Search K Nearest Neighbors on Air*

Baihua Zheng', Wang-Chien Lee?, and Dik Lun Lee!

! Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{baihua,dlee}@cs.ust.hk
2 The Penn State University, University Park, PA 16802
wlee@cse.psu.edu

Abstract. While the K-Nearest-Neighbor (KNN) problem is well stud-
ied in the traditional wired, disk-based client-server environment, it has
not been tackled in a wireless broadcast environment. In this paper,
the problem of organizing location dependent data and answering KNN
queries on air are investigated. The linear property of wireless broad-
cast media and power conserving requirement of mobile devices make
this problem particularly interesting and challenging. An efficient data
organization, called sorted list, and the corresponding search algorithm
are proposed and compared with the well-known spatial index, R-Tree.
In addition, we develop an approximate search scope to guide the search
at the very beginning of the search process and a learning algorithm
to adapt the search scope during the search to improve energy and ac-
cess efficiency. Simulation based performance evaluation is conducted to
compare sorted list and R-Tree. The results show that the utilization of
search scope and learning algorithm improves search efficiency of both in-
dex mechanisms significantly. While R-Tree is more power efficient when
a large number of nearest neighbors is requested, the sorted list has bet-
ter access efficiency and less power consumption when the number of
nearest neighbors is small.

Keywords: KNN, location-dependent search, wireless broadcast, index struc-
ture, mobile computing.

1 Introduction

The advance of wireless technologies and mobile devices allows users to obtain in-
formation anywhere and anytime. Location-dependent information services (LD-
ISs) are services that return results based on some location information. Exam-
ples of LDISs include returning local traffic reports and the nearest restaurants
with respect to the user’s current location.

A K-Nearest-Neighbor (KNN) query returns a specific number of data ob-
jects, sorted by their distances from a given position. The KNN problem, well

* Research supported by Research Grants Council, Hong Kong SAR, China under
grant number HKUST6079/01E and AoE/E-01/99.

2 Zheng, Lee and Lee

studied in the traditional disk-based, client-server computing environment, rep-
resents a very important class of queries in LDISs [1,4, 7]. With the anticipated
dramatic increase of the mobile user population, the scalability of LDISs will be a
major challenge. A wireless broadcast system capable of answering KNN queries
is considered a promising solution because it can serve a virtually unlimited
number of users within its coverage.

Although studies on wireless broadcast alone and KNN problems in the disk-
based environment are well documented in the literature, this paper, to the best
of our knowledge, is the first attempt to address the KNN problem in a wire-
less broadcast environment. The linear property of wireless broadcast media and
power conserving requirement, of mobile devices make the problem particularly
interesting and challenging. Considering the specific features of wireless broad-
cast environments, a new data orgranization scheme and a new index structure
are proposed, along with several related algorithms. The main contributions
of this paper are three-folded: 1) proposed a simple but efficient index struc-
ture to support linear transmission of location dependent data and processing
of KNN queries; 2) developed a search radius estimation function to provide
approximated search scope for KNN query processing; 3) developed a learning
algorithm to dynamically adapt the search scope based on objects’ distribution
and the ratio of requested k.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of related work. A search radius estimation function is introduced in
Section 3 to provide an initial search scope, along with a learning algorithm
devised to dynamically adapt the scope according to the real situation. Section
4 explains the detailed index structure proposed in this paper. Performance
evaluation results are shown in Section 5. Finally, Section 6 concludes this paper
and discusses the future work.

2 Background and Related Work

Related work on KNN search and wireless data broadcast are reviewed, respec-
tively, in the next two sections. Then, we discuss the problem and revision of
R-Tree for broadcasting in a wireless channel.

2.1 K-Nearest Neighbor Search

K-Nearest Neighbor (KNN) search returns a specified number of data objects,
sorted by their distances from a given query point. KNN has been addressed
mostly in the context of spatial databases, though its applications can also be
found in pattern recognition, image processing, CAD, and multimedia indexing
[2,8].

With a large candidates set, answering KNN via scanning through the whole
set becomes extremely expensive. Index structures and related search algorithms
have been proposed to provide efficient processing of KNN queries. The main
idea is to use heuristics to detect and filter unqualified paths, thus reducing

Search K Nearest Neighbors on Air 3

the search cost. Existing algorithms for KNN queries can be divided into two
categories based on how the candidates set is scanned, namely, single-step search
and multi-step search.

Single-Step Search With the support of index structures, algorithms in
this category search for KNN by scanning the candidates only once. There are
several methods documented in the literature. Branch-and-bound algorithms,
e.g., R-Tree, use heuristic distances to choose the next node for visiting and
pruning. Various algorithms differ in the search order and the heuristics used
to prune branches [4, 10]. Incremental algorithms report the objects one by one
to allow the algorithm to operate in a pipelined fashion. They are especially
suitable for complex queries involving proximity [3].

Multi-Step Search Methods in this category scan the candidates multiple
times until the proper answers are obtained. Korn, et. al. proposed an adapted
algorithm [8]. First, a set of k primary candidates was selected based on stored
statistics to obtain the upper bound d,,., which can guarantee that there are
at least k sites within the distance d,,q; from the query point g. Next, a range
query was executed on the site set to retrieve the final candidates. An extended
version of this algorithm was proposed in [11], in which d,,., was adapted every
time a candidate object was checked.

2.2 Wireless Data Broadcast

Generally speaking, there are two approaches for mobile access of location-
dependent data. For a on-demand access mode, the server locates the ap-
propriate data and then returns the answer according to the query submitted by
a client, in which data is transferred in a point-to-point connection. For a broad-
cast mode, server broadcasts information in the wireless channels periodically
and the client is responsible for filtering its desirable data.

Compared to on-demand access, a major advantage of broadcast is that it
allows simultaneous access by an arbitrary number of mobile users. Dissemi-
nating information via broadcast is a very efficient and scalable method for a
large client population. LDISs must anticipate demands from a large number
of mobile users. It is envisaged that many LDISs such as region-wide tourism
information will utilize broadcast for the dissemination of information to the
rapidly increasing population of mobile users. The focus of this paper is to in-
vestigate the feasibility of answering KNN queries on a wireless data broadcast
environment.

Power conservation is a critical issue for mobile devices. In the wireless broad-
cast environment, power consumption can be reduced by interleaving auxiliary
index with data [6]. By looking up the index, mobile devices are able to antic-
ipate the arrivals of the desired data and stay in the doze mode until the data
of interest arrives. To interleave the index and the data on the broadcast chan-
nel, we employ the (1,m) interleaving technique [6]. That is, the whole index
is replicated m times and broadcast before every % fraction of the broadcast
cycle. Index search time is frequently used to evaluate the effectiveness, in terms

4 Zheng, Lee and Lee

of power consumption, of an index and data organization method for broad-
cast channel. Thus, we use it along with access time as metrics for performance
evaluation.

In wireless communication, the data stream is normally delivered in packets
(or frames), to facilitate error-detecting, error-correction, and synchronization.
Thus, both index search time and access latency are measured in terms of number
of packet accesses [5,6]. The drawback of air indexing is that broadcast cycles
are lengthened due to the additional indexing information. Hence, the index size
should be kept as small as possible.

2.3 Spatial Index on Air?

Indexes for KNN search have been well studied, however, sequential access fea-
ture of broadcast systems introduces new challenges. Original indexes are de-
signed for random access storage (e.g., disks), therefore they may not work well
in a wireless broadcast environment. Figure 1 and Figure 2 illustrate an example.
Assume that a query looking for the nearest neighbor of point ¢». The query can
be answered by scanning a R-Tree (see Figure 1) in the following order: first vis-
its root node, then Ry (which contains object 02 and o04), and finally Ry (which
contains object 01 and o03). This works well for random accessed disk index but
renders a problem for air index: when a mobile device tries to retrieve Ry after
visiting R,, it has to wait until the next broadcast cycle when R; is broadcast
again (denoted by the second arc in Figure 2).

Fig. 1. Example MBR Structures

[N
% R1R2~ 0103‘ 0204' Data ' RlRJ 0103' 0204' Data Z
| Broadcast Cycle [/

Fig. 2. Sequential Access In Wireless Broadcasts

As observed in the above example, single-step linear scan is a major require-
ment for any efficient algorithm in wireless broadcast environments. The R-Tree
is broadcast in a depth-first order. To perform KNN search on broadcasted R-
Tree, a mobile device maintains a buffer for the top-k objects. It sequentially

Search K Nearest Neighbors on Air 5

traverses the R-Tree from the root and compares its maximal distance to objects
in the current buffer, M, with its minimal distance to the next branch to visit,
m. If m > M, then the incoming nodes bounded with this unqualified branch
can be pruned (by turning the device into doze mode and wake up only when the
subsequent branch arrives). Otherwise, the device stays awake and recursively
traverses the branches. Since it has to pass through the whole index in order to
access the searched objects, the index size has a great impact on access time.

3 Approximate Search Scope

Since requested parameter k, compared to the number of whole candidates set,
is really small, some guidence exists to remove the impossible objects. An intu-
itive guidance is the distance of the kth nearest neighbor to the query point ¢
that defines the radius of the necessary search space, named radiuspeedeq- Since
radiuspeedeq is dependent on both the position of the query and the parameter
k, it is impossible to provide an exact value. In this work, a search radius es-
timation function is devised to approximate the search boundary within which
the top k objects to a given query point are expected to be obtained. Based on
that boundary, some unqualified candidates are detected at the very beginning
of the search process. Although it is not guaranteed to be 100% accurate, the
accuracy is in the limit approach 100%.

The objective of a search guidance is to facilitate intelligent filtering by try-
ing to fix a search scope as early as possible so that objects outside the search
scope will be disqualified. By assuming a uniform object distribution, a search
radius approximation function is given in Eq. (1). Due to the space limitation,
its detailed derivation is omitted and the complete proof can be found in [12].
Here, n is the number of objects, k is the requested number and ¢ is the con-
trol constant factor to increase flexibility considering different paramters k and
objects distributions.

k

(m xn)

r =c¢ x In(n) x

(1)

R-Tree can be modified with the help of our search radius estimation function
to further reduce unnecessary traversal. No matter where the query is, only the
MBRs within the expected search radius are accessed. Liu et al. proposed a
similar approach in which one or more window queries were used to retrieve the
KNN objects of a query point [9]. Two estimation methods were provided, using
statistical knowledge based on density and bucket. However, their objective is
to satisfy the KNN problem by applying 3 or 4 windows queries. This kind of
multiple-scan introduces long tuning time and also a large access latency. Our
algorithm tries to provide a relatively more accurate estimation in order to satisfy
the request.

6 Zheng, Lee and Lee

3.1 Learning Algorithm

In Equation (1), a constant ¢ is introduced to increase the flexibility of the
radius approximation. For a large value of k£ and n, the constant should be
smaller than the small of k£ and n by intuition. Besides, the search radius is
approximated based on the assumption that the objects are uniform distributed.
Consequently, it is not surprising that the expected search radius is not accurate
when the distribution is skewed. Parameter ¢ in Equation (1) services for this
purpose, and a learning algorithm is introduced to adapt it according to real
situations dynamically.

Originally, the server assigns a static value for constant ¢ and all the clients
use the same default configuration. In broadcast environments, it is difficult
for the server to obtain the feedback information about the accuracy of the
approximated search radius. Consequently, the clients should adapt the setting of
¢ based on their situations. The detailed description of the algorithm is provided
in Algorithm 1.

Algorithm 1 Learning Algorithm of Constant Assignment
Input: requested k, SAT}, objects number n, CON Sy;
Procedure:

1: if n >= k then

SAT,.num + +; SAT, value+ = Z;

3 if SAT,.num == Num then

4 CONSr=(1—a) x CONSy + a x CONSy, x SATy.num/SATy.value;

5 SAT,.num = 0; SATy.value = 0;

6: end if

7

8

: else
cur-accu = Z;

9: if n ==0 then
10: cur_accu = 0.01;
11: end if
122 CONS; =(1—a) x CONSy + a x (CONSy /cur_accu);
13: SATi.num = 0; SATy.value = 0;
14: end if

The basic idea is to adapt the search scope in accordance with the degree
of contentment. For any specific k, if the number of objects currently returned
is smaller than the requested one, the search scope should be increased accord-
ingly. Here, we use an idea similar to the analogous aging function to obtain the
access probability which is shown in line 12, with cur_accu denoting the current
accuracy. If the search scope always contains adequate number of objects for
some specific k, the search scope could be reduced. In our algorithm, a client
can use an accumulator to keep the frequency that its requests are satisfied,
which is reset to zero once its accuracy is not 100%. Also, the satisfied degree,
which is defined as the ratio of the number of objects in the candidate set to
the requested number k, is maintained. Once the client obtains Num times of

Search K Nearest Neighbors on Air 7

accurate answers continuously, it means the current setting is stable enough and
can be reduced correspondingly. Here, Num is predefined. Lines 2 — 5 show the
detailed action employed to reduce the sufficient search radius. Parameter « is
the constant factor to weight the importance of the current setting of c.

4 A New Air Index for KNN Search

Based on the guidance of search radius, a simple index structure is devised. In
the following, we explain the details.

4.1 Sorted List

In wireless environments, the dimension is usually low, i.e., two or three in
accordance with the real world situation. Hence, sorted in each dimension, the
objects can be represented by two or three sorted lists, each corresponding to
one dimension. The following description is based on a two-dimensional space
which is easy to be extended to a three dimensional space.

Represented by two lists, the objects in the first one are sorted in x-dimension.
Each object is represented by its x-coordinate and the pointer pointing to its
position in the second sorted list. In the second list, each object’s y-coordinate
and the related pointer pointing to the real data are recorded. In other words,
the coordinates and pointer information together provide sufficient information
to access the objects.

Given a query point ¢ and the corresponding radius r, the objects to be
examined should satisfy the condition: z € [¢.x—r, ¢.z+r] and y € [q.y—r, q.y+7],
where (¢.z, q.y) denotes the coordinates of the query point. By listening to the
channel, a client can detect two sets of possible candidates that satisfy the above
conditions and their intersection provides the candidate answer set. Then the top
k objects are returned. In case there are only &' (k' < k) objects in the candidate
set, this query is not satisfied and the ratio of k¥’ to k is defined as the accuracy
of the corresponding search radius. Although the accuracy of this algorithm is
not guaranteed to be always 100%, no false answer is returned and the returned
k' objects are guaranteed to be the top-most k' nearest neighbors.

4.2 Packing the Sorted List

In wireless environments, information are transmitted to the clients in the unit
of packet.? Therefore, all the data has to be packed into packets.

Considering the broadcast of a sorted list, there are two kinds of information.
In the lower level, the packets contain the objects position information and the
related pointers to the data packets containing the real data of the objects. In
the upper level, the packets contain the index information of the lower level
packets for detecting the packets needed for query processing. Given a query

3 Similar to the concept of page in traditional databases.

8 Zheng, Lee and Lee

point ¢ and a search radius r, [¢.x — 7, ¢.z + r] defines the x-dimensional scope
within which the objects should be checked. With the help of the upper level
index, the packets containing the objects whose x-coordinates are within this
scope can be obtained. Similar action is done for the y-dimensional sorted list.
After downloading the upper level packets, the top k objects can be detected
by examining the objects coordinates. Then the lower level packets provide the
pointers to the packets containing the real data information of those objects.

dis dis dis

0, Gye 0,
Y o % 0" % g, O

0.
Z Ofe %0 i G Oui o,

(a) Original Sorted (b) Fixed Partition
List

Fig. 3. Fixed-Partition Sorted List for the Running Example

To pack the sorted list for broadcast, two different schemes, namely fized-
partition sorted list and full-occupancy sorted list are proposed, respectively.
The first one partitions the sorted list by a fixed distance, while the other one
tries to maximize usage of the packet capacity. In [12], a detailed theoretical
analysis is provided to estimate the index search time of these paging schemes.
It is omitted here due to space limitation.

X1 X2 X3 Xa

U oo % T %g, 1™

%"o“ % O O o [00.0) Bpof [02] Bo0] oo 000] Be.od [0a]
(a) Original Sorted (b) No-Index (c) Tree-Liked
List

Fig. 4. Full-Occupancy Sorted List for the Running Example

Fixed-Partition. As illustrated in Figure 3, the whole sorted list is divided
by a fixed distance, dis. The fan-out of a packet is three for the example. There
are several distance chosen metrics, such as the capacity of the packet. In this
paper, a simple algorithm is used to choose the suitable fixed partition distance.
Based on the capacity of a packet, the number of packets, denoted as num,
required for packing the objects can be computed. The basic distance, denoted as
b_dis, can be obtained by partitioning the whole list into num parts, i.e., b_dis =
width(height) /num. Based on b_dis, a possible range of dis (e.g., [b-dis/4,4b_dis]
for our simulation) can be decided. With the help of the theoretical analysis of
the index search time, greedy search can be employed to check the possible
distance within the range. Thus, the distance that produces the index having
the best search performance is obtained.

Search K Nearest Neighbors on Air 9

The advantage of this partition is to simplify the upper-level index. A client
can locate the packets by hashing the search scope, i.e., |(g.z —r)/dis| and
[(g.z + 7)/dis], into the lower-level packets. However, due to the fixed partition
distance and the packet’s capacity, it is not unusual to have many packets with a
low utilization rate. As shown in Figure 3, some packets only contain one object.

Full-Occupancy. This partition tries to maximize the utilization of the
lower-level packets, enabling the packet to contain the maximal objects infor-
mation, i.e., the packets in lower level are full-occupied. For the upper-level
index, there are two alternatives. One is to store the whole information about
the lower-level packets and no index is provided. The clients have to read all
the upper-level index to locate the lower-level packets needed for filtering. The
other one is to build a tree-liked index. Given the packet capacity, the number
of lower-level packets can be obtained. Therefore, the search time in the upper-
level index can also be approximated. The one providing more efficient search
time is employed. Figure 4 shows an example, assuming each packet contains
three objects. The advantage of full-occupancy sorted list is the high utilization
of lower-level packets.

4.3 Discussion

For every deletion and insertion of objects, the corresponding index has to be
updated. Since sorted list is used to represent the objects, the updated objects
should be inserted or deleted from the lists. Considering full-occupancy sorted
list, the lower-level packing is processed according to the packet capacity. For
the fized-partition sorted list, the fixed distance used to partition the objects
in the lists needs not be changed when the number of updated objects is small
compared to the total number of objects. However, its performance is affected
and the re-construction of the index should be done later. The time for carrying
out the re-construction of index information should be determined based on
update cost and requirements of the applications.

5 Performance Evaluation

Performance evaluation has been conducted to compare sorted list with the air
version of R-Tree. Two datasets are used in the evaluation. In the first dataset
(UNIFORM), we uniformly generate 5,000 points in a square Euclidean space.
In the second dataset (SKEW), a skewed object distribution is generated as
follows. First, the square space is equally divided into 5 x 5 subspaces. Then, we
generate 10,000 objects, with the probabilities of falling in the subspaces follow
a Zipf distribution and the skewness parameter is set to 1.2.

Based on our discussion in Section 2, R-Tree is revised for air indexing. Due
to the linear property of wireless broadcast, the nodes of R-Tree are sequentially
accessed while unqualified branches are pruned using the distance heuristics. In
the following, R-Tree (AirIndex) denotes the revised scheme to cater for air in-
dexing, which also combines the guidance provided by the search radius. While

10 Zheng, Lee and Lee

R-Tree denotes the original algorithm devised for disk index, without any mod-

ification.

The system parameters are set as follows. In each packet, two bytes are
allocated for the packet id. Two bytes are used for a pointer and four bytes are
for a co-ordinate. The packet capacity is varied from 64 bytes to 2048 bytes.
Queries are produced randomly in the search space, and the results are obtained
by the final statistics of about 1,000,000 queries. For the parameter of &, three
different settings are provided, k = 1, k € [2,4] and k € [21,30]. Due to the
space limitation, only partial results are depicted. Observation from the rest of

results will be summarized in text.

180 T 200 T
R-Tree o— E R-Tree +— |
160 T R-Tree (Airlndex) - | 180K R-Tree (Airlndex) —--
140 AN Revised R-Tree (Airlndex) -8-- | 160 | Revised R-Tree (Airlndex) -8--
120\ i 140 A
120 + X 4
g wor) < *
100 . N R
% s | g ol
Ey o J
i 60 - . b 3 60 L S |
e M
40 - st e T 40 L e 1
B \\\\\ =R
20 B T et 20 B e 2
it E
o . i 0 . X
64 128 256 512 1024 2048 64 128 256 512 1024 2048

Packet Capacity (bytes)

(a) k=1

350

Packet Capacity (bytes)

(b) ke (2,4)

300 B

Packet Accesses

100

200

150

R-Tree +—
R-Tree (Airlndex) —+- 4
Revised R-Tree (Airlndex) -8--

e
[Rt

128 256 512 1024

Packet Capacity (bytes)

(¢) k € (21, 30)

2048

Fig. 5. Improvement Brought by Search Boundary of UNIFORM Dataset

5.1 Improvement brought by the Search Scopes

Search scope is shown to be useful in pruning the search space and thus improving
performance. Some experiments are done to study the accuracy of the search
scope estimation and the accuracy is close to 100% as the value of ¢ increases.
Parameter c is set to 0.5 by default in the later simulations. In the following, we

Search K Nearest Neighbors on Air 11

show that it is also useful for branch-and-bound algorithms. A revised R-Tree
which adopts the search scope is compared to the original R-Tree.

As shown in Figure 5, the number of packets accessed in air-index is ex-
tended distinctively, compared to the performance in disk-index environments.
The reason is the sequential access property of air index. When applying the
approximated search scope, the performance is improved significantly. Consid-
ering the UNIFORM data, the improvement achieved by the revised algorithm
over the original algorithm is 37.9%, 37.3% and 28.0% for the three different sit-
uations, respectively. For the SKEW dataset, the improvement is about 19.3%,
19.8% and 19.2%, respectively. Of course, the revised algorithm sometimes can-
not satisfy a KNN request, while the original algorithm always returns the exact
answers. However, for the simulations shown, the accuracy is 100% in all cases
since the requested k is relatively small compared to the total number of objects.

In summary, the performance of R-Tree is decreased by the specific proper-
ties of air indexing. Combining the search scope guidance, the tuning time is
significantly improved.

256 T T 256 T T
R-Tree (Airlndex) <— R-Tree (Airlndex) —
128 Revised R-Tree (Airlndex) -+-- 128 Revised R-Tree (Airlndex) —+--
Sorted List: Full-Occupancy -8-- Sorted List: Full-Occupancy -8--
el Sorted List: Fixed-Partition - Sorted List: Fixed-Partition -
6 o 6 L s
8 2 8 *e
< < L
3 e 3 32
g 0r g
* R 7 ¥ . E
8 1 -
sl S
4k 4
2 | | | | 4 | | | |
64 128 256 512 1024 2048 64 128 256 512 1024 2048
Packet Capacity (bytes) Packet Capacity (bytes)
(a) k=1 (b) k € (2, 4)
512 T T
R-Tree (Airlndex) <—
Revised R-Tree (Airlndex) -—+--
256 : Sorted List: Full-Occupancy -5--
Sorted List: Fixed-Partition -x
128
g
° 64
i
& R+
16
8 I I I I
64 128 1024 2048

256 512
Packet Capacity (bytes)
(c) k € (21, 30)
Fig. 6. Index Search Time for UNIFORM Dataset

12 Zheng, Lee and Lee

5.2 Performance of Sorted List Index

In this section, we compare the performance of sorted list and R-Tree air indexes,
in terms of average number of packet accesses, and access latency. Since we are
mainly interested in supporting KNN search in broadcast, the performance of
the original branch-and-bound algorithm in traditional disk index environments
is omitted. In the following simulations, the accuracy of the indexing schemes is
100% accurate, according to the simulation results.

As discussed before, in wireless broadcast, improving the index search time
saves power and connection cost. Figure 6 shows the index search time for the
various indexes of the UNIFORM dataset. From the result, we found that the
sorted list indexes improve performance when the value of k is relatively small
compared to the population of objects. When k is set to one in the UNIFORM
dataset, the Fized Sorted List outperforms Revised R-Tree for about 33.7% in
average. When k is increased to between two and four, the performance im-
provement only occurs for the large packet capacity. When the packet capacity
is smaller than 256, the performance of the Fized Sorted List is worse than the
revised R-Tree for about 27.5%. When the packet capacity becomes larger, the
Fized Sorted List can provide a better performance, about 42.5% better than
the one based on R-Tree. Considering the SKEW dataset, the improvement is
more significant. It is 43.0% when k is one and 22.1% when k is between two and
four. However, when k becomes larger, the revised algorithm based on R-Tree
works best, about 29.0% better than the Fized Sorted List one.

Considering two different packing schemes of sorted lists, their performance
is decided by the object distribution. For UNTFORM distribution, fixed-partition
can provide better service in most situations. While the distribution is clustered,
its performance is reduced. For the SKEW dataset, full-occupancy scheme out-
performs fized-partition scheme by about 4.5%, 9.1% and 11.0% for the three
different settings of k.

142 T 142 T
14 R-Tree +— | 14 P R-Tree -— |
} Sorted List:Full-Occupancy -+-- } Sorted List:Full-Occupancy -+--

138 | Sorted List:Fixed-Partition -8-- | 138 | Sorted List:Fixed-Partition -=-- |

136 136 B
g 8
s 134 s 134l g
®© ®
- 132 = 132 B
8
8 13 - g 13 g
< <

128 128 - B

Gl R PR G g PR

124 e 124 | e

e — -+ e R S—
122 I I | | 122 I I | |
64 128 256 512 1024 2048 64 128 256 512 1024 2048
Packet Capacity (byte) Packet Capacity (byte)
(a) UNIFORM (b) SKEW

Fig. 7. Access Latency for Two Datasets

By observing the simulation results, the performance of sorted list indexes
is sensitive to the ratio of k over the total number of objects. When the ratio is

Search K Nearest Neighbors on Air 13

really small, Sorted List can provide better performance than the existing ones.
When the ratio becomes larger, the approximated search radius is also larger.
Therefore, more objects have to be checked and the search radius somehow loses
its power of providing accurate guidance. Since it only considers the distance
in one dimension, the larger the search scope is, the more the false objects
checked. Consequently, the performance becomes worse. However, considering
real applications in mobile computing environments, the clients usually have
interest in a small k. Therefore, the sorted list index structure is expected to be
the first choice in many situations, in terms of efficient tuning time, along with
a much smaller variance.

The access latency is affected by the index size. The larger the index size,
the longer the access latency. Figure 7 shows the access latency for the index
methods. The optimal value of m depends on the index size and is calculated
for each index structure separately based on the technique presented in [6]. In
the figures, the latency is normalized by the expected access latency without
any index (i.e., half of the time needed to broadcast the database). It is obvious
that R-Tree always performs the worst due to its large index size overhead.
Thus, it is safe to conclude that the index overhead for the sorted list indexes
is maintained at an acceptable level, and only introduces a limited variation to
the access latency.

Comparing the two packing schemes for the sorted list index, fized-partition
incurs more size overhead for nearly all the settings due to the poor utilization
ratio of packets. Therefore its expected access latency is also larger.

5.3 Performance of Learning Algorithm

The impact of learning algorithm on the performance is examined in this section.
In our simulation, the parameter a is set to 0.10, 0.15 and 0.25for k = 1, k € [2,4]
and k € [21, 30], respectively. The reason for different settings of a is motivated
by the intuition from different values of k. We do not consider the relationship
between the value of a, k, and n, which deserves further studies. Figure 8 shows
the simulation result. The related accuracy result of the simulation results has
not been shown, while it is almost 100% for the first two settings of k and about
99% for the last one.

From the simulation results, fixing the value of ¢ is not suitable for different
values of k. Thus, dynamic assignment of ¢ is more reasonable and improved
the performance significantly. There are several observations obtained. First,
the improvement is reduced for the SKEW dataset, compared to the UNIFORM
one, since the statistical knowledge, derived based on the uniform distribution
assumption, can not provide accurate guidance. Second, the improvement be-
comes more distinct as k becomes larger. The reason is that originally we assign
the same value to ¢, while in real case the larger k is, the smaller ¢ value is
needed.

14 Zheng, Lee and Lee

T T 256 T T 7
R-Tree (Airindex) -— | R-Tree (Airindex) <—
Revised R-Tree (Airlndex, ¢=0.5) -+-- Revised R-Tree (Airindex, c=0.5) —+--
Revised R-Tree (Airindex) -8-- 128 Revised R-Tree (Airindex) -8--
Sorted List: Full-Occupancy - . Sorted List: Full-Occupancy -
rted List: Fixed-Partition - 7] Sorted List: Fixed-Partition -~ |

128

8
RS
2 82 2
] g
2 g
8 16 | 8 16
#* F#*
8 gA(B 8
s e 4
64 128 256 512 1024 2048 64 128 256 512 1024 2048
Packet Capacity (bytes) Packet Capacity (bytes)
(a) k=1 (b) k € (2,4)

512 T T
R-Tree (Airlndex) <—
Revised R-Tree (Airlndex, c=0.5) -+--
Revised R-Tree (Airlndex) -82--
Sorted List: Full-Occupancy -»
Sorted List: Fixed-Partition -&--

256

Packet Accesses

4 L L

I I
64 128 256 512 1024 2048
Packet Capacity (bytes)

(c) k € (21,30)

Fig. 8. Performance Comparison of Learning Algorithm for UNIFORM Dataset

6 Conclusion

KNN search is a very important and practical application in mobile computing.
Although it has been well studied in the traditional disk-based, client-server
computing environments, more research is needed for the wireless broadcast
platform. In this paper, we address the issues involved with organizing location
dependent data and answering KNN queries on air.

To reduce the search space, a guidance is provided based on the approxima-
tion of the necessary search scope for any given k. With the guidance, existing
algorithms can be revised to satisfy the specific properties of air indexing. A
simple index structure, sorted list, is proposed to take advantage of the search
guidance. Two packing algorithms for the index are also proposed. Besides, we
use a learning algorithm to provide dynamic adaption of the search radius, ac-
cording to the real situation.

Performance evaluation shows that the search scope can provide valuable
guidance for processing KNN queries. Applying the search scope to R-Tree also
reduces its search time and variance. For sorted list, it improves the performance
in terms of access latency, page accesses and also the variance significantly, es-

Search K Nearest Neighbors on Air 15

pecially when the ratio of k to the total number of objects is relatively small.
When the ratio becomes larger, the strength of sorted lists is reduced.

As for future work, we plan to continue the study of KNN on air problem since

currently the search scope can only provide suitable guidance but not guarantee
a return of exact k objects. We also plan to develop new solutions that take
into account various object distributions to provide efficient answers for KNN
queries.

References

1.

10.

11.

12.

S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In Proceedings
of the 25th International Conference on Very Large Data Bases (VLDB’99), pages
397-410, 1999.

H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. Abbadi. Approximate
nearest neighbor searching in multimedia databases. In Proceedings of the 17th
IEEE International Conference on Data Engineering (ICDE’01), April 2001.

G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Proceedings of the
4th International Symposium on Advances in Spatial Databases (SSD’95), pages
83-95, 1995.

. Gi. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM

Transactions on Database Systems, 24(2):265-318, 1999.

Q. L. Hu, W.-C. Lee, and D. L. Lee. Power conservative multi-attribute queries
on data broadcast. In Proceedings of the 16th International Conference on Data
Engineering (ICDE’2000), pages 157-166, San Diego, CA, USA, February 2000.
T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on air - organization
and access. IEEE Transactions on Knowledge and Data Engineering (TKDE),
9(3), May-June 1997.

N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional
nearest neighbor queries. In Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, Tucson, AZ, May 1997.

F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest
neighbor search in medical image databases. In Proceedings of the 22th Interna-
tional Conference on Very Large Data Bases (VLDB’96), pages 215-226, 1996.
D-Z. Liu, E. Lim, and W. Ng. Efficient k nearest neighbor queries on remote spatial
databases using range estimation. In Proceedings of the 14th International Confer-
ence on Scientific and Statistical Database Management(SSDBM’02), Edinburgh,
Scotland, 2002.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-
ceedings of ACM SIGMOD Conference on Management of Data, pages 71-79, San
Jose, CA, USA, May 1995.

T. Seidl and H. Kriegel. Optimal multi-step k-nearest neighbor search. In Pro-
ceedings of the 1998 ACM SIGMOD International Conference on Management of
Data (Sigmod’98), pages 154-165, July 1998.

B. Zheng, W. C. Lee, and D. L. Lee. K-nearest neighbor queries in wireless broad-
casting environments. Technical report, Dept. of Computer Science, Hong Kong
Univ. of Science and Technology, July. 2002.

