larger than SRp,q,

but only those nodes inside SRp,q may have an impact on CPLp,q.

As Dijkstra’s algorithm gradually expands the search space
from q (i.e., it always reaches u before v if ||p, u|| < ||p, v||),
Lemma 5 matches its traversal perfectly. Whenever a node v is
examined, it must be reached by the shortest path from p, and
hence the node u visited right before v along the path is known.
As illustrated in Figure 6(a), the shortest path from p to v passes u
first and then reaches v. Instead of considering the visible region
of v (that is entire q), we only need to consider the region that is
not enclosed by VRu,q (i.e., [s1, E]). However, not all the intervals
included in (VRv,q − VRu,q) need evaluation, Lemma 6 can further
shrink the search interval.

LEMMA 6. Given a point p, a line segment q, and a node v in a
visibility graph VG, we assume the shortest path SP(p, v) visits
node u right before it reaches v. Given an interval R = [R.l, R.r] ⊆
(VRv,q − VRu,q) such that only endpoints R.l and R.r, but not any
point on R, are visible to u, if v is located outside the triangle
formed by u, R.l, and R.r, v cannot become the control point of p
over R. □

PROOF. Take R = [s3, s4] ⊆ (VRv,q − VRu,q) shown in Figure 6(b)
as an example. Although v is outside ∆us3s4, we assume v is the
control point of p on at least one point x on R. Let P1(p, x) be the
shortest path from p to x via v. As v is outside the triangle ∆us3s4,
without loss of generality, we assume P1(p, x) intersects the line
segment q1 = [u, s3] at point y. |P1(p, x)| = ||p, u|| + dist(u, v) +
dist(v, x). Let P2(p, x) be the shortest path from p to x via u and
then via o. Here, o is the vertex of the obstacle o2 that blocks u
from R. Obviously, |P2(p, x)| = ||p, u|| + dist(u, o) + dist(o, x).
Since in triangle ∆oxy, dist(o, y) + dist(y, x) > dist(o, x).
Consequently, |P2(p, x)| < ||p, u|| + dist(u, o) + dist(o, y) + dist(y, x)
= ||p, u|| + dist(u, y) + dist(y, x) < ||p, u|| + dist(u, v) + dist(v, y) +
dist(y, x) = ||p, u|| + dist(u, v) + dist(v, x) = |P1(p, x)|. Therefore,
P1(p, x) cannot be the shortest path (i.e., the shortest path from p
to x does not pass v), and our assumption is invalid. The proof
completes. ■

Take the case depicted in Figure 6(b) as an example. For all the
intervals included in VRv,q − VRu,q = [s1, s2] ∪ [s3, s4], we can
confirm that v cannot be the control point of p over [s3, s4] by
Lemma 6. The above two lemmas are developed to reduce the
examination cost of each traversed node of local visibility graph
VG. However, if the number of nodes included in local VG is very
big, the examination cost is still high. Actually, not all the nodes
can change the current control point list. In order to terminate the
traversal early, Lemma 7 is developed.

LEMMA 7. Given current control point list of p over q, i.e.,
CPLp,q = {〈cpi, Ri〉} with i ∈ [1, m], let CPLMAX = MAXi∈[1, m](||p,
cpi|| + dist(cpi, Ri.l), ||p, cpi|| + dist(cpi, Ri.r)) 5. A node v for sure
cannot be included in CPLp,q if ||p, v|| + mindist(v, q) ≥ CPLMAX.□

PROOF. If v is included in CPLp,q, there must be at least one
point s ⊆ q, such that the shortest path SP(p, s) from p to s passes
through v and s is visible to v. We denote this path as P1(p, s) with
|P1(p, s)| = ||p, v|| + dist(v, s) ≥ ||p, v|| + mindist(v, q) ≥ CPLMAX. On
the other hand, let 〈cpi, Ri〉 ∈ CPLp,q be a tuple in CPLp,q, such
that s ∈ Ri, and P2(p, s) be the path from p to s via current control
point cpi. |P2(p, s)| = ||p, cpi|| + dist(cpi, s). As dist(cpi, s) ≤

5 If ∃ 〈cpi, Ri〉 ∈ CPLp,q with cpi = ∅, CPLMAX = ∞.

MAX(dist(cpi, Ri.l), dist(cpi, Ri.r)), |P2(p, s)| ≤ CPLMAX ≤ |P1(p, s)|,
and thus P1(p, s) cannot be the shortest path from p to s. The
proof completes. ■

Lemma 7 serves as the termination condition of Control Point
List Computation Algorithm (CPLC) that is shown in Algorithm 2.
CPLC shares the basic idea as the approach we mentioned earlier.
That is to call Dijkstra’s algorithm to gradually traverse the local
visibility graph VG and to access nodes v according to ascending
order of their obstructed distances to p. The p’s control point list
CPLp,q over q is updated during the traversal. However, different
from the straightforward method, it employs Lemma 5 and
Lemma 6 to significantly reduce the node examination cost. The
Split function invoked (Line 14) is the same as the split point
computation algorithm presented in Section 3. Before v is
considered, all the shortest paths from p to any point along Rint
pass the control point cpi, and now we want to check whether the
path from p to any point along Rint via v is even shorter.

Algorithm 2 Control Point List Computation Algorithm (CPLC)
Input: query line segment q = [S, E], data point p, visibility graph VG
Output: p’s control point list CPLp,q over q
 1: CPLp,q = {〈∅, [S, E]〉}
 2: while there exists a node in VG that has not been visited do
 3: let v ∈ VG be the one with the smallest obstructed distance to p
 among those nodes not yet visited
 4: if ||p, v|| ≥ CPLMAX then // Lemma 7
 5: break
 6: let u be the node that SP(p, v) passes right before reaching v
 7: R = VRv − VRu // Lemma 5
 8: refine R based on Lemma 6
 9: for each tuple 〈cpi, Ri〉 in CPLp,q do // update CPLp,q
10: Rint = R ∩ Ri
11: if Rint ≠ ∅ and cpi = ∅ then
12: replace 〈cpi, Ri〉 with 〈v, Rint 〉 and 〈cpi, Ri − Rint 〉
13: else if Rint ≠ ∅ and cpi ≠ ∅ then
14: d = ||p, cpi|| − ||p, v|| and Split(p, cpi, p, v, Rint, d)
15: return CPLp,q

There are four cases, as discussed in Section 3, with d = ||p, cpi||
− ||p, v|| and a as the difference between v’s projection on q and
cpi’s projection on q: (i) Case 1: d ≥ dist(cpi, v), 〈cpi, Ri〉 is
replaced with 〈v, Rint〉 (Rint = R ∩ Ri) and 〈cpi, Ri − Rint〉. (ii) Case
2: a < d < dist(cpi, v), interval Rint will be decomposed into three
segments by points x1 and x2, with x1 and x2 derived based on
Equation (1). Thereafter, 〈cpi, Ri〉 is replaced accordingly. (iii)
Case 3: -a < d ≤ a, Rint will be decomposed into two segments by
point x1 with x1 derived based on Equation (1) too. Again, 〈cpi, Ri〉
is replaced accordingly. (iv) Case 4: d ≤ -a, 〈cpi, Ri〉 remains. The
process proceeds until all the nodes in local VG are traversed or
the visited node satisfies ||p, v|| ≥ CPLMAX. As nodes in local VG
are traversed based on ascending order of their obstructed
distances to p, when currently visited node has its obstructed
distance to p larger than CPLMAX, all the remaining nodes n in VG
must satisfy ||p, n|| ≥ CPLMAX. Note that the termination condition
relaxes Lemma 7 using zero as the lower bound of mindist(n, q).

EXAMPLE 1. We illustrate the CPLC algorithm with the example
shown in Figure 7, where the local VG = {S, E, p, u, v, w, z}.
First, CPLC accesses node p ∈ VG, and updates CPLp,q = {〈p, [S,
s1]〉, 〈∅, [s1, s3]〉, 〈p, [s3, s4]〉, 〈∅, [s4, E]〉}. Second, it accesses

node v ∈ VG and obtains its visible region VRv,q = [S, E]. Based
on Lemma 5, it gets R = [s1, s3] ∪ [s4, E] and refines R to [s1, s3]
according to Lemma 6. As in current CPLp,q, the control point
associated with [s1, s3] is ∅, CPLC updates CPLp,q = {〈p, [S, s1]〉,
〈v, [s1, s3]〉, 〈p, [s3, s4]〉, 〈∅, [s4, E]〉}. Next, it accesses node u ∈
VG and obtains its visible region VRu,q = [S, E]. Similarly, it gets
R = [s1, s3] ∪ [s4, E] based on Lemma 5 and refines R to [s1, s3]
by Lemma 6. As v is the current control point for the interval [s1,
s3], the Split function is called. Since ||p, v|| − ||p, u|| = d ∈ [-a, a],
R is decomposed into two segments [s1, s2] and [s2, s3].
Correspondingly, CPLp,q is updated to {〈p, [S, s1]〉, 〈u, [s1, s2]〉, 〈v,
[s2, s3]〉, 〈p, [s3, s4]〉, 〈∅, [s4, E]〉}. Nodes w and z are evaluated
similarly, and finally CPLC outputs {〈p, [S, s1]〉, 〈u, [s1, s2]〉, 〈v,
[s2, s3]〉, 〈p, [s3, s4]〉, 〈w, [s4, E]〉} as the final CPLp,q. □

S Es1 s2 s3 s4

S Es1 s2 s3 s4

p

o1

q

〈p, [S, s1]〉

o2

u
v

w

z

obstalce

〈u, [s1, s2]〉CPLp,q

〈v, [s2, s3]〉

〈p, [s3, s4]〉

〈w, [s4, E]〉

control point

Figure 7: Example of CPLC algorithm

Algorithm 3 Result List Update Algorithm (RLU)
Input: data point p, p’s control point list CPLp,q, current result list RL
Output: the updated result list
 1: for each tuple 〈pi, cpi, Ri〉 ∈ RL do
 2: for each tuple 〈cpi′, Ri′〉 ∈ CPLp,q do
 3: if Ri ∩ Ri′ ≠ ∅ then
 4: Rint = Ri ∩ Ri′ = [l, r], Rdif = Ri − Rint, Rdif′ = Ri′ − Rint
 5: if (Rdif ≠ ∅) then add 〈pi, cpi, Rdif〉 to RL
 6: if (Rdif′ ≠ ∅) then add 〈cpi′, Rdif′〉 to CPLp,q
 7: if ||pi, l|| ≤ ||p, l|| and ||pi, r|| ≤ ||p, r|| and mindist(pi, Rint)
 ≤ mindist(p, Rint) then // Lemma 1
 8: add 〈pi, cpi, Rint〉 to NRL6
 9: continue
10: else
11: d = ||pi, cpi|| − ||p, cpi′|| and Split(pi, cpi, p, cpi′, Rint, d)
12: insert result tuples into NRL
13: return NRL

4.3 Result List Update
Once a new data point p is accessed, and its control point list

over query segment q is formed, the next step is to evaluate the
impact of p on the current result list. The basic idea is to evaluate
whether p will replace the current ONN of some points s along q.
The Result List Update Algorithm (RLU) is presented in
Algorithm 3, which utilizes the Split function. RLU scans the
current result list RL. For each tuple 〈pi, cpi, Ri〉 ∈ RL, it finds the
corresponding tuple 〈cpi′, Ri′〉 ∈ CPLp,q with Ri ∩ Ri′ = [l, r] ≠ ∅.

6 When a new tuple 〈cpi, Ri〉 is inserted into NRL, it might be

merged with existing tuple 〈cpj, Rj〉 if cpi = cpj and intervals Ri,
Rj are adjacent.

By solving the Equation (1) (i.e., dist(cpi, x) – dist(cpi′, x) = ||pi,
cpi|| − ||p, cpi′|| with x ∈ [l, r]), it can update the result list
accordingly. As the details of split point calculation algorithm
(i.e., Split) have been already presented in Section 3, we use a
running example to illustrate the RLU algorithm.

q
S Es1

o1

o3

o2a

b

c

s2 s3 s4 s5

obstalce

v1

v2

v5

v6

v3

v4

Figure 8: Example of RLU algorithm

EXAMPLE 2. As shown in Figure 8, P = {a, b, c}, O = {o1, o2,

o3}, and q = [S, E]. Suppose that point a has been processed, with
current RL = {〈a, a, [S, s3]〉, 〈a, v1, [s3, s5]〉, 〈a, v2, [s5, E]〉} and
data point b is going to be evaluated with its control point list
CPLb,q = {〈b, [S, s2]〉, 〈v5, [s2, s4]〉, 〈v6, [s4, E]〉}. Now we invoke
RLU to evaluate the impact of b on RL. First, the tuple 〈a, a, [S,
s3]〉 ∈ RL is compared with 〈b, [S, s2]〉 ∈ CPLb,q. Based on the
Split function, Rint (= [S, s3] ∩ [S, s2] = [S, s2]) is partitioned into
two segments (i.e., Case 3), and NRL = {〈a, a, [S, s1]〉, 〈b, b, [s1,
s2]〉}. Next, the tuple 〈a, a, [s2, s3]〉 ∈ RL is compared with 〈v5, [s2,
s4]〉 ∈ CPLb,q. Again, based on the Split function, the entire Rint (=
[s2, s3] ∩ [s2, s4] = [s2, s3]) is closer to b than to a, and thus NRL =
{〈a, a, [S, s1]〉, 〈b, b, [s1, s2]〉, 〈b, v5, [s2, s3]〉}. Then, the tuple 〈a,
v1, [s3, s5]〉 ∈ RL is compared with 〈v5, [s3, s4]〉∈ CPLb,q. Similarly,
Split function detects that Rint (= [s3, s5] ∩ [s3, s4] = [s3, s4]) is
closer to b than to a, and hence NRL is updated to {〈a, a, [S, s1]〉,
〈b, b, [s1, s2]〉, 〈b, v5, [s2, s4]〉}. The process proceeds until all the
tuples in RL are evaluated, and the final NRL = {〈a, a, [S, s1]〉, 〈b,
b, [s1, s2]〉, 〈b, v5, [s2, s4]〉, 〈b, v6, [s4, E]〉}. □

Algorithm 4 CONN Search Algorithm (CONN)
Input: data R-tree Tp, obstacle R-tree To, query line segment q = [S, E]
Output: result list RL of the CONN query
 1: RL = {〈∅, ∅, [S, E]〉}, RLMAX = ∞, VG = {S, E}, d = 0
 2: a min-heap Hp = (root(Tp), 0), a min-heap Ho = (root(To), 0)
 3: while Hp ≠ ∅ and Hp.head.key < RLMAX do // Lemma 2
 4: de-heap the top entry (e, key) of Hp
 5: if e is a data point then
 6: insert e into local visibility graph VG
 7: IOR (To, Ho, q, e, VG, d) // see Algorithm 1
 8: CPLe,q = CPLC (q, e, VG) // see Algorithm 2
 9: remove e from VG
10: RL = RLU (e, CPLe,q, RL) // see Algorithm 3
11: else // e is an intermediate (i.e., non-leaf) node
12: for each child entry ei ∈ e do
13: insert (ei, mindist(ei, q)) into Hp
14: return RL

4.4 CONN Search Algorithm
Our CONN Search Algorithm (CONN) traverses the data set P

in ascending order of their minimal Euclidean distances to q (i.e.,

mindist). For each accessed data point p ∈ P, it invokes IOR to
retrieve all the obstacles that might affect the obstructed distances
from p to any point along q, calls CPLC to get the control point
list CPLp,q of p over q, and updates the result list via RLU. The
process proceeds until all the data points in P are evaluated or the
termination condition is satisfied, that is mindist(p, q) > RLMAX
(Lemma 2). Algorithm 4 presents the pseudo-code of CONN.

It is observed that the CONN algorithm traverses the data R-
tree Tp and the obstacle R-tree To at most once. Let |Tp| and |To| be
the tree size of Tp and To respectively, |VG| be the number of
nodes in VG, |R| be the maximal number of tuples included in RL,
CPLp,q (∀ p ∈ P), and VRn,q (∀ n ∈ VG), and N be the number of
data points accessed during the CONN search. The time
complexity and the correctness of CONN algorithm are analyzed
as follows.

THEOREM 3. The time complexity of the CONN algorithm is O
(N × log |Tp| × log |To| × |VG| × log |VG|). □

PROOF. For every data point p ∈ P visited during the search, the
CONN algorithm takes O (|VG| × log |VG|) to insert p into VG,
takes O (log |To| × |VG| × log |VG|) for IOR, takes O (|VG| × log
|VG| × |R|2) for CPLC, takes O (|R|2) for RLU, and incurs O (|VG|
× log |VG|) to delete p from VG. Consequently, the time
complexity of the CONN algorithm is O (N × log |Tp| × (|VG| ×
log |VG| + log |To| × |VG| × log |VG| + |VG| × log |VG| × |R|2 + |R|2
+ |VG| × log |VG|)) ≈ O (N × log |Tp| × log |To| × |VG| × log |VG|)
as |VG| << |To| (as demonstrated by our experimental results to be
presented in Section 5) and |R| << |Tp|. ■

THEOREM 4. The CONN algorithm retrieves exactly the ONN of
every point along a given query line segment, i.e., the algorithm
has no false misses and no false hits. □

4.5 Discussion
Our previously proposed CONN algorithm assumes the data set

P and the obstacle set O are indexed by two different R-trees.
However, it can be naturally extended to perform CONN search
when P and O are indexed by a single R-tree. The detailed
extensions are listed as follows: (i) It requires only one heap H to
store the candidate entries (including data points, obstacles, and
nodes), sorted in ascending order of their minimum distances to
the specified query line segment q. (ii) When processing the top
entry e de-heaped from H, it distinguishes three cases: (1) e is an
obstacle. It inserts e into VG. (2) e is a data point. It calls the IOR
to retrieve all the obstacles that may affect the obstructed distance
from e to any point on q, gets e’s control point list CPLe,q over q
via CPLC, and finally updates the result list RL via RLU. It is
worth noting that during the obstacle retrieval via IOR, it is
possible to access some data points which will be en-heaped into
H for later processing. (3) e is an intermediate node, its child
entries are en-heaped to H for later evaluation.

In addition, our proposed CONN query processing approaches
can be easily extended to tackle continuous obstructed k-nearest
neighbor (COkNN) search, which finds the k (≥ 1) obstructed
nearest neighbors (ONNs) to every point along a specified query
line segment. Due to the space limitation, we only list the major
differences. First, the output of a COkNN query contains a set of
〈ONNSi, Ri〉 tuples, where ONNSi is the set of ONNs for each
point on the interval Ri (= [Ri.l, Ri.r]) ⊆ q. Second, the pruning

distance RLMAX used in Lemma 2 has to be updated to MAXi∈[1, t]
(maxodist(ONNSi, Ri.l), maxodist(ONNSi, Ri.r)), in which
maxodist(ONNS, s) represents the maximal obstructed distance
from any point in set ONNS to point s, i.e., MAXp∈ONNS(||p, s||).

5. EXPERIMENTAL EVALUATION
This section evaluates the performance of the proposed

algorithms. We first describe experimental settings, and then
present experimental results and our findings. All the algorithms
were implemented in C++ and the experiments were conducted on
an Intel Core 2 Duo 2.33 GHz PC with 3.25GB RAM.

5.1 Experimental Setup
Our experiments are based on both real and synthetic datasets,

with the search space fixed at a [0, 10000] × [0, 10000] square
shaped range. Two real datasets are deployed, namely CA and LA7.
CA contains 2D points, representing 60,344 locations in
California; and LA includes 2D rectangles, representing 131,461
MBRs of streets in Los Angeles. All datasets are normalized in
order to fit the search range. Synthetic datasets are generated
based on uniform distribution and zipf distribution, with the
cardinality varying from 0.1×|LA| to 10×|LA|. The coordinate of
each point in Uniform datasets is generated uniformly along each
dimension, and that of each point in Zipf datasets is generated
according to zipf distribution with skew coefficient α = 0.8. We
assume a point’s coordinates on both dimensions are mutually
independent. As COkNN (k ≥ 1) search involves a data set P and
an obstacle set O, we deploy three different combinations of the
datasets, namely CL, UL, and ZL, representing (P, O) = (CA, LA),
(Uniform, LA), and (Zipf, LA), respectively. Note that the data
points in P are allowed to lie on the boundaries of the obstacles
but not in their interiors.

All data and obstacle sets are indexed by an R*-tree [1], with
the page size fixed at 4KB. The performance metrics in our
performance study include I/O cost (i.e., number of pages
accessed), CPU time, query cost (i.e., the sum of the I/O time and
CPU time, where the I/O time is computed by charging 10ms for
each page fault), visibility graph size |SVG| (i.e., number of
vertices in visibility graph), number of points evaluated (NPE)
during search, and number of obstacles evaluated (NOE) during
search. Unless specifically stated, the size of LRU buffer is 0 in
the experiments, i.e., the I/O cost is determined by the number of
nodes accessed. We investigate the efficiency and effectiveness of
our proposed algorithms under various parameters, which are
summarized in Table 2. The numbers in bold represent default
settings. In each experiment, we evaluate the impact of one
parameter while others are fixed at their default values, and run
100 COkNN queries with their average performance reported. The
starting point and the orientation (in [0, 2π)) of the query line
segment are randomly generated, while its length is controlled by
the parameter ql.

Table 2. Parameter ranges and default values
Parameter Range
query length ql (% of data space side) 1.5, 3, 4.5, 6, 7.5
k 1, 3, 5, 7, 9
|P|/|O| 0.1, 0.2, 0.5, 1, 2, 5, 10
buffer size bs (% of the tree size) 0, 1, 2, 4, 8, 16, 32

7 CA and LA are available in the site: http://www.rtreepo rtal.org.

5.2 Performance Study
The first set of experiments studies the effect of query length ql

(% of data space side). Figure 9 shows the efficiency of the
COkNN algorithm as a function of ql, by fixing k = 5. It is
observed that the total query time (breaking into I/O and CPU
cost), NPE, and NOE grow with ql. The reason behind is that, as
the query segment becomes longer, the number of candidate data
points processed, the number of obstacles encountered, and the
number of split points generated increase, which results in more
distance computation, more control point list computation, and
more result list update. Figure 9(b) illustrates the size of visibility
graph (i.e., |SVG|) with respect to ql. As all the obstacles are in
rectangular shapes, there are 4 × |O| = 525,844 vertexes in a
global visibility graph when O = LA, denoted as FULL in Figure
9(b). Notice that although |SVG| ascends with the growth of ql, its
size is much smaller than the size of FULL, as also demonstrated
in the subsequent experimental results. This further demonstrates
the effectiveness of our proposed incremental obstacle retrieval
(IOR) algorithm in reducing the number of obstacle traversals.

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1.5 3 4.5 6 7.5
query length (% of data space side)

to
ta

l t
im

e
(s

ec
)

1e+0

1e+1

1e+2

1e+3

1e+4

nu
m

be
r o

f i
te

m
s e

va
lu

at
edI/O

CPU
NPE
NOE

1e+0
1e+1

1e+2
1e+3

1e+4
1e+5

1e+6

1.5 3 4.5 6 7.5
query length (% of data space side)

vi
si

bi
lit

y
gr

ap
h

si
ze |SVG|

Full

137
693

1651
3655 6368

actual number of vertices
in visibility graph

(a) CL (k = 5) (b) CL (k = 5)

Figure 9: Performance vs. ql (% of data space side)

Figure 10 depicts the performance of the COkNN algorithm

with respect to k, with ql fixed at 4.5%. As expected, all costs
involving total query time, NPE, NOE, and |SVG| increase with k.
This is because a larger value of k implies a larger search range
(for both data points and obstacles) and hence more distance
computations are incurred. Furthermore, as k grows, the number
of answer points in the final result list increases, which results in
more frequent update operations and thus more expensive
maintenance cost of the result list.

1e-1

1e+0

1e+1

1e+2

1e+3

1 3 5 7 9
k

to
ta

l t
im

e
(s

ec
)

0

100

200

300

400

500

nu
m

be
r o

f i
te

m
s e

va
lu

at
ed

I/O
CPU

NPE
NOE

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1 3 5 7 9
k

vi
si

bi
lit

y
gr

ap
h

si
ze |SVG|

Full

1545 1615 1651 1701 1740

(a) CL (ql = 4.5%) (b) CL (ql = 4.5%)

Figure 10: Performance vs. k

Figure 11 plots the efficiency of the COkNN algorithm as a

function of the ratio of the cardinality of the data set P to that of
the obstacle set O, i.e., |P|/|O|, with k = 5 and ql = 4.5%. A crucial
observation is that the cost of the COkNN algorithm first drops
and then increases as |P|/|O| varies from 0.1 to 10. In particular,
the query time of COkNN decreases when |P|/|O| increases (e.g.,

from 0.1 to 0.5 in Figure 11(c)). This is because, as the density of
data set P grows, the search space of COkNN becomes smaller.
Accordingly, the number of obstacles that might affect the
obstructed distances from data points to any point on a given
query line segment is decreased (i.e., the IOR algorithm retrieves
less obstacles), which is indicated by NOE in Figures 11(a) and
11(c). However, as |P|/|O| continues ascending (e.g., from 1 to 10
in Figure 11(c)), the cost of COkNN gradually increases. This is
because the interval dominated by each data point becomes
shorter, and the result list contains more answer points. In other
words, more candidate data points need evaluation as implied by
NPE in Figures 11(a) and 11(c), which in turn increases the split
point computation overhead and the result list update cost.
Observe that when P and O share similar cardinalities (e.g., |P|/|O|
= 0.5), COkNN incurs the shortest query time. Since the search
space of COkNN decreases as |P|/|O| increases, |SVG| drops with
|P|/|O| as shown in Figures 11(b) and 11(d).

1e-1

1e+0

1e+1

1e+2

0.1 0.2 0.5 1 2 5 10
|P|/|O|

to
ta

l t
im

e
(s

ec
)

0
50
100
150
200
250
300

nu
m

be
r o

f i
te

m
s e

va
lu

at
edI/O

CPU
NPE
NOE

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

0.1 0.2 0.5 1 2 5 10
|P|/|O|

vi
si

bi
lit

y
gr

ap
h

si
ze |SVG|

Full
957 818 670 603 598 553 541

(a) UL (k = 5, ql = 4.5%) (b) UL (k = 5, ql = 4.5%)

0

0.7

1.4

2.1

2.8

3.5

0.1 0.2 0.5 1 2 5 10
|P|/|O|

to
ta

l t
im

e
(s

ec
)

0

90

180

270

360

450

nu
m

be
r o

f i
te

m
s e

va
lu

at
edI/O

CPU
NPE
NOE

1e+0

1e+1
1e+2

1e+3

1e+4
1e+5

1e+6

0.1 0.2 0.5 1 2 5 10
|P|/|O|

vi
si

bi
lit

y
gr

ap
h

siz
e |SVG|

Full

218 185 144 137 135 133 131

(c) ZL (k = 5, ql = 4.5%) (d) ZL (k = 5, ql = 4.5%)

Figure 11: Performance vs. |P|/|O|

All the previous experiments are conducted without any buffer

(i.e., the size of LRU buffer is 0). In this set of experiments, we
examine the influence of buffer size bs on the COkNN search
performance, with bs varying from 1% to 32% of each R-tree size.
The results are plotted in Figure 12, by fixing k = 5 and ql = 4.5%.
To obtain stable statistics, we use the first 50 queries to warm up
the buffer and only report the average performance of the last 50
queries. It is observed that non-zero buffer can only improve I/O
performance, but not others.

1e-1

1e+0

1e+1

1e+2

1 2 4 8 16 32
buffer size (% of the tree size)

to
ta

l t
im

e
(s

ec
)

0

90

180

270

360

450

nu
m

be
r o

f i
te

m
s e

va
lu

at
ed

I/O CPU NPE NOE

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1 2 4 8 16 32
buffer size (% of the tree size)

vi
si

bi
lit

y
gr

ap
h

si
ze |SVG|

Full

1651 1651 1651 1651 1651 1651

(a) CL (k = 5, ql = 4.5%) (b) CL (k = 5, ql = 4.5%)

1e-1

1e+0

1e+1

1e+2

1 2 4 8 16 32
buffer size (% of the tree size)

to
ta

l t
im

e
(s

ec
)

0

50

100

150

200

250

nu
m

be
r o

f i
te

m
s e

va
lu

at
ed

I/O CPU NPE NOE

1e+0

1e+1
1e+2

1e+3

1e+4
1e+5

1e+6

1 2 4 8 16 32
buffer size (% of the tree size)

vi
si

bi
lit

y
gr

ap
h

si
ze |SVG|

Full

876 876 876 876 876 876

(c) UL (k = 5, ql = 4.5%) (d) UL (k = 5, ql = 4.5%)

Figure 12: Performance vs. bs (% of the tree size)

In all the above experiments, we assume data set P and obstacle

set O are indexed by two separate R-trees. However, as
mentioned in Section 4.5, our proposed CONN search algorithm
is very flexible, and it can support the case where both P and O
are indexed by a single R-tree. In the last set of experiments, we
compare the performance of COkNN retrieval when P and O are
indexed by two different R-trees (denoted as 2T) against that
under the scenario where they are indexed by one unified R-tree
(denoted as 1T), and the experimental results are shown in Figure
13. It shows that 1T is more efficient than 2T in most cases. This
is because when both data points and obstacles are indexed by one
R-tree, only one traversal of the unified R-tree is required. Data
points and obstacles that are close to each other could be found in
the same leaf node of the R-tree. Based on this result, when we
perform expensive spatial data mining tasks, it is more beneficial
to build a single R-tree for both data points and obstacles.

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1.5 3 4.5 6 7.5
query length (% of data space side)

to
ta

l t
im

e
(s

ec
)

COkNN-1T
COkNN-2T

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1.5 3 4.5 6 7.5
query length (% of data space side)

to
ta

l t
im

e
(s

ec
)

COkNN-1T
COkNN-2T

(a) CL (k = 5) (b) UL (k = 5)

60

70

80

90

100

110

1 3 5 7 9
k

to
ta

l t
im

e
(s

ec
)

COkNN-1T
COkNN-2T

0

7

14

21

28

35

1 3 5 7 9
k

to
ta

l t
im

e
(s

ec
)

COkNN-1T
COkNN-2T

(c) CL (ql = 4.5%) (d) UL (ql = 4.5%)

0

7

14

21

28

35

0.1 0.2 0.5 1 2 5 10
|P|/|O|

to
ta

l t
im

e
(s

ec
)

COkNN-1T
COkNN-2T

0

2

4

6

8

10

0.1 0.2 0.5 1 2 5 10
|P|/|O|

to
ta

l t
im

e
(s

ec
)

COkNN-1T
COkNN-2T

(e) UL (k = 5, ql = 4.5%) (f) ZL (k = 5, ql = 4.5%)

Figure 13: COkNN on two R-trees vs. its on one R-tree

6. CONCLUSIONS
In this paper, for the first time, we identify and solve a novel

type of CNN queries, namely continuous obstructed nearest
neighbor (CONN) search, which considers the impact of obstacles
on the distances between objects. CONN queries are not only
interesting from a research point of view, but also useful in many
applications such as location-based services, geographic
information systems, and spatial data analysis. We carry out a
systematic study of CONN retrieval. First, we provide a formal
definition of the problem. Then, we present several effective
pruning strategies and develop efficient algorithms for CONN
query processing. Next, we extend our techniques to handle
COkNN search, a natural generalization of CONN query. Finally,
we conduct extensive experiments to verify the efficiency and
effectiveness of our proposed algorithms using both real and
synthetic datasets.

This work also motivates several directions for future research.
We plan to extend our methods to other CONN query variations
such as trajectory CONN which aims at retrieving the ONN of
every point on a specified moving trajectory that consists of
several consecutive line segments, and it would be also interesting
to investigate CONN queries for moving objects. In addition, it is
a challenging yet exciting topic to explore other forms of spatial
queries with obstacle constraints (e.g., obstructed reverse nearest
neighbor search, etc.).

7. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: An efficient and robust access method for
points and rectangles. In SIGMOD, pages 322–331, 1990.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf. Computational Geometry: Algorithms and
Applications, Second Edition. Springer-Verlag, 2000.

[3] K. L. Cheung and A. W-C Fu. Enhanced nearest neighbour
search on the R-tree. SIGMOD Record, 27(3):16–21, 1998.

[4] H.-J. Cho and C.-W. Chung. An efficient and scalable
approach to CNN queries in a road network. In VLDB, pages
865–876, 2005.

[5] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[6] V. Estivill-Castro and I. Lee. Autoclust+: Automatic
clustering of point-data sets in the presence of obstacles. In
TSDM, pages 133–146, 2000.

[7] J. Feng and T. Watanabe. A fast method for continuous
nearest target objects query on road network. In VSMM,
pages 182–191, 2002.

[8] Y. Gao, B. Zheng, G. Chen, W.-C. Lee, Ken C. K. Lee, and
Q. Li. Visible reverse nearest neighbor queries. In ICDE,
pages 1203–1206, 2009.

[9] Y. Gao, B. Zheng, W.-C. Lee, and G. Chen. Continuous
visible nearest neighbor queries. In EDBT, pages 144–155,
2009.

[10] S. K. Ghosh and D. M. Mount. An output sensitive algorithm
for computing visibility graphs. In FOCS, pages 11–19, 1987.

[11] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[12] A. Henrich. A distance-scan algorithm for spatial access
structures. In GIS, pages 136–143, 1994.

[13] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Transactions on Database Systems,
24(2):265–318, 1999.

[14] M. R. Kolahdouzan and C. Shahabi. Alternative solutions for
continuous k nearest neighbor queries in spatial network
databases. GeoInformatica, 9(4):321–341, 2005.

[15] S. Nutanong, E. Tanin, and R. Zhang. Visible nearest
neighbor queries. In DASFAA, pages 876–883, 2007.

[16] A. Papadopoulos and Y. Manolopoulos. Performance of
nearest neighbor queries in R-trees. In ICDT, pages 394–408,
1997.

[17] S. H. Park, J.-H. Lee, and D.-H. Kim. Spatial clustering
based on moving distance in the presence of obstacles. In
DASFAA, pages 1024–1027, 2007.

[18] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, pages 71–79, 1995.

[19] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A
dynamic index for multi-dimensional objects. In VLDB,
pages 507–518, 1987.

[20] M. Sharir and A. Schorr. On shortest paths in polyhedral
spaces. SIAM Journal on Computing, 15(1):193–215, 1986.

[21] P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling
and querying moving objects. In ICDE, pages 422–432, 1997.

[22] Z. Song and N. Roussopoulos. K-nearest neighbor search for
moving query point. In SSTD, pages 79–96, 2001.

[23] Y. Tao and D. Papadias. Time parameterized queries in
spatio-temporal databases. In SIGMOD, pages 334–345,
2002.

[24] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In VLDB, pages 287–298, 2002.

[25] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the
presence of obstacles. In ICDE, pages 359–367, 2001.

[26] A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han.
Constraint-based clustering in large databases. In ICDT,
pages 405–419, 2001.

[27] X. Wang and H. J. Hamilton. Clustering spatial data in the
presence of obstacles. International Journal on Artificial
Intelligence Tools, 14(1-2):177–198, 2005.

[28] X. Wang, C. Rostoker, and H. J. Hamilton. Density-based
spatial clustering in the presence of obstacles and facilitators.
In PKDD, pages 446–458, 2004.

[29] C. Xia, D. Hsu, and A. K. H. Tung. A fast filter for
obstructed nearest neighbor queries. In BNCOD, pages 203–
215, 2004.

[30] O. R. Zaiane and C.-H. Lee. Clustering spatial data in the
presence of obstacles: A density-based approach. In IDEAS,
pages 214–223, 2002.

[31] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spatial
queries in the presence of obstacles. In EDBT, pages 366–
384, 2004.

[32] B. Zheng, W.-C. Lee, and D. L. Lee. On searching
continuous k nearest neighbors in wireless data broadcast
systems. IEEE Transactions on Mobile Computing,
6(7):748–761, 2007.

