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Abstract which makes retrieval of location-dependent data a chal-

A continuous nearest neighbor (CNN) search retrieves
the nearest neighbors corresponding to every point in a
given query line segment. It is important for location-based
services such as vehicular navigation tools and tourist
guides. It is infeasible to answer a CNN search by issu-
ing a traditional nearest neighbor query at every point of
the line segment due to the large number of queries gener-
ated and the large overhead on bandwidth. Algorithms have
been proposed recently to support CNN search in the tradi-
tional client-server service model. In this paper, we conduct
a pioneering study on CNN search in wireless data broad-
cast environments. We propose two air indexing techniques,
namely, R-tree air index and Hilbert Curve air index, and
develop algorithms based on these two techniques to search
CNNs on the air. A simulation is conducted to compare
the proposed air indexing techniques with a naive broad-
cast approach. The result shows that both of the proposed
methods outperform the naive approach significantly. The
Hilbert Curve air index is superior for uniform data dis-
tributions, while the R-tree air index is a better choice for
skewed data distributions.

1. Introduction

With the increasing popularity of mobile devices and
rapid advance of wireless technology, pervasive comput-
ing has received tremendous attention in the past few years.
Once the vision of pervasive computing is realized, peo-
ple equipped with mobile devices will be able to access in-
formation from anywhere at anytime, even when they are
moving. Due to the mobility of people and their devices
(which are referred as mobile clients for the rest of the pa-
per), the query submission point may change continuously
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lenge. A Continuous Nearest Neighbor (CNN) search is an
important class of queries that find a set of nearest neigh-
bors corresponding to every point in a given query line seg-
ment. Examples of CNN search are everywhere in our daily
life, e.g., "find the nearest gas stations along the route from
my current location to Boston on Highway 1-93.!” Thus, ef-
ficient solutions for continuous queries are much needed. In
this paper, we focus on techniques that support CNN search
in pervasive computing.

In contrast to a client-server service model (on point-to-
point communication) to support pervasive computing, our
focus in this paper is on the wireless broadcast model be-
cause of its strength in scalability. Wireless data broadcast is
very attractive because broadcast data can be accessed by an
arbitrary number of mobile clients simultaneously. The in-
creased number of clients do not incur any extra cost at the
broadcast server. Thus, it is very suitable for heavy-loaded
systems, or localized data services such as tourist guide for
a museum, local traffic information, and event broadcast in
Olympic games, where users tend to seek the same kind
of information. For many years, companies such as Hughes
Network System have been using satellite-based broadcast
to provide broadband services. The recent announcement of
Microsft MSN Direct Service (http://www.msndirect.com),
based on smart personal objects technology (SPOT) and
a continuous broadcast network using FM radio subcarrier
frequencies, has further ascertained the industrial interest on
and feasibility of using wireless broadcast to providing per-
vasive data services. Supporting location related data and
CNN queries in wireless data broadcast is important due to
the broad application base. With broadcast of location infor-
mation for gas stations, highway exits, hotels, restaurants,
etc. on a wireless channel, mobile clients will be able to
tune in to find the nearest gas stations or hotels, etc., while
moving on the highway.

This paper presents the first study, to the best of the au-
thors’ knowledge, on supporting CNN search in wire-

1 While a route may not be a line segment, it can be decomposed into
multiple line segments.



less data broadcast services. Two air indexing tech-
niques, namely, R-tree air index and Hilbert Curve air
index, and CNN search algorithms are developed to facili-
tate this unique and important query. We have conducted a
simulation based performance evaluation on these two in-
dexing techniques and a naive broadcast approach. The
result shows that both of the proposed techniques outper-
form the naive approach significantly. The result also pro-
vides good insights to the problem of CNN search on
air and point out needed efforts to advance this new re-
search direction.

The rest of this paper is organized as follows. Section 2
provides a review of the related work. Section 3 describes
an existing CNN search algorithm based on R-tree and the
necessary revisions to enable R-tree on the air. Section 4
describes the Hilbert Curve air index and associated CNN
search algorithm. Section 5 evaluates performance of the
two proposed air indexes and compares them to a naive
broadcast approach for CNN search. Finally, Section 6 con-
cludes this paper with directions of the future work.

2. Related Work

CNN Search. The problem of CNN search was first iden-
tified by Sistla et al. in [5]. For a given line segment, every
object o in the answer set dominates a part of the line seg-
ment, i.e., o is the nearest neighbor of any query point ly-
ing on that partial line segment. An illustrative example is
given in Figure 1 in which the answer set to the query line se
contains three objects, namely, O1, Os, and O4. O; domi-
nates the shadowed line segment spy; that is, O; is the near-
est neighbor of any point lying on 5p7. Similarly, O2 domi-
nates p1pz and O4 dominates psé. p; and po are called split
points [8] since they are the points at which the nearest ob-
jects along the line segment change.

0, Os 4

Figure 1. Example of CNN Search

There are some existing algorithms proposed to answer
CNN searches. In [6], a sampling technique is employed
to perform normal NN query at some pre-defined sampling
points. A tight range to bound all the answers will be de-
rived based on known answers obtained in first step to find

the exact answers. However, its accuracy depends pretty
much on the pre-defined sampling points on the query line.
Tao et al. devised two search algorithms for CNN queries
based on R-tree [7, 8]. The first algorithm is based on the
concept of time-parameterized (TP) queries [7]. Treating
a query line segment as the moving trajectory of a query
point, the nearest object to the moving query point is valid
only for a limited duration. Consequently, CNN queries can
be transferred into TP queries. In that study, a new TP query
was issued to retrieve the next nearest object once the valid
time of the current query expired; that is, when a split point
was reached. While the TP approach avoids the drawbacks
of sampling, it is an incremental algorithm that needs to is-
sue n NN queries in order to obtain the final answer set,
where n is the number of objects in the final answer set. The
second algorithm, proposed later, navigates R-tree based
on certain heuristics [8]. The whole answer set is obtained
within one single navigation of R-tree.

Index On Air. In addition to the typical performance con-
cern of access efficiency, power consumption of mobile de-
vice is another crucial performance criteria for pervasive
computing since all the device features and applications
are directly or indirectly dependent on power availability.
Thus, access latency and tuning time are used as the per-
formance criteria for our study. The former is the period of
time elapsed from the moment a query is issued to the mo-
ment when all the requested data are received. The latter
equals to the period of time spent by a mobile device stay-
ing active in order to obtain the requested data, which re-
flects the power consumption of client.
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Figure 2. (1, m) Interleaving Technique on the
Broadcast Channel

To facilitate power saving via wireless data broadcast,
index information, called air index, is typically broadcast
along with the data. Studies show that interleaving air index
with data objects may help mobile devices to avoid receiv-
ing unwanted data and reduce power consumption of mo-
bile devices. By looking up the air index, a device can pre-
dict the arrival time of its desired data so that it can slip
into doze mode and switch back to active mode only when
the data of desire arrives, thus substantially saves battery
resource. Broadcast organizations that properly interleave
index and data on the broadcast channel can significantly



improve (power) energy efficiency by trading off some ac-
cess efficiency. Figure 2 demonstrates the well-known (1,
m) scheme, which broadcasts the whole index m times pre-
ceding every fraction (%) of the whole data objects during
every broadcast cycle [3].

Most of the previous studies addressed only the dissemi-
nation and scalability aspects of the wireless data broadcast
without taking into account the characteristics of its appli-
cations. In this paper, we address the application aspect by
examining the issues of processing CNN search in wireless
data broadcast environments.

3. CNN Search on R-Tree Air Index

R-tree, and it variants, have been widely used to sup-
port various spatial queries [2]. Thus far, all existing algo-
rithms proposed for CNN search are based on R-tree. In
this section, we first analyze the problem with broadcast-
ing R-tree on the wireless channel and then describe a CNN
search algorithm designed for disk-based R-tree. Finally, we
adapt the algorithm to make it suitable for broadcast envi-
ronments, which we call R-tree air index.
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Figure 3. Linear Access on Wireless Broad-
cast Channel

3.1. R-Tree Air Index

A search algorithm based on R-tree typically expands the
search space around the query point using a branch-and-
bound approach. Consequently, the navigation order of R-
tree is dynamically determined based on the position of the
query point. This usually requires backtracking before the
target leaf node is found. Thus, R-tree is better supported
by random access storages, such as memory and disk, but
not the wireless channels.

Information is broadcast based on a pre-defined se-
quence and it is only available at the moment when it is
broadcast. Consequently, backtracking may incur a sig-
nificant access latency. Figure 3 depicts an example. As-
suming that a search algorithm first visits root node, then
the node Ro, and finally R;, while the server broad-
casts nodes in the order of root, 1, and R,. Consequently,
if a client wants to visit node R, after it retrieves Ro, it
will have to wait until the next cycle because R; has al-
ready been broadcast. This significantly extends the access
latency and it occurs every time a navigation order is differ-
ent from the broadcast order. Thus, search algorithms need
to be revised to fit the linear streaming property of wire-
less data broadcast.

3.2. CNN Algorithm for Disk-Based R-tree

A CNN search algorithm for disk-based R-tree was pro-

posed in [8]. The search starts from the root of R-tree. For
each branch of R-tree, which is represented as an MBR, it
checks the following two heuristics: RT1) whether the min-
imal distance between the MBR and the query line segment
is shorter than the maximal distance between a point on the
query line segment and its nearest neighbor obtained thus
far in the processing procedure, and RT2) the minimal dis-
tance between the MBR and some point in the query line
segment is shorter than the distance between the point and
its NN. R-tree branches which satisfy both of RT1 and RT2
will be visited in accordance with their minimal distance to
the query line segment. This traversal order is expressed as
an additional heuristic RT3 in [8]. This traversal process is
recursively carried out until a leaf node is reached. The ob-
jects in the leaf node are checked to determine whether they
should replace some of the NNs found so far. The process
then backtracks to the upper level to continue the search.
The heuristics used in the algorithm are explained in details
below.
Heuristic RT1. Given a query segment [ and a R-tree
branch represented by an MBR F, the MBR E may contain
qualified data objects only if mindist(E,l) < SLyaxp,
where mindist(FE, ) denotes the minimal distance between
E and [, and SLj;axp denotes the maximal distance be-
tween a point on [ and its corresponding nearest neighbor.

As shown in Figure 4(a), the minimal distance between
the query line segment [ and a MBR FE is larger than the cur-
rent SLyaxp (i.e., dis(b,e) in the figure), which means
no objects within E can be a nearest neighbor to any point
on the query line segment. Hence, the R-tree branch associ-
ated with E can be pruned.

Heuristic RT2. Given a query segment ! and a R-tree
branch represented by an MBR E, E needs to be searched
if and only if there exists a point s; such that the dis-



tance between s; and its nearest neighbor is larger than
mindist(s;, E).

An example is depicted in Figure 4(b). The MBR E' will
not be visited since dis(s,a) < dis(s, E), dis(s1,b) <
dis(s1, E), and dis(e,b) < dis(e, E). For the detailed
proof of the heuristics, please refer to [8].

mindist(E, )

mindist(E,s)=
mindist(

SL=(a (.NN=a), 8(.NN=b), e(.NN=b)]

(b) Heuristic RT2

(a) Heuristic RT1

Figure 4. Heuristics of R-tree Index

Heuristic RT3. The R-tree branches that satisfy heuris-
tics RT1 and RT?2 are visited in ascending order of their min-
imal distances to the query line segment /.

RT3 dynamically determines the order of R-tree
branches to be traversed, which allows the algorithm to ob-
tain answers quickly and to further prune branches with no
need to visit. However, this requires backtracking on R-tree.
In wireless data broadcast, the nodes of R-tree must be ac-
cessed when they are broadcast on the air. Thus, the
search algorithm needs to be revised to adapt to the air in-
dex.

3.3. CNN Algorithm for R-tree Air Index

As explained in Section 3.1, the traversal order dynami-
cally determined by RT3 will result in an unacceptable ac-
cess latency. To eliminate this drawback, the branches of the
R-tree air index must be visited according to their broad-
cast order. Heuristics RT1 and RT2 can still be applied to
prune the unnecessary search branches. In summary, the
CNN search algorithm revised for R-tree air index works
as follows. It visits the tree branches sequentially, in the
same order as the predefined broadcast sequence. The mo-
bile clients will only listen to (i.e., traverse) the branches
that satisfy RT1 and RT2 and stay in doze mode when
the other branches are broadcast. In the visited leaf nodes,
checking and updating is the same as in the original algo-
rithm.

4. Search CNN on Hilbert Curve Air Index

To adapt to the linear streaming property of the wire-
less data broadcast channel, Hilbert Curve (HC) index was

2 This heuristic can be checked efficiently by maintaining and comput-
ing based on a list of found split points instead of computing based
every point on the query line segment.

proposed in a previous work by the authors to process win-
dow queries and k nearest neighbor (k-NN) search on the
air [10]. In this paper, we extend the Hilbert Curve index to
answer CNN queries. In this section, we first summarize the
HC index and then develop a new algorithm based on it to
answer CNN queries via wireless data broadcast.

4.1. Hilbert Curve Index

Hilbert curve is a space-filling curve that visits every
point in an n-dimensional grid space exactly once without
crossing itself. Figure 5(a) shows the basic Hilbert curve of
order 1. To derive a curve of order 7, each vertex of the ba-
sic curve is replaced by the Hilbert curve of order (i — 1),
which may be strategically rotated and/or reflected to fit the
new curve. The Hilbert curves of orders 2 is depicted in Fig-
ure 5(b). As shown, a Hilbert curve maps points in an n-
dimensional space to a 1-dimensional linear space. The nu-
meral labels, called index values, represent the positions of
points along the curve, by which data objects can be iden-
tified. In Hy curve, the point of index value 2 denotes the
point (1, 1) in the two-dimensional space (as shown in Fig-
ure 5(b)). Therefore, BT-tree can be employed to index
the data objects using their index values as the key. Thus,
the leaf nodes of the HC index tree consist of 2-tuples,
<indexvalue, ptr>, where ptr is the arrival time of the
referenced data object.
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Figure 5. Hilbert Curves of order 1 and 2

Two steps, selection and filtering, are performed to
process a window query. First a HC value boundary will be
determined to include all the potential candidates, based on
the given query window. All the points within the bound-
ary need further checking to filter out those unquali-
fied candidates. To process a k-NN search, we proposed
a range estimation algorithm based on the locality prop-
erty of the Hilbert curve. First, the k objects closest to the
query point along the Hilbert curve are found and a min-
imal circle centered at the query point is constructed to
contain all those k£ objects. This circle, which may con-
tain more than k objects, is guaranteed to include the k&



nearest neighbors. Second, all the candidates within the cir-
cle will be checked and sorted according to their Euclidean
distance to the query point. The top-k objects are the an-
SWers.

As illustrated in Figure 5(b), the dashed rectangle is the
query window, which determines [a, b] to be the range of
all the candidates. Consequently, the client only needs to
check the objects between a and b inclusive on the curve,
and eliminate those that are not lying within the window. It
also shows a 4NN query issued at point ¢q. By scanning the
linear HC, objects 5, 6, 8, and 9 are detected to be 4NN ob-
jects of ¢ on the Hilbert curve. Consequently, the dashed-
line circle centered at ¢ and bounding these 4 objects can be
derived which contains at least 4 objects. By performing a
window query based on this circle and ordering the objects
based on Euclidean distance, the exact 4NN objects will be
returned (i.e., objects 2, 4, 6, and 8 within the dashed cir-
cle).
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Figure 6. Grid Partition

Performance of the above search algorithms depends on
the locality of the data objects in the one-dimensional space.
Noticing that the algorithms will have to check more points
than necessary in an area where the nearby points in the
original search space become widely separated in the lin-
ear Hilbert curve, a space partition algorithm is also pro-
posed to reduce the extra searching cost in [10]. Figure 6
shows an example and please refer to [10] for detailed in-
formation. In the original space, all the points whose index
values between 9 and 54 need checking with an assump-
tion that the dashed-line rectangle is a query window. After
applying the 2 x 2 partition, we only need to check those ob-
jects with index values between 0 and 1 for the sub-grid in
the upper-right quadrant, objects whose value is 15 for the
sub-grid in the upper-left quadrant, and so on.

4.2. CNN Algorithms for Hilbert Curve Air Index

Similar to the k-NN search algorithm based on HC in-
dex, the strategy for processing CNN search is to first de-
termine a search range on the Hilbert curve and then find

out the exact answer. The CNN search algorithm comprises
three steps: 1) obtain the nearest neighbors to the two end-
points of the query line segment. Based on these two ob-
jects, an approximated search range that bounds all the ob-
jects in the final answer set is determined; 2) obtain a can-
didate set by issuing a window query based on the approxi-
mated search range; 3) examine the candidate set to obtain
the exact answer set.

Before going into the detailed algorithm, we first de-
velop five heuristics for processing CNN search. The first
two heuristics are used in Step 1 to determine the approxi-
mated search range. The last three ones are used in Step 3
to obtain the final answer set from the candidate set of data
objects. Table 1 defines some terminologies to facilitate the
description.

Notation H Description ‘

dis(q,q’) || Euclidean distance between points q and ¢’
proj(gq,1) || the projection of point ¢ on the line ;
) , the perpendicular bisector of line segment con-
b’LS(q’ q ) 3 : /.
necting points ¢ and q';
NN (q) the nearest neighbor of the query point ¢
the answer set containing all the nearest neigh-
CNN@2)|| . €0 8 > &
ors to any point in the segment se
. the circle centered at point o and having r as the
cir(o,r) .
radius

Table 1. Terminology Definition

Heuristic HC1. Given a query line segment 3e,
NN(s)=0s, and NN (e)=0,, {O;,0.} C CNN (3€)

The above heuristics is intuitive. Since s and e are two
points on the query line segment, their nearest neighbors are
part of the final answer set.

Heuristic HC2. For a query segment se, if NN(s)=
NN(e) =0;, then CNN(%) = {Oz}

The above heuristics can be shown with the Voronoi Di-
agram, which partitions a space into disjoint Voronoi Cells
(VCs) based on locations of data objects in the space. For
any query point located within a VC, its corresponding ob-
ject is the nearest neighbor to that query point. As shown
in Figure 1, the Voronoi Diagram partitions the space into 5
parts denoted by the dashed line, according to the positions
of given objects. The shadowed polygon is the correspond-
ing VC of object O3, which means Og is the only nearest
neighbor to any query point inside the shadowed polygon.
Based on computational geometry, VCs are convex. Since
NN (s)= NN (e)=0;, both endpoints and hence the query
line segment se lie inside the VC of object O;. Therefore,
object O; is the nearest neighbor to any query point along
the query line segment.

In Step 1 of the CNN search algorithm, the nearest neigh-
bor(s) of the endpoints of the given line segment are ob-



Algorithm 1 Search Range Determination

Input: query line segment se, NN (s) and NN (e);

Output: a search range;

Procedure:

1: find the intersection point, m, of 5€ and bis(NN(s), NN(e));

2: r=dis (NN(s), m);

3: draw a line ! passing N N (s) and perpendicular to line S€;

4: find two points Py and P2 on [ such that dis(P1, m) = dis(P2, m)
and dis(P1, P2) = 2r;

5: draw a line I’ passing N N (e) and perpendicular to line se;

6: find two points Ps and P4 on I’ such that dis(P3, m) = dis(Py, m)
and dis(Ps, Py) = 2r;

7: return the rectangle bounded by P, Ps, P3 and Pjy;

tained and included in the final answer set (based on Heuris-
tic HC1). If the nearest neighbors to both endpoints are the
same, the final answer set can be returned directly without
further processing. Otherwise, a search range bounding all
the candidate objects is determined based on Algorithm 1.
Figure 7 shows a search range and illustrates a proof that
the search range indeed bounds all the objects in the final
answer set.

Claim: Given a query line segment, the search range deter-
mined by Algorithm 1 contains all the data objects in the fi-
nal answer set.

Proof: Without loss of generality, a horizontal query line
segment is assumed. Any non-horizontal line segment can
be mapped to the x-axis based on coordinate transforma-
tion.

Given a point ¢’ on e where r'= dis(q’, O,), as shown
in the Figure 7. If object O, is not the nearest neighbor of
point ¢’, NN(q') should be located within the circle cir(q’,
r"). Parts of this circle may fall outside of the search range
(as specified by the rectangle bounded by P;, Ps, Ps, and
Py). If a part of the circle falls on the right side of the line
0.0, it must be inside cir(e, dis(e, O.)). Since object O,
is the nearest neighbor of point e, there is no other objects
within cir(e, dis(e, O.)). As a result, there is no data ob-
jects located on the right of the search range to be included
in the final answer set. Similarly, it can be shown that all
the data objects in the final answer set are not located on the
left side of the search range. Finally, data objects located be-
yond the top and bottom of the search range will not be in-
cluded in the answer set because their shortest distances to
the line segment will be greater than r, the longest distance
from the line to either O; or O.. Therefore, the search range
contains all the objects in the final answer set.

Similarly, given a point ¢’ on $7, we can show that the
search range contains all the objects in the final answer set.
Hence, our claim is proven.

O

Once the search range is determined, a window query is
issued to obtain the candidate objects in the search range.
Heuristics HC3-HC5 are developed to filter the candidate
set for the real answer. In the following, we assume that all
objects O; inside the approximate search range are sorted in
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Figure 7. Search Range for £-NN Queries

ascending order of the x-coordinates, i.e., O;.x < O;11.x.
Here, O;.x refers to the x-coordinate of point O;.
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Figure 8. lllustrative Examples of some
Heuristics

Heuristic HC3. For an object O; in the search range,
if diS(p’I’Oj(Oi, l), Oifl) < diS(p’f‘Oj(Oi, l), Oz)’ and
dis(proj(O;,1), Oip1) < dis(proj(0;,1), Oy, O; ¢
CNN (3e).

The above heuristic is illustrated in Figure 8(a). The

shortest distance between O; and any point p on the query
line segment is dis(proj(O;,1), O;). If this shortest dis-
tance is longer than both of dis(proj(0;,l), O;—1) and
dis(proj(O;,1), O;11), O; is not the nearest neighbor for
any part of the query line segment and thus does not be-
long to the final answer set.
Heuristic HC4. Given object O and query line segment [,
if cir(proj(0,1), dis(O, proj(0,1))) does not contain any
objects other than O, O is the nearest neighbor to the point
proj(0O,1).



As shown in Figure 8(a), if there are no other ob-
jects within cir(proj(O;—_1,1), dis(O;—1,proj(0O;_1,1)),
it means that O,_; is the nearest neighbor to the point
proj(O;_1,1). Therefore, O;_1 is in the final answer set.
This heuristic allows some obvious answers to be found at
the very beginning of the filtering process.

Heuristic HC5. Given a line segment [, which is as-
sumed to be dominated by O during the filtering process,
if an object O’ is the nearest neighbor to some point on /,
the perpendicular bisector of O’ and O intersects [ at a split
point P’.

Algorithm 2 Filtering

Input: query line segment se, candidate answer set;

Output: final answer set;

Procedure:

1: Perform coordinate transformations to make the query line segment se
lies on the x-axis;

2: Sort the objects in the candidate set in ascending order based on their
x-coordinates;

3: Employ Heuristics HC3 and HC4 to eliminate out invalid objects and
identify Nearest Neighbor, respectively. The rest of the candidate ob-
jects are labelled as unknown;

4: while the number of unknown objects > 0 do

5:  for each two successive valid answers O; and O; 41 in the candi-

date set do

6 find the intersection 4 of bis(O;, O;+1) and Se;

7 find the nearest neighbor o’ of point 7 from the candidate set;

8: if o’ ¢ {Oi, OH»I} then

9: mark o’ as NN;

10:  for each unknown object Oy, in the candidate set do
11: flag :=0;

12: for each valid object O n in the answer set do

13: if the intersection of bis(Oyn,Onn) and Se is within the
dominate segment associated with O y y then

14: flag=1; break;

15: if flag == 0 then

16: mark object O, as invalid;

17: Return the final answer set consisting all of the NN objects;

If an object is the nearest neighbor to some point on a
line segment, this line segment should pass through the VC
of that object. As shown in Figure 1, the query line seg-
ment crosses the VCs of objects O, O, Oy, and as such
should have one or two intersections with the VC of an ob-
ject belonging to the answer set. For Voronoi Diagram, any
edge of a VC is the perpendicular bisector of two objects.
Therefore, if we find that the perpendicular bisectors of a
given object and all known nearest neighbors do not inter-
sect with the query line segment, the given object definitely
is not in the answer set and thus can be thrown out of the
candidate set.

As shown in Figure 8(b), assume that O is a known near-
est neighbor to the shadowed query line segment, O’ is an
NN object to some point on this query line segment since
the perpendicular bisector of O’ and O intersects with it at
point p’. However, O” does not belong to the answer set
since the intersection p” is not inside the segment.

Based on the above heuristics, Step 3 of CNN search is

explained in Algorithm 2. In the algorithm, an object in the
candidate set is in one of the following states, namely, NN,
invalid, and unknown. Just as these names suggested, an NN
object is a nearest neighbor to the query line segment. An
invalid object does not belong to the final answer set. An
unknown object is one that needs further checking. An NN
object in the final answer set dominates a segment of the
query line, specified by two split points, produced by inter-
secting the query line segment with the perpendicular bi-
sectors of this object and two other objects in the final an-
swer set. Furthermore, the nearest neighbor(s) to the end-
points of the query line segment have their dominated line
segments ended at their corresponding endpoints.

In summary, CNN search requires three scans of the HC
index on air. The first two scans obtain the nearest neigh-
bors of the two endpoints of the query line segment. Based
on the detected NNs, a search range is determined as de-
scribed in Algorithm 1. Thus, a window query can be is-
sued to obtain the candidate set (which needs a further HC
index scan). Finally, the filtering algorithm obtains the fi-
nal answer set.

5. Performance Evaluation

This section evaluates the performance of the two pro-
posed techniques, R-tree air index and Hilbert Curve air in-
dex for supporting CNN search in wireless data broadcast
environments. There are two datasets used in the evaluation.
In the first dataset (called UNIFORM), 10,000 points are
uniformly generated in a square Euclidean space. The sec-
ond dataset (called REAL) contains 1102 hospitals in south
California, which is extracted from the point dataset avail-
able at [1].

For R-Tree, since the objects are available a priori, the
STR packing scheme [4] is employed for its superior per-
formance. In the following, STR R-tree denotes this imple-
mentation. As explained in Section 2, the search algorithm
designed for disk indexing cannot be directly employed for
air indexing. In this paper, we propose to broadcast the R-
Tree in the depth-first order. Thus, the CNN search algo-
rithm for R-tree air index scans the MBRs sequentially,
while skipping R-tree branches based on heuristics devel-
oped in [8].

The system parameters for our evaluation are set as fol-
lows. In each packet, two bytes are allocated for the packet
id. Two bytes are allocated for the time pointer and four
bytes for each coordinate. The size of a data item is set to
be 1 Kilobytes. The packet capacity is varied from 64 bytes
to 1024 bytes in our experiments.® The results are obtained
based on 1,000,000 randomly generated queries. The para-

3 For the wireless channel, the page capacity is normally assumed in the
order of 100 bytes [3].



meter SegLengthRatio defines the ratio of the query line seg-
ment length to the total side length of the search space, with
0.1 as the default value. A 4 x 4 partition is applied to im-
prove performance of HC air index, and the detailed con-
cept of partition can be found in [10].
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Figure 9. Tuning Time (SegLengthRatio =0.1)

5.1. CNN Search Performance

In this section, we first compare the search performance
based on R-tree air index and Hilbert Curve air index, with
a fixed SegLengthRatio, by varying the packet size. Next,
the same experiment is conducted by fixing the packet size
but varying SegLengthRatio from 0.05 to 0.5.

Figure 9 depicts the tuning time of the two techniques in
terms of the number of packet accesses, along with the per-
formance of a naive approach which serves as the compar-
ison baseline. For the naive approach, each object is repre-
sented by the coordinates and a pointer. The client has to
retrieve all of the objects to process a CNN query. It is ob-
served that the two proposed indexes improve the perfor-
mance significantly. For the UNIFORM dataset, HC air in-
dex performs extremely well, with an average of 90.8% im-
provement, while R-tree air index has 70.1% average im-
provement, when compared to the naive approach. For the
skew dataset, R-tree air index outperforms the naive method
by 68.8%, while HC air index has 58.9% improvement.

It is noticed that R-tree air index is more efficient in re-
sponding to the REAL dataset which is skew, and HC index
is more suitable for uniform dataset. The differences can be

explained as follows. The data distribution has an impor-
tant impact on the locality of the Hilbert curve, and hence
affects the performance of HC air index. For the uniform
dataset, the search range obtained by scanning the index is
quite precise. For the real data, which has a skewed distri-
bution, the search range may be larger than necessary and
thus it causes excessive accesses.
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Figure 10 shows the result when packet size is fixed at
256 bytes while the length of the query line segment is valu-
able. Consistent with the previous experiment, the HC air
index is suitable for uniform data distribution and R-tree
air index is more suitable for skewed data distribution. The
other observation is that R-tree air index has a more sta-
ble performance when the length of query line segment be-
comes longer.

Figure 11 depicts the expected access latency, employ-
ing (1, m) index organization scheme [3]. In this compari-
son, a naive search method without using any index is used
as the base line. Its access time is set as 1. As shown, Hilbert
Curve air index incurs a larger index size since it requires
scanning the index twice for a k-NN search. Therefore, the
index is broadcast twice consecutively in order to allow the
clients to process CNN search within one broadcast cycle.
Hence, this duplication results in a larger access latency.
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5.2. Improvement obtained from Approximation
Function

As we observe earlier, the Hilbert Curve air index is a
more energy-efficient access method for CNN search under
a uniform data distribution. An issue faced by the Hilbert
Curve air index, however, is that it requires multiple scans
of the index to return the final answer set. Due to the linear
streaming property of the wireless data broadcast, a Hilbert
Curve air index actually consists of consecutive broadcast
of multiple B -tree, which extends the clients’ average ac-
cess latency. One way to reduce the index size is to em-
ploy an approximation function that determines a search
range for k-NN search. This approximation function has
been shown to be effective (though not 100% accurate) by
both mathematical analysis and simulations (details can be
found in [9]). By approximating the initial search range, the
index is scanned only twice for finding the final answer set
for CNN: one scan for obtaining the nearest neighbors of
the two endpoints of the query line segment; the other scan
for the window query to retrieve all the candidate objects.
Therefore, the size of the Hilbert Curve air index can be sig-
nificantly reduced. Figure 12 shows the simulation result for
the UNIFORM dataset. Comparing to the original algorithm
without any approximation, the access latency is greatly im-
proved and is quite close to that of R-tree air index. The ac-
curacy of the approximation, which is not shown here, is
observed to be 100% accurate for all experiments we con-
ducted based on the UNIFORM dataset.

140 T T T
Hilbert-Curve Index ——

3 120 ¥ Hilbert-Curve Index (APP) —>-— 1
2 N\
g 100 |\ B
(="
& 80 I |
g
= 60 - B
o0
£ 40 B
] N
=1 =
= 20 T ]

0 1 1 1 -~

64 128 256 512 1024

Packet Capacity (byte)

T T
g 14T (a) Tuning Time ]
2 138 ]
—
g 136} |
E 1.34 Hilbert-Curve Index —+—
st Hilbert-Curve Index (APP) -
T 13t |
RN S |
S oix) ]

L A )

64 128 256 512 1024

Packet Capacity (byte)
(b) Access Latency

Figure 12. Improvement obtained from Ap-
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6. Conclusion

With the popularity of the mobile devices and advance of
the wireless networking, mobile applications have started to
enter our daily life. Location, which plays an important role
in many mobile applications, has received a lot of atten-
tions from both the research and industry communities in
recent years. In this paper, we investigate the support of an
important class of location-based queries, namely, continu-
ous nearest neighbor (CNN) search, in wireless data broad-
cast. To the best of our knowledge, this is the first attempt
to support CNN search in a wireless broadcast system (e.g.,
DirectBand network of Microsoft and DirecWay of Hughes
Network Systems).

In this paper, we propose two air indexing techniques,
namely R-tree air index and Hilbert Curve air index for
processing CNN search on air. We propose to broadcast R-
tree in depth-first order and revise its CNN search algorithm
to adapt to the wireless data broadcast model. Furthermore,
we develop several heuristics and a new CNN search algo-
rithm based on Hilbert Curve air index. Finally, a simulation
is conducted to evaluate the performance of the proposed air
indexing techniques for CNN. The simulation result shows
that the Hilbert Curve air index achieves a superior perfor-
mance on uniformly distributed data, especially after em-
ploying an approximation technique, while the R-tree air
index provides an excellent performance for the skew data
distribution.

While the air indexing techniques proposed in this study



still have room for improvement, we have opened a new re-
search direction in the field of pervasive computing. Based
on lessons learned, we are working on a more versatile in-
dexing scheme that can adapt to both of the uniform and
skew data distributions.
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