
Visible Reverse k-Nearest Neighbor Queries
Yunjun Gao1, Baihua Zheng1, Gencai Chen2, Wang-Chien Lee3, Ken C. K. Lee3, Qing Li4

1Singapore Management University, Singapore {yjgao, bhzheng}@smu.edu.sg
2Zhejiang University, P. R. China chengc@zju.edu.cn

3Pennsylvania State University, USA {wlee, cklee}@cse.psu.edu
4City University of Hong Kong, P. R. China itqli@cityu.edu.hk

Abstract— Reverse nearest neighbor (RNN) queries have a broad
application base such as decision support, profile-based
marketing, resource allocation, data mining, etc. Previous work
on RNN search does not take obstacles into consideration. In the
real world, however, there are many physical obstacles (e.g.,
buildings, blindages, etc.), and their presence may affect the
visibility/distance between two objects. In this paper, we
introduce a novel variant of RNN queries, namely visible reverse
nearest neighbor (VRNN) search, which considers the obstacle
influence on the visibility of objects. Given a data set P, an
obstacle set O, and a query point q, a VRNN query retrieves the
points in P that have q as their nearest neighbor and are visible to
q. We propose an efficient algorithm for VRNN query processing,
assuming that both P and O are indexed by R-trees. Our methods
do not require any pre-processing, and employ half-plane
property and visibility check to prune the search space. In
addition, we extend our solution to tackle the visible reverse k-
nearest neighbor (VRkNN) search, which finds the points in P
that have q as one of their k nearest neighbors and are visible to q.
Extensive experiments on synthetic and real datasets have been
conducted which demonstrate the efficiency and effectiveness of
our proposed algorithms.

I. INTRODUCTION
Reverse nearest neighbor (RNN) search has received

considerable attention from the database research community
in the past few yeas, due to its importance in a wide spectrum
of applications such as decision support [1], profile-based
marketing [1], [2], resource allocation [1], [3], data mining [4],
etc. Given a set of data points P, and a query point q in a
multidimensional space, an RNN query finds the points in P
that have q as their nearest neighbor (NN). A popular
generalization of RNN is the reverse k-nearest neighbor
(RkNN) search, which returns the points in P whose k nearest
neighbors (NNs) include q. Formally, RkNN(q) = {p ∈ P | q ∈
kNN(p)}, where RkNN(q) and kNN(p) are the set of reverse k
nearest neighbors of query point q and the set of k nearest
neighbors of point p, respectively. Figure 1(a) illustrates an
example with four data points, labelled as p1, p2, p3, p4, in a
2D space. Each point pi (1 ≤ i ≤ 4) is associated with a circle
centered at pi and having dist(pi, NN(pi))1 as its radius. In
other words, the circle cir(pi, NN(pi)) covers pi’s NN. For
example, the circle cir(p3, NN(p3)) encloses p2, the nearest
neighbor to p3 (i.e., NN(p3)). For a given RNN query issued at
point q, its answer set RNN(q) = {p4} as q is only inside the

1Without loss of generality, dist(p1, p2) is a function to return the
Euclidean distance between two points p1 and p2.

circle cir(p4,NN(p4)). It is worth noting the asymmetric NN
relationship, i.e., p ∈ kNN(q) does not necessary imply q ∈
kNN(p) (i.e., p ∈ RkNN(q)). In Figure 1(a), for instance, we
notice that NN(p4) = p3, but NN(p3) = p2.

p1

p2

p3

p4

q

obstacles

o1 o2

q′

q′′

(a) RNN search (b) VRNN search

Fig. 1 Example of RNN and VRNN queries

A. Motivation
There are many RNN/RkNN query algorithms that have

been proposed in the database literature. Basically, they can
be classified into three categories: (i) pre-computation based
algorithms [1], [3], [5]; (ii) dynamic algorithms [2], [6], [7];
and (iii) algorithms for various RNN/RkNN query variants [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17]. However, none
of the existing work on RNN/RkNN search has considered
physical obstacles (e.g., buildings, blindages, etc.) that exist in
the real world. The presence of obstacles may have a
significant impact on the visibility/distance between two
objects, and hence affects the result of RNN/RkNN queries.
Furthermore, in some applications, users may be only
interested in the objects that are visible or reachable to them.

Actually, the existence of physical obstacles has been
considered in certain types of spatial queries. These include (i)
obstructed nearest neighbor (ONN) query [18], [19], that is to
return the k (≥ 1) points in P that have the smallest obstructed
distances2 to q; (ii) visible k-nearest neighbor (VkNN) search
[20], that is to retrieve the k nearest points that are visible to q;
and (iii) clustering spatial data in the presence of obstacles
[21], [22], [23], that is to divide a set of 2D data points into
smaller homogeneous groups (i.e., clusters), considering the
influence of obstacles. However, to the best of our knowledge,
this paper is the first work to consider the obstacles in the
context of RNN/RkNN search.

2The obstructed distance between two points p1, p2 ∈ P is defined

as the length of the shortest path that connects p1 to p2 without
crossing any obstacle from O.

B. Contributions
In this paper, we introduce a novel form of RNN queries,

namely visible reverse nearest neighbor (VRNN) search,
which considers the obstacle influence on the visibility of
objects. Given a data set P, an obstacle set O, and a query
point q, a VRNN query retrieves all the points in P that have q
as their NN and are visible to q. In other words, there is no
other point p′ ∈ P such that p′ is visible to p and dist(p′, p) <
dist(q, p). A natural generalization is the visible reverse k-
nearest neighbor (VRkNN) retrieval, which finds all the
points p ∈ P that have q as one of their k NNs and are visible
to q. Take a VRNN query issued at point q as an example (as
shown in Figure 1(b)), it returns {p1} as the result set which is
different from the result of RNN query.

We focus this paper on VRNN search, not only because the
problem has not been studied in the literature but also because
it has a large application base. Some of the example
applications are listed as follows.

Selection of Promotion Sites. Suppose Yao Restaurant &
Bar decides to open a new restaurant YEEHA in Shanghai, and
wants to distribute coupons to its potential customers for
business promotions. In order to guarantee the effectiveness of
the promotion, it locates all the office buildings and residential
buildings that have YEEHA as their top-3 restaurants (in
terms of spatial proximity) and identifies customers working
or staying in those buildings as its high potential customers.
Although RNN search can be applied here to find all the
buildings that have YEEHA as one of their 3 nearest
restaurants, VRNN considers the visibility of YEEHA (and
other restaurants) affected by obstacles such as buildings and
malls. VRNN can identify all the buildings that have YEEHA
as their 3 visible nearest restaurants. As the coupons are sent
to those customers who do not know YEEHA, the visibility
plays an important role and it is more likely that those
customers who can see YEEHA directly will visit it and try.

Outdoor Advertisement Planning. Suppose P&G decides
to post advertisements in billboards to promote a new
shampoo. In order to encourage customers to try this new
product, they decide to distribute samples near billboards as
well. Due to the high cost of sample distribution, only those
locations that can reach a big pull of potential customers are
considered. Ideally, the more people can view the billboards,
the more effective the promotion will be. Consequently,
VRNN/VRkNN searches can be conducted to compare the
optimality of any two locations q1 and q2 in terms of the base
of potential customers they can reach. Suppose every
customer only pays attention to the billboard located closest to
him/her, VRNN(q1)/VRNN(q2) can be issued. It takes inputs
of a set P of office buildings/residential buildings/shopping
malls that represents the potential customer base, a set O of
obstacles (e.g., buildings) and q1/q2 as a query point and
returns the customers that will take a look at billboard located
at q1/q2. The one with more customers is better.

A naive solution to process VRkNN (k ≥ 1) queries is to
find a set of points p ∈ P (namely dataset Sq) that are visible
to a given query point q, perform VkNN search on each of
them, and then return those p ∈ Sq with q ∈ VkNN(p).

However, this approach is very inefficient as it needs to
browse the dataset P and obstacle set O multiple times,
resulting in high I/O cost and long CPU time, especially when
|VRkNN(q)| << |Sq| 3 . The poor performance of this naive
approach will be further demonstrated by our experimental
results to be presented in Section VI.

In this paper, we propose an efficient search algorithm for
VRNN retrieval, assuming that both the data set and the set of
obstacles are indexed by R-trees [24]. Our solution follows a
filter-refinement framework, and requires zero pre-processing.
Specifically, a set of candidate objects (i.e., a superset of the
actual query result) is retrieved in the filter step and gets
refined in the refinement step, with two steps integrated into a
single R-tree traversal. As the size of the candidate objects has
a direct impact on the search efficiency, we employ half-plane
properties (as [7]) and visibility check to prune the search
space. In addition, the search algorithm is general and can be
easily extended to support VRkNN search. In brief, the key
contributions of this paper can be summarized as follows:

 We introduce and formalize VRNN query, a novel
addition to the family of RNN queries, which is very
useful in many applications involving spatial data and
physical obstacles for decision support.

 We propose an efficient search algorithm for VRNN
(and VRkNN) queries, analyze the cost of VRNN
algorithm, and prove its correctness.

 We conduct extensive experiments using both synthetic
and real datasets to evaluate the performance of our
proposed algorithms in terms of efficiency and
effectiveness.

The rest of this paper is organized as follows. Section II
formalizes VRNN query and reviews related work. Section III
discusses how to decide whether an object is visible to q in the
presence of obstacles, and proposes the concept of visible
region to improve the performance. Section IV proposes an
efficient search algorithm for VRNN query processing and
conducts analytical analysis to proof its correctness. Section V
extends our solution to deal with the VRkNN search.
Extensive experimental evaluations and our findings are
reported in Section VI. Finally, Section VII concludes the
paper with some directions for future work.

II. BACKGROUND
In this section, we present the formal definition of VRkNN

query, reveal its properties, and then briefly review some
related work, including RNN/RkNN query and visibility
queries. Table I summarizes the notations to be used in the
rest of this paper.

A. Problem Statement
Given a data set P, an obstacle set O, and a query point q,

visible k nearest neighbor and visible reverse k nearest
neighbor search are defined in Definition 2 and Definition 3,
respectively, with the visibility defined in Definition 1.

Definition 1: Visibility. Given a data set P and an obstacle
set O, points p and p′ (∈ P) are visible to each other iff the

3Without loss of generality, |P| represents the cardinality of a set P.

straight line connecting p and p′ does not cut through any
obstacle o, i.e., ∀ o ∈ O, pp' o∩ = ∅ . □

TABLE I
FREQUENTLY USED SYMBOLS

Notation Description
p, P A data point p and the data point set P, with p ∈ P
o, O An obstacle o and the obstacle set O, with o ∈ O
Tp, To The R-tree on P, and the R-tree on O
q A query point
e An entry (point or MBR node) in an R-tree
RkNN(q) Result set of a RkNN query issued at q
VkNN(q) Result set of a VkNN query issued at point q
VRkNN(q) Result set of a VRkNN query issued at point q

Definition 2: Visible k Nearest Neighbor (VkNN). Given

a data set P, an obstacle set O, a query point q, and an integer
k, the visible k nearest neighbor (VkNN) of q retrieves a set of
points, denoted by VkNN(q), that satisfy following conditions:
(i) ∀p ∈ VkNN(q) is visible to q; (ii) |VkNN(q)| = k; and (iii) ∀
p′ ∈ P − VkNN(q) and ∀p ∈ VkNN(q), if p′ is visible to q,
dist(p, q) ≤ dist(p′, q). □

Definition 3: Visible Reverse k Nearest Neighbor
(VRkNN) Query. Given a data set P, an obstacle set O, a
query point q, and a positive integer k, a visible reverse k-
nearest neighbor (VRkNN) query finds a set of points
VRkNN(q) ⊆ P, such that ∀ p ∈ VRkNN(q), q ∈ VkNN(p), i.e.,
VRkNN(q) = {p ∈ P | q ∈ VkNN(p)}. □

Property 1: VRkNNs might not be localized to the
neighborhood of the query point. □

Property 2: Given a query point q, the cardinality of q’s
VRkNNs, denoted by |VRkNN(q)|, varies which is affected by
the position of the query point and the distributions of data
points and obstacles. □

Property 3: p ∈ VkNN(q) does not imply p ∈ VRkNN(q).□
Some of the important properties of VRkNN query that will

be utilized to process VRkNN search are detailed in Property
1, Property 2, and Property 3, respectively. In order to
facilitate the understanding, we illustrate those properties
using the example depicted in Figure 1(b). First, point p1 is
farthest from the specified query point q compared with other
points, but it is still an answer object to the query VRNN (q).
In contrast, point p2 that is closer to q than p1 is not included
in VRNN (q). Second, for a same k, VRkNN queries issued at
different locations obtain different answers with various
number of answer points. For example, |VRNN(q)| = |{p1}| = 1,
|VRNN(q′)| = |{p3, p4}| = 2, and |VRNN(q′′)| = |∅| = 0. Third,
the relationship of visible nearest neighbour is asymmetric.
For example, VNN(q)= p2, but VRNN(q) = {p1} that does not
includes p2.

B. Related Work
1) Algorithms for RNN/RkNN Search: Since the concept

of RNN was first introduced by Korn and Muthukrishnan [1],
many algorithms have been proposed which can be clustered
into three categories. The first category is based on pre-
computation [1], [3], [5]. For each point p, it pre-computes the

distance between p and its nearest neighbor p′ (i.e., NN(p))
and forms a vicinity circle cir(p, p′) that is centered at p and
has dist(p, p′) as the radius. For a given query point q, it
examines q against all the vicinity circles cir(p, p′) with p ∈ P
and those having their vicinity circles enclosing q form the
answer set, i.e., RNN(q) = {p ∈ P | q ∈ cir(p, NN(p))}. To
facilitate the examination, all the vicinity circles are indexed
with RNN-tree [1] or RdNN-tree [3]. Approaches of this
category mainly have two shortcomings. First, the index
construction cost and update overhead is very expensive. To
tackle this issue, bulk insertion in the RdNN-tree has been
proposed [25]. Second, although these methods can be
extended to deal with the RkNN retrieval (if the corresponding
kNN information for each point is available), they are limited
to answer RkNN queries for a fixed k. To support various k, an
approach for RkNN search with local kNN-distance estimation
has been proposed [26].

The second category does not rely on pre-computation but
adopts a filter-refinement framework [2], [6], [7]. In the filter
step, the space is pruned according to defined heuristics and a
set of candidate objects are retrieved from the dataset. In the
refinement step, all the candidates are verified according to
kNN search criteria and those false hits are removed. For
example, based on a given query point q, the original 2D data
space can be partitioned around q into 6 equal regions, such
that the NNs of q found in each region are the only candidates
of RNN query [2]. Thus, in the filter step, 6 constrained NN
queries [27] are conducted to find the candidates in each
region, and then, at the second step, NN queries are applied to
eliminate the false hits. The efficiency of this approach is
owing to the small number of candidates, e.g., at most 6 for an
RNN search in a 2D space. However, the number of
candidates grows exponentially with the increase of the search
space dimensionality which implies the search efficiency can
only be guaranteed in a low-dimensional space. To process
RNN queries in a high-dimensional space, an approximated
algorithm is proposed [6]. It retrieves m nearest points to q as
candidates with m (a randomly selected number) larger than k,
and then verifies the candidates using range queries. However,
the accuracy and performance of this algorithm is highly
dependent on m. The larger m is, the more candidates are
identified. Consequently, it is more likely that a complete
result set is returned but with a higher processing cost. A
small m favours the efficiency but it may incur many false
misses (points that are RkNNs but missed from the final query
result set).

In order to conduct exact RNN search, an efficient
algorithm namely TPL is proposed [7]. TPL exploits a half-
plane property in space to locate RkNN candidates. Applying
the best-first traversal paradigm [28], TPL traverses the data
R-tree to retrieve the NNs of q as RkNN candidates. Every
time an unexplored data point p is retrieved, a half-plane is
constructed along the perpendicular bisector between p and q,
denoted as ⊥(p, q). The bisector divides the data space into
two half-planes: HPq (p, q) that contains q and HPp (p, q) that
contains p. Any point p′ or minimum bounding rectangle
(MBR) N falling inside HPp (p, q) must have p closer to it

than q. As depicted in Figure 2, the bisector ⊥(p3, q) partitions
the space into two half-planes. As point p1 falls inside the
half-plane HPq (p, q), it is closer to q than to p3. In other
words, the number of half-planes HPp (p, q) that a given point
p′ falls in represents the number of data points that are closer
to p′ than q. Hence, if a data point is inside at least k HPp (p, q)
half-planes, it cannot be an RkNN candidate, and thus can be
safely discarded. The filter step terminates when all the nodes
of R-tree are either pruned or visited. As illustrated in Figure 2,
points p1, p3, and p4 are identified as the RNN candidates in
the filter step, while points p2 that is inside HPp1 (p1, q) ∩
HPp3 (p3, q) and N (enclosing points p5, p6) that is inside HPp3
(p3, q) ∩ HPp4 (p4, q)) are filtered out. Later, in the refinement
step, TPL removes false hits by reusing the pruned
points/MBRs. Continuing the running example, points p3 and
p4 are false hits, as their vicinity circles enclose other points.
The final query result set is {p1}. Our proposed algorithm for
VRNN and VRkNN queries employs half-plane property and
visibility check to identify result candidates and prune the
search space.

Fig. 2 Example of TPL algorithm

Algorithms belonging to the third category are to process
various RNN/RkNN query variants, like bichromatic RNN
queries[8], [29], aggregate RNN queries over data stream [9],
RkNN query over moving objects with fixed velocities [14],
[29], RkNN queries in the context of large graphs and ad-hoc
subspaces [10], [11], RkNN query processing in metric spaces
[12], [13], continuous RNN/RkNN monitoring [15], [16], [31],
and ranked RNN search [17].

2) Visibility Query: Visibility computation algorithms that
determine object visibility from a given viewpoint or a
viewing cell have been well-studied in the area of computer
graphics and computational geometry [32]. However, there
are only a few works on visibility queries in the database
community [33], [34], [35]. The main idea is to employ
various indexing structures (e.g., LoD-R-tree [33], HDoV-tree
[35], etc.) to process visibility queries in visualization systems.
These specialized access methods are designed only for the
purpose of visualization and contain no distance information.
They are not capable of supporting efficient VRkNN query
processing. Recently, the visible k-nearest neighbor (VkNN)
search has been investigated, where the goal is to retrieve the
k nearest objects that are visible to a given query point as
mentioned earlier [20].

III. PRELIMINARIES

As VRNN search considers the influence of obstacles in
terms of visibility, all the objects that are invisible to q for
sure will not be the result. Consequently, an essential issue we
have to address is how to determine whether an object is
visible to q. A naive approach is to examine a given object p
against all the obstacles w.r.t. q, which is inefficient because
the examination of each object p requires a scanning of the
obstacles. In this paper, we derive a visible region for the
query point q, denoted by VRq, by visiting the obstacle set
once and the visibility of an object p w.r.t. q can be
determined by checking whether p is located inside VRq. In
this section, we explain the formation of the visible region.

Before we present the detailed formation algorithm, we first
discuss the presentation of a visible region. As shown in
Figure 3, a visible region is in irregular shape and we can use
vertex to present it. However, it might not be so
straightforward to determine whether an object is inside an
irregular polygon. Alternative, we propose to use obstacle
lines, as defined in Definition 4.

Definition 4: Obstacle line. The obstacle line of an
obstacle o4 w.r.t. q, denoted by olo, is the line segment that
obstructs the sight lines from q. □

Suppose the rectangle o as shown in Figure 3 is an obstacle,
its corresponding obstacle line is olo. As blocked by olo, the
shadowed area is not visible to q, and the rest (except o) is
within the visible region of q (i.e., VRq). Based on the concept
of obstacle line, we define the angular bound and the distance
bound of an obstacle line in Definition 5 and Definition 6
respectively, to facilitate the visibility checking.

q x

o

olo.minA

olo.maxA

olo.minD

obstacle line olo
olo.maxD

obstacle

invisible region of q
y search space

olo

Fig. 3 An example obstacle line, and its angular and distance bounds

Definition 5: Angular bound of an obstacle line. Taking
q as an origin in the search space, the angular bound of o’s
obstacle line (i.e., olo) w.r.t. q is denoted by [olo.minA,
olo.maxA] where olo.minA and olo.maxA are respectively the
minimum angle and the maximum angle of olo, and olo.minA ≤
olo.maxA (see Figure 3). If q is located inside o, the angular
bound of olo w.r.t. q is set to [0, 2π]. □

Note that Definition 5 does not hold when olo intersects
with the positive x-axis in the search space. In this case, we
partition olo horizontally along the x-axis into olo1 and olo2
such that Definition 5 remains valid for both olo1 and olo2.
Given two obstacles, the intersection of their angular bounds
has a direct impact on whether they will affect each other’s
visibility w.r.t. q, as listed in Property 4.

4Although an obstacle o may be an arbitrary convex polygon (e.g.,
triangle, pentagon, etc.), we assume that o is a rectangle in this paper.

Property 4: Given two obstacles o and o′, if their angular
bounds are disjoint, i.e., [olo.minA, olo.maxA] ∩ [olo′.minA,
olo′.maxA] = ∅, then they will not affect each other’s visibility
w.r.t. q. □

Definition 6: Distance bound of an obstacle line. The
distance bound of o’s obstacle line (i.e., olo) w.r.t. q is denoted
by [olo.minD, olo.maxD] where olo.minD and olo.maxD are the
minimal distance and maximal distance from q to olo,
respectively (see Figure 3). □

Without any obstacle, the visible region for q (i.e., VRq) is
the entire search space. As obstacles are visited, VRq gets
shrunk. Consequently, an issue we have to solve is how to
decide whether a new obstacle might contribute to the
formation of VRq. Although we assume the obstacle is in
rectangular shape, we first explain the test based on a line
segment (or edges) and then extend the algorithm for
rectangles.

Algorithm 1 Edge Visibility Check Algorithm (EVC)
 algorithm EVC (q, Lq, e, boolean)
 1: flag = invisible
 2: Amin = e.minA; Amax = e.maxA
 3: for each obstacle line l ∈ Lq do
 4: if l.maxA ≤ Amin then
 5: continue
 6: else if l.maxA > Amin and l.minA ≤ Amin then
 7: e′ = edge(e, [Amin, MIN(l.maxA, Amax)]) // get edge
 8: l′ = edge(l, [Amin, MIN(l.maxA, Amax)])
 9: f = CheckEdges (e′, l′, q, Lq, boolean)
10: else if l.minA ≤ Amax and l.minA > Amin then
11: e′ = edge(e, [l.minA, MIN(l.maxA, Amax)])
12: l′ = edge(l, [l.minA, MIN(l.maxA, Amax)])
13: f = CheckEdges (e′, l′, q, Lq, boolean)
14: else // l.minA ≥ Amax
15: break
16: if flag = invisible then flag = f
17: return flag

 function CheckEdges (lN, l, q, Lq)
 1: lN = [s, e]; l = [s′, e′]
 2: if l.maxD ≤ lN.minD then
 3: return IV // invisible
 4: else if l.minD ≥ lN.maxD then
 5: if (boolean = TURE) then Lq= Lq− l + lN
 6: return AV // all-visible
 7: else // lN intersects with l
 8: p = intersection(lN, l) // get intersection point
 9: if dist(q, s) < dist(q, e) then
10: if (boolean = TURE) then Lq = Lq − [p, e] + [s, p]
11: else
12: if (boolean = TURE) then Lq = Lq − [p, s] + [e, p]
13: return PV // part-visible

Algorithm 1 lists the pseudo-code of the Edge Visibility

Check algorithm (EVC), with set Lq keeping all the obstacles
found so far that affect the visibility of a given query point q.
Based on the angular property of obstacle (i.e., Property 4), a
given obstacle o might affect those obstacles with angular
bounds overlapping with o’s but definitely not the test.
Consequently, EVC visits the obstacle lines in Lq according to
the ascending order of their minimal angle. An example is

illustrated in Figure 4, with Lq = {o1, o2, o3}, and e2 being the
edge we are going to evaluate. According to the angular
bounds of l (∈ Lq) and e2, there are three cases: (i) case 1:
l.maxA ≤ e2.minA (e.g., l = olo1), indicating that e2 will not
affect the visibility of l w.r.t q according to Property 4; (ii)
case 2: [l.minA, l.maxA] ∩ [e2.minA, e2.maxA] ≠ ∅ (e.g., l =
olo2), meaning that a detailed examination is necessary as e2 is
very likely to affect the visibility of l w.r.t. of q; and (iii) case
3: l.minA ≥ e2.maxA (e.g., l = olo3), indicating that l and all the
rest of obstacles in Lq with larger minA than that of l’s will not
be affected by e2 and hence the examination can be terminated.

(a) Obstacle placement (b) New visible region

Fig. 4 Example of EVC algorithm

Now the only left task is how to change Lq when a new
obstacle line lN overlaps with some existing obstacle line l in
Lq (i.e., case 2), which is handled by Function CheckEdges
presented in Algorithm 1. Again, there are three possible cases.
First, l.maxD ≤ lN.minD and lN has a zero impact on VRq. For
example, although e1 overlaps with o1 in terms of angular
bounds, it is invisible to q and thus can be ignored. Second,
l.minD ≥ lN.maxD and the entire lN is visible to q. Hence, lN is
inserted into Lq and the part of l that is blocked by lN is
removed. For example, e4 is within the angular bound of o3
and its maximal distance to q is smaller than the minimal
distance between o3 and q. Consequently, e4 that is visible to q
is included into Lq and olo3 is shrunk, as shown in Figure 4(b).
Third, lN and l intersects which means part of lN is visible to q
and the part of l blocked by lN becomes invisible. Lq needs
include the new visible part of lN and remove the invisible part
of l. For instance, the obstacle lines of e3 and o1 intersect and
that of e2 and o2 intersect. We find the intersection points, and
update Lq accordingly. After evaluating new edges e1, e2, e3,
e4, the visible region of q is updated to the shaded area shown
in Figure 4(b). Please note that the parameter boolean in the
function is to control if the update operation on Lq is necessary
and it is set to TRUE only when e refers to a real obstacle.

Algorithm 2 Object Visibility Check Algorithm (OVC)
 algorithm OVC (e, Lq, q)
 1: if e is an obstacle then
 2: return EVC (q, Lq, e, TRUE)
 3: else if e is a point then
 4: return EVC (q, Lq, e, FALSE)
 5: else // e is a MBR
 6: for each edge ei of e do
 7: fi = EVC (q, Lq, ei, FALSE)
 8: if ∀ fi = IV then return IV
 9: else if ∀ fi = AV then return AV
10: else return PV

Since we understand how to evaluate the impact of an edge
on the visible region of q, we explain how to determine that of
a node N (i.e., a rectangle). As a rectangle is consisted of four
edges, we evaluate each of them. If four edges are all invisible
to q, N is invisible to q and hence N and all its enclosed child
nodes can be pruned. If all the edges are visible to q, N is
visible to q and its child nodes need further exploration.
Otherwise, only edges must be visible/part-visible to q and N
might enclose some obstacles that are visible to q and thus its
child nodes need further evaluation. Algorithm 2 shows the
pseudo-code of Object Visibility Check algorithm (OVC). It is
important to note that the input e might not be obstacles, as it
can be a data point because a result object for VRNN/VRkNN
search must be visible to the query point. We will explain how
VRNN query processing invokes OVC to perform the
visibility check in Section IV. A data point p can be regarded
as a special case of an edge with p.minA = p.maxA and p.minD
= p.maxD = dist(p, q).

Now we are ready to present our Visible Region
Computation algorithm (VRC). We assume all the obstacles
are indexed by an R-tree To and VRC traverses To in a best-
first manner with obstacles closer to the query point visited
first. A running example is depicted in Figure 5, with To for
obstacle set O = {o1, o2, o3, o4, o5, o6, o7, o8} shown in Figure
5(b). We use Lq to store all the obstacle lines that affect the
visibility of q, sorted in ascending order of their minimum
bounding angles, and a heap H to maintain all the unvisited
nodes. Initially, H = {N1, N2, N3} and the algorithm always de-
heaps the top entry for examination until H becomes empty.
First, N1 is accessed. As it is visible to q, its child nodes are
en-heaped for later examination, after which H = {o1, N2, N3,
o3, o2}. Next, o1 is evaluated. As it is the first obstacle
checked, o1 for sure affects q’s visibility and is added to Lq (=
{olo1}). Third, N2 is checked. According to current Lq, N2 is
visible to q and hence its child nodes are en-heaped with H
={o5, N3, o3, o2, o4, o6}. Fourth, o5 is examined and becomes
the second obstacle affecting the visibility of q, i.e., Lq = {olo5,
olo1}. Next, N3 is de-heaped and its child nodes are en-heaped
with H = {o7, o3, o2, o4, o8, o6}. In the sequel, VRC de-heaps
obstacles from H and keeps updating Lq until H = ∅. Finally,
Lq = {olo7, olo62, olo5, olo3, olo2, olo1}.

o1

o2

o3

o4

o5

o6

o7

o8

N1

N2

N3

obstacle line

invisible region of q visible region of q

olo1

olo2

olo3

olo5

olo6

olo62olo61

olo7

q

obstacle

N1 N2 N3

o1 o2 o3 o4 o5 o6 o7 o8

Root

N1 N2 N3

(a) Obstacle placement (b) The obstacle R-tree

Fig. 5 Example of VRC algorithm

Algorithm 3 presents the pseudo-code of VRC algorithm. It
continuously checks the head entry e of H. The detailed
examination varies, dependent on the type of e. If e is an

obstacle, it is checked against all the obstacle lines maintained
in Lq (lines 6-7). If it is visible to q, e might contribute to the
formation of VRq and thus Lq is updated. On the other hand, e
must be a node and all its entries that are visible to q are en-
heaped for later examination (lines 8-10). VRC also explores
an early termination condition (lines 4-5), as proved by
Lemma 1.

Lemma 1: Suppose heap H maintains all the unvisited
nodes sorted according to ascending order of their minimal
distances to the query point q and the set Lq keeps all the
obstacles found so far that affect the visibility of q. If Lq is
closed (i.e., ∪l∈Lq[l.minA, l.maxA] = [0, 2π]) and mindist(e, q)
> dmax = MAXl∈Lq(l.maxD), e and hence all the entries in H are
invisible to q. □

Proof: Lq is closed, and suppose there is an entry e with
mindist(e, q) > dmax visible to q. As e is visible to q, there must
be at least one line segment issued at q and reaching a point of
e (denoted as p) without cutting through any other obstacle
(Definition 1). On the other hand, since Lq is closed, [ole.minA,
ole.maxA] ⊆ ∪l∈Lq[l.minA, l.maxA] with ole being the obstacle
line of e. Without loss of generality, we can assume the
extension of line segment qp intersects a line l ∈ Lq at point p′
with dist(p, q) ≤ dist(p′, q) ≤ dmax. As we know mindist(e, q) ≤
dist(p, q), consequently mindist(e, q) ≤ dmax which contradicts
our previous assumption. ■

Algorithm 3 Visible Region Computation Algorithm (VRC)
 algorithm VRC (To, q, Lq)
 1: list Lq = ∅, min-heap H = {To.root}
 2: while H ≠ ∅ do
 3: de-heap the top entry (e, key) of H
 4: if Lq.isclose = TRUE and mindist(e, q) > dmax then
 5: break // terminate
 6: if e is an obstacle then
 7: OVC (e, Lq, q)
 8: else // e is a MBR (i.e., an intermediate node)
 9: for each entry ei ∈ e and OVC (ei, Lq, q) ≠ IV do
10: insert (ei, mindist(ei, q)) into H

IV. VRNN QUERY PROCESSING
In this section, we explain how to process VRNN query.

We first present the pruning strategy, detail the search
algorithm and then analyse the cost of VRNN algorithm and
proof its correctness.

q

p1

p4

p5

p6

p7

⊥(p1, q)

p2

p3

obstacle

N1
N2

N3

invisible region of p1

o1
pruned by of p1

A B

CD

E

F

l1

Fig. 6 Illustration of pruning based on half-planes and visibility check

A. Pruning Strategy
We use half-plane property (as [7]) and visibility check to

prune the search space. Consider the perpendicular bisector

between a data point p1 and a given query point q, i.e., ⊥(p1, q)
(i.e., line l1) as illustrated in Figure 6. The bisector divides the
whole data space into two half-planes, i.e., HPp1 (p1, q)
containing p1 (i.e., trapezoid EFCD) and HPq (p1, q)
containing q (i.e., trapezoid ABFE). All the data points (e.g.,
p2, p3) and nodes (e.g., N1) that fall inside HPp1 (p1, q) but are
visible to p1 must have p1 closer to them than q, and thus they
cannot be/contain a VRNN of q. However, all the data points
(e.g., p6, p7) and nodes (e.g., N2, N3) that fall completely inside
HPp1(p1, q) and are part-visible/invisible to p1 might become
or contain a VRNN of q. Therefore, they cannot be discarded,
and a further examination is necessary. In the following
description, we term p1 as a pruning point.

B. The VRNN Algorithm
We adopt a two-step filter-and-refinement framework to

deal with VRNN queries, assuming that both data set P and
obstacle set O are indexed by R-trees. In order to improve the
performance, these two steps are combined into a single
traversal of the trees. In particular, the algorithm accesses
nodes/points in ascending order of their distance to the query
point q to retrieve a set of potential candidates, maintained by
a candidate set Sc. All the points and nodes that cannot
be/contain a VRNN of q are pruned by the above mentioned
pruning strategy, and inserted (without being visited) into a
refinement point set Sp and a refinement node set Sn,
respectively. At the second step, the entries in both Sp and Sn
are used to eliminate false hits. Algorithm 4 presents the
pseudo-code of the VRNN Search algorithm (VRNN) that
takes data R-tree Tp, obstacle R-tree To, and a query point q as
inputs, and outputs exactly all the VRNNs of q. We use an
example shown in Figure 7 to elaborate the VRNN algorithm.
Here, P = {p1, p2, …, p13, p14}, O = {o1, o2, o3, o4}, and the
corresponding Tp is depicted in Figure 7(b). A primary heap
Hw is maintained to keep all the unvisited nodes ordered in
ascending order of their smallest distance to the query point q.

Algorithm 4 VRNN Search Algorithm (VRNN)
 algorithm VRNN (Tp, To, q)
 1: initialize sets Sc = ∅, Sp = ∅, Sn = ∅, Sr = ∅
 2: VRNN-Filter (Tp, To, q, Sc, Sp, Sn)
 3: VRNN-Refinement (q, Sc, Sp, Sn, Sr)
 4: return Sr

qp1

p2

p3

p5

p6

p7

p4

p9

p8

p11

p10 p12

p13

p14

N3

N1

N2

N4

N5
N6

N7

N8

N9
N10

⊥(p1, q)

⊥(p2, q)

⊥(p4, q)

⊥(p8, q)

o1

o2

o3

o4

obstacle

false hit

pruned by p1

pruned by q

invisible region of q visible region of q

N8 N9 N10

N1 N2 N3 N4 N5 N6 N7

Root

N8 N9 N10

p4 p8

p3 p7

N1 N6

p1 p11

p2 p5 p6 p10

p9 p12 p13 p14

N3

N2 N4 N5

N7

(a) Data and obstacle placement (b) The data R-tree

Fig. 7 Example of VRNN algorithm

1) The Filter Step: Initially, VRNN visits the root of Tp and
inserts its child entries N8 and N9 that are visible to q into Hw
(= {N8, N9}), and adds the entry N10 that is invisible to q to Sn
(= {N10}). Then, the algorithm de-heaps N8, accesses its child
nodes, and en-heaps all the entries that are visible to q, after
which Hw = {N3, N9, N1, N2}. Next, N3 is visited and it updates
Hw to {p1, N9, N1, N2, p11}. The next de-heaped entry is p1. As
it is visible to q, p1 is the first VRNN candidate (i.e., Sc= {p1})
and becomes the current pruning point cp that is used for
pruning in the subsequent execution.

Algorithm 5 Filter for VRNN Algorithm (VRNN-Filter)
 algorithm VRNN-Filter (Tp, To, q, Sc, Sp, Sn)
 1: point cp = NULL, min-heaps Hw = {To.root} and Ha = ∅
 2: VRC (To, q, Lq)
 3: while Hw ≠ ∅ do
 4: de-heap the top entry (e, key) of Hw
 5: if e is a data point then
 6: Sc = Sc + {e}; cp = e; VRC (To, cp, Lcp)
 7: while Hw ≠ ∅ do
 8: de-heap the top entry (e′, key) of Hw
 9: if e′ is a data point and Trim (q, cp, e′) = ∞ then
10: if OVC (e′, Lcp, cp) = AV then Sp = Sp + {e′}
11: else insert (e′, dist(e′, q)) into Ha
12: else if e′ is a data point and Trim (q, cp, e′) ≠ ∞ then
13 insert (e′, dist(e′, q)) into Ha
14: else // e′ is a MBR (i.e., an intermediate node)
15: for each entry ei′ ∈ e′ do
16: if OVC (ei′, Lq, q) ≠IV and Trim (q, cp, ei′) = ∞ then
17: if OVC (ei′, Lcp, cp) = AV then
18: if ei′ is a data point then Sp = Sp + {ei′}
19: else Sn = Sn + {ei′}
20: else if OVC (ei′, Lcp, cp) = PV then
21: insert (ei′, mindist(ei′, q)) into Hw
22: else insert (ei′, mindist(ei′, q)) into Ha
23: else if OVC (ei′, Lq, q) ≠ IV and Trim (q, cp, ei′) ≠ ∞
24: insert (ei′, mindist(ei′, q)) into Hw
25: else // OVC (ei′, Lq, q) = IV
26: if ei′ is a data point then Sp = Sp + {ei′}
27: else Sn = Sn + {ei′}
28: swap (Hw, Ha) // change the roles between Hw and Ha
29: else // e is a MBR (i.e., an intermediate node)
30: for each entry ei ∈ e do
31: if OVC (ei, Lq, q) ≠ IV and cp = NULL then
32: insert (ei, mindist(ei, q)) into Hw
33: else if OVC (ei, Lq, q) ≠ IV and cp ≠ NULL then
34: if Trim (q, cp, ei) = ∞ then
35: if OVC (ei, Lcp, cp) = AV then
36: if ei is a data point then Sp = Sp + {ei}
37: else Sn = Sn + {ei}
38: else insert (ei, mindist(ei, q)) into Hw
39: else insert (ei, mindist(ei, q)) into Hw
40: else // OVC (ei, Lq, q) = IV
41: if ei is a data point then Sp = Sp + {ei}
42: else Sn = Sn + {ei}

The next de-heaped entry is N9. As cp (= p1) is not empty,

VRNN uses Trim algorithm (as [7]) to check whether N9 can
be pruned. As part of N9 lies in HPq (cp, q), it has to be
accessed and VRNN visits its child nodes. Child node N5 is
discarded as it locates inside HPcp (cp, q) and it is all-visible
to cp, meaning that it cannot contain any qualifying candidates.
Thus, N5, which is a MBR, is added to Sn, i.e., Sn = {N10, N5}.

The other child entry N4 is en-heaped into Hw (= {N4, N1, N2,
p11}) because it falls partially into HPcp (cp, q) and is also all-
visible to cp, indicating that N4 may contain VRNN candidates.
VRNN proceeds to de-heap N4, and visits its child entries, i.e.,
data points p2 and p5. As p2 falls inside HPq (cp, q) and is
visible to cp, it is added to Hw (= {p2, N1, N2, p11}). On the
other hand, point p5 is inserted into Sp = {p5} since it locates
inside HPcp (cp, q) and is visible to cp. Next, p2 is de-heaped.
As it cannot be pruned by current pruning point (p1), it
becomes the second pruning point and maintained by an
auxiliary heap Ha = {p2}. Next, VRNN accesses node N1 in
which points p4 and p8 (children of N1) are inserted into Hw (=
{N2, p4, p8, p11}). Note that although p8 falls fully inside HPcp
(cp, q), it is invisible to cp due to the obstruction of obstacle o2,
and hence p8 cannot be pruned by the current pruning point
(i.e., p1). The next processed entry N2 is added to Sn (= {N10,
N5, N2}) directly, as it locates inside HPcp (cp, q) and is all-
visible to cp. In the sequel, p4 and p8 are retrieved and inserted
into Ha, after which Ha = {p2, p4, p8} ordered based on
ascending order of their mindist to q. Finally, p11 is de-heaped
and it is added to Sp = {p5, p11} since it satisfies the pruning
condition. As Hw is empty, the first loop stops, with Ha, Sc, Sp,
and Sn being {p2, p4, p8}, {p1}, {p5, p11}, and {N10, N5, N2},
respectively. Next, the roles of Hw and Ha are switched. In
other words, in the rest of current iteration, the algorithm uses
Hw as an auxiliary heap, but takes Ha as a primary heap.
VRNN proceeds in the same loop until Hw = Ha = ∅, i.e., all
the pruning points are either pruned (i.e., inserted into Sp) or
become candidates (i.e., inserted into Sc). Finally, we have Sc
= {p1, p2, p4, p8}, Sp = {p5, p11}, and Sn = {N10, N5, N2}.

Algorithm 5 shows the pseudo-code of the Filter for VRNN
algorithm (VRNN-Filter). When an intermediate node is
visited, it calls OVC algorithm to check its visibility to the
query point q and then processes it. Similarly, when a data
point is accessed, it invokes OVC algorithm to examine its
visibility to the current pruning point cp and then processes it.
For each pruning point cp discovered, VRNN-Filter applies
VRC algorithm to get its visible region, i.e., find the obstacles
from To that can affect cp’s visibility. Note that all pruned
entries are stored in their corresponding refinement set but not
removed since they are used for verifying candidates in the
next refinement step.

2) The Refinement Step: When the filter step finishes, the
refinement step starts, with Algorithm 6 depicting the pseudo-
code of the Refinement for VRNN algorithm (VRNN-
Refinement). In the first place, VRNN-Refinement conducts
self-filtering (lines 2-4), that is, it prunes the candidates that
are closer to each other than q. Then, the algorithm enters the
next refinement step, where it verifies whether each remaining
candidate in Sc is a true result (lines 6-16). First it calls Round
of Refinement algorithm (Refinement-Round), defined in
Algorithm 7, to eliminate false candidates from Sc based on
the content of Sp and Sn, without any extra node access. The
remaining points p in Sc need further refinement, with each
associated with p.toVisit that records the nodes which might
enclose some not-yet visited points that may invalidate p.
Consequently, nodes in p.toVisit are visited with each access

updating the content of Sp and Sn. Note Sp and Sn are reset to ∅
after each round of Refinement-Round (line 11) to avoid
duplicated checking. The refinement step continues until Sc is
empty.

Algorithm 6 Refinement for VRNN Algorithm (VRNN-Refinement)
 algorithm VRNN-Refinement (q, Sc, Sp, Sn, Sr)
 1: for each point p ∈ Sc do
 2: for each other point p′ ∈ Sc do
 3: if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then
 4: Sc = Sc − {p}; goto 1
 5: if p is not eliminated from Sc then initialize p.toVisit = ∅
 6: if Sc ≠ ∅ then
 7: repeat
 8: Refinement-Round (q, Sc, Sp, Sn, Sr)
 9: let N be the lowest level node of p.toVisit for p ∈ Sc
10: remove N from all p.toVisit and access N
11: Sp = Sn = ∅ // for the next round
12: if N is a leaf node then
13: Sp = {p′ | p′ ∈ N and p′ is visible to p}
14: else
15: Sn = {N′ | N′ ∈ N and N′ is visible to p}
16: else return // terminate

Algorithm 7 Round of Refinement Algorithm (Refinement-Round)
 algorithm Refinement-Round (q, Sc, Sp, Sn, Sr)
 1: for each point p ∈ Sc do
 2: for each point p′ ∈ Sp do
 3: if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then
 4: Sc = Sc − {p}; goto 1
 5: for each node N ∈ Sn do
 6: if OVC (N, Lp, p) = PV then
 7: if minmaxdist(N, p) < dist(q, p) then
 8: Sc = Sc − {p}; goto 1
 9: for each node N ∈ Sn do
10: if OVC (N, Lp, P) ≠ IV and mindist(N, p) < dist(q, p) then
11: add N to p.toVisit
12: if p.toVisit = ∅ then Sc = Sc − {p}; Sr = Sr + {p}

Now we explain the detail of Refinement-Round algorithm.

Specifically, it has three tasks, i.e., pruning false positive,
returning result objects, and identifying nodes that might
invalidate the remaining points in Sc. First, points p in Sc
satisfying following any condition are for sure false positives
and can be pruned: (i) ∃ p′ ∈ Sp such that p′ is visible to p and
dist(p′, p) < dist(q, p) (lines 2-4), or (ii) ∃ N ∈ Sn such that N
is all-visible to p and minmaxdist(N, p) < dist(q, p) (lines 5-8).
Note that minmaxdist(N, p) is the upper bound of the distance
between p and its closest point in N. Hence, minmaxdist(N, p)
< dist(q, p) means that N contains at least one point that is
nearer to p than q. For example, in Figure 7 p2 ∈ Sc can be
safely discarded as N5 ∈ Sn is all-visible to it and
minmaxdist(N5, p2) < dist(q, p2). Second, ∀ p ∈ Sc can be
reported immediately as an actual VRNN of q when the
following two conditions are satisfied: (i) ∀ p′ ∈ Sp, p′ is
either invisible to p or dist(p′, p) > dist(q, p), and (ii) ∀ N ∈ Sn,
it is all-visible/part-visible to p and mindist(N, p) > dist(q, p).
In our example, p4 and p8 satisfy the above conditions, and
thus, they are removed from Sc and reported as the VRNNs of
q immediately. The points p in Sc cannot be pruned or

reported as real result objects must have some nodes in Sn that
contradict above conditions, and we use a set p.toVisit to
record all the nodes (lines 9-11). Take p1 as an example. As
p1.toVisit ={N2}, we access N2 and find out the enclosed point
p3 is the VNN of p1 and hence p1 is invalidated.

If there are multiple nodes in p.toVisit for each p remaining
in Sc, we can access all of them to invalidate the candidate
objects. However, not all the accesses are necessary. Hence,
we adopt an incremental approach to access the lowest level
nodes first in order to achieve better pruning. In our example
shown in Figure 7, the second refinement round starts with Sc
= {p1}, Sp = {p3, p7} (i.e., points enclosed in N2), Sn = ∅, and
Sr = {p4, p8}. Point p1 is eliminated as a false positive as p3 is
visible to p1 and dist(p3, p1) < dist(q, p1), and then the VRNN
algorithm terminates.

C. Discussion
The cost of R-tree traversal dominates the total overhead of
the VRNN algorithm. We first derive the upper bound of the
number of traversals on the R-trees Tp and To, respectively.

Lemma 2: The VRNN algorithm traverses the data R-tree
Tp at most once, and the obstacle R-tree To at most (|Sc| + 1)
times. □

As shown in Algorithm 5, the VRNN-Filter algorithm only
traverses Tp once to retrieve a set of VRNN candidates. It then
uses half-plane property and visibility check to prune false
candidates and calls the VRC algorithm once for each
candidate p ∈ Sc to find the obstacles affecting its visibility
(line 6 in Algorithm 5). Moreover, VRNN-Filter also invokes
the VRC algorithm once to retrieve the obstacles that can
affect the visibility of q (line 2 in Algorithm 5). Consequently,
the VRNN algorithm traverses To at most (|Sc| + 1) times.

Theorem 1: The time complexity of the VRNN algorithm
is O ((log|Tp| × (|Sc| + 1) log|To|) + (|Sc|2 + |Sc| (|Sp| + |Sn|))). □

Proof: Let |Tp| and |To| be the tree size of Tp and To
respectively, and |Sc|, |Sp|, and |Sn| be the cardinality of Sc, Sp,
and Sn respectively. A VRNN algorithm calls VRNN-Filter
and VRNN-Refinement algorithms with complexities being O
(log|Tp| × (|Sc| + 1) log|To|) and O (|Sc|2 + |Sc| (|Sp| + |Sn|)).
Therefore, the total time complexity of the VRNN algorithm
is O ((log|Tp| × (|Sc| + 1) log|To|) + (|Sc|2 + |Sc| (|Sp| + |Sn|))). ■

Theorem 2: The VRNN algorithm retrieves exactly the
VRNNs of a given query point q, i.e., the algorithm has no
false negatives and no false positives. □

Proof: First, the VRNN algorithm only prunes away those
non-qualifying points/nodes in the filter step by using our
proposed pruning strategy. Hence, no result is missed (i.e., no
false negatives). Second, every candidate p ∈ Sc is verified in
the refinement step by comparing it with each data point
retrieved during the filter step and each node that may
potentially contain VNNs of p, which ensures no false
positives. ■

V. VRKNN QUERY PROCESSING
In this section, we discuss how our solution can be adapted

to answer more general VRkNN queries that find all the points
whose VkNN set includes q. First, the pruning strategy

(described in Section IV-A) can be extended to arbitrary
values of k. Assume a VRkNN query and a dataset P with n (≥
k) data points p1, p2, …, pn. Let D = {θ1, θ2, …, θk} be a subset
of P. If a point/node falls completely inside 1

k
i=∩ HPθi (θi, q)

and is all-visible to each point in D, it must have k points (i.e.,
θ1, θ2, …, θk) closer to it than q. Hence, it can be safely
pruned away. On the other hand, if a point/node locates inside

1
k
i=∩ HPθi (θi, q) and is part-visible/invisible to any subset of D,

it can be/contain a VRkNN of q and thus needs further
examination.

Next, we explain how to extend the VRNN algorithm for
VRkNN query processing. Similarly, it follows a filter-
refinement framework. Specifically, VRkNN first finds a set
Sc of VRkNN candidates that contains all the actual query
results. Then, the algorithm eliminates/validates every
candidate in Sc to remove all the false hits. The VRNN-Filter
algorithm can be easily adapted to support VRkNN query, by
integrating the aforementioned pruning strategy. The VRNN-
Refinement algorithm can also be extended for VRkNN
retrieval. During the processing, all the points p ∈ Sc with at
least k points visible to q within dist(p, q) are pruned as false
candidates, while the rest form the final result set. Since the
number of points within dist(p, q) and meanwhile visible to p
determine whether p is a final result, we associate a counter
cnt with each p ∈ Sc during the refinement phase. Every time
we find a point p′ ∈ Sc that satisfies the following two
conditions: (i) p′ is visible to p, and (ii) dist(p′, p) < dist(q, p),
the p’s counter cnt is increased by one. Eventually, p can be
removed as a false positive when cnt ≥ k. The pseudo-codes of
the algorithms for VRkNN query processing are ignored for
space saving.

VI. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and effectiveness

of our proposed VRNN and VRkNN algorithms via
experiments on synthetic and real datasets. First, Section VI-A
describes the experimental settings, and then Sections VI-B
and VI-C present experimental results and our findings for
VRNN and VRkNN queries, respectively. All the algorithms
(i.e., Naive, VRNN, and VRkNN) were implemented in C++.
Experiments were conducted on a PC with a Pentium IV 3.0
GHz CPU and 2GB RAM, running Microsoft Windows XP
Professional Edition.

Here, the Naive algorithm refers to the naive solution
introduced in Section I-B. It retrieves all the points that are
visible to a given query point q, denoted by Sq; and then
performs VkNN search on each point p ∈ Sq in order to
determine whether q is included into VkNN(p). The set of
points p that have q ∈ VkNN(p) form the final result set.

A. Experimental Setup
We deploy five real datasets5, which are summarized in

Table II. Synthetic datasets are created following the Uniform

5LB, NA, and LA are available at http://www.maproom.psu.edu/

dcw/, Cities and Rivers available at http://www.rtreeportal.org.

distribution and Zipf distribution, with the cardinality varying
from 0.1 × |LA| to 10 × |LA|. The coordinate of each point in
Uniform datasets is generated uniformly along each
dimension, and that of each point in Zipf datasets is generated
according to Zipf distribution with skew coefficient α = 0.8.
All the datasets are mapped to a [0, 10000] × [0, 10000]
square. As VRNN and VRkNN queries involve a data set P
and an obstacle set O, we deploy five different combinations
of the datasets, namely CR, LL, NL, UL, and ZL,
representing (P, O) = (Cities, Rivers), (LB, LA), (NA, LA),
(Uniform, LA), and (Zipf, LA), respectively. Note that the
data points in P are allowed to lie on the boundaries of the
obstacles but not in their interior.

TABLE II
DESCRIPTION OF REAL DATASETS USED IN EXPERIMENTS

Dataset Cardinality Description
LB 58945 2D point in Long Beach
NA 470759 2D point in North America
LA 131461 2D MBRs of streets in Los Angeles
Cities 5922 2D cities (as point) in Greece
Rivers 21645 2D MBRs of rivers in Greece

TABLE III
PARAMETER RANGES AND DEFAULT VALUES

Parameter Range Default
k 1, 2, 4, 8, 16 1, 4
|P|/|O| 0.1, 0.2, 0.5, 1, 2, 5, 10 1
buffer size (% of tree size) 0, 10, 20, 30, 40, 50, 60 0

All data and obstacle sets are indexed by R*-trees [24] with

a disk page size of 1K bytes. Note that we choose a small page
size to simulate practical scenarios where the cardinalities of
the data and obstacle sets are much larger. The experiments
investigate the efficiency and effectiveness of VRNN and
VRkNN algorithms under a variety of parameters which are
listed in Table III. In each experiment, we vary only one
parameter while the others are fixed at their default values and
run 200 queries with their average performance reported. The
query distribution follows the underlying dataset distribution
and the total query cost is evaluated. Both the I/O overhead
(by charging 10ms per page fault, as in [7]) and CPU time
contribute to the query cost. We assume the server maintains a
buffer with LRU as the cache replacement policy. Unless
specifically stated, the size of buffer is 0, i.e., the I/O cost is
determined by the number of node/page accesses.

B. Results on VRNN Queries
The first set of experiments compares the performance of

the Naive algorithm and VRNN algorithm for VRNN queries,
with the total query cost (in seconds) of CR datasets depicted
in Figure 8. Here, each result is broken into two components,
corresponding to the filter step and the refinement step,
respectively. The number with percentage on top of each bar
is the percentage of I/O time in the total query cost. For
example, Naive algorithm incurs extremely high I/O cost,
97% of the total query cost. The number inside the brackets on
top of each bar is the cardinality of the candidate set, i.e., |Sc|.
For instance, Naive algorithm retrieves 68 candidate objects in

the filter step while VRNN algorithm only retrieves 2.8
candidates on average. Finally, the number with percentage
inside the performance bar indicates the ratio of the cost
incurred in the filter step to that of the total query cost. For
example, Naive algorithm spends 94% of the cost in the filter
step while VRNN algorithm spends 99% of the cost in the
filter step.

0

10

20

30

40

50

Naive VRNN

Q
ue

ry
 c

os
t (

se
c)

RefinementFilter

94%

99%

97%

96%

(68)

(2.8)

I/O cost percentage

Number of candidates

Filter step percentage

Fig. 8 Naive vs. VRNN (k = 1, CR)

As expected, VRNN outperforms Naive significantly. For
200 queries, VRNN can improves the query cost to up to 11%
and reduces the number of candidates to only 4%, compared
with that of Naive algorithm. The reason behind is that Naive
needs to traverse the data R-tree Tp and the obstacle R-tree To
multiple times, incurring extremely expensive I/O overhead
and distance computation. As demonstrated in Lemma 2
(presented in Section IV-C), VRNN traverses Tp at most once,
and To at most (|Sc| + 1) times, which saves considerable I/O
cost.

In addition, we observe that Filter step actually dominates
the overall overhead (> 90%), especially for VRNN. This is
because: (i) VRNN reuses all the points and nodes pruned
from the filter step to perform candidate verification in the
refinement step, and hence duplicated accesses to the same
points/nodes are avoided; and (ii) most candidates in Sc are
eliminated as false hits directly by other candidates in Sc or
points/nodes maintained in the refinement set Sp or Sn which
does not cause any data access. The remaining candidates can
be verified by visiting a limited number of additional nodes.
Since Naive for sure performs worse than VRNN (several
orders of magnitude), its performance is omitted in the rest of
experimental results.

0

20

40

60

80

100

0.1 0.2 0.5 1 2 5 10
|P|/|O|

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

99% 99%
98%

97%

95%

99%

96%
93% 93% 93%

92%
90%

88%

86%

(5.4) (6) (7.8)
(8.3)

(8.9)

(10.8)

(11.4)

0

50

100

150

200

250

0.1 0.2 0.5 1 2 5 10
|P|/|O|

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

99% 99%
97% 96%

94%

98%

95%92% 91% 90% 89%
88%

85%

83%

(4.9) (5) (6.1) (6.2)
(7.2)

(7.9)

(8.1)

(a) UL (b) ZL

Fig. 9 VRNN cost vs. |P|/|O| (k = 1)

Next, we investigate the effect of the ratio |P|/|O| on the
proposed VRNN algorithm using two dataset combinations

(i.e., UL and ZL). Figure 9 plots the total query cost of the
VRNN algorithm as a function of |P|/|O|, fixing k = 1. It is
observed that the cost of VRNN demonstrates a stepwise
behaviour. Specifically, it increases slightly as |P|/|O| changes
from 0.1 to 1, but then ascends much faster as |P|/|O| grows
further. This is because, as the density of data set P grows, the
number of the candidates retrieved in the filter step increase as
well, which results in more traversals of To, more visibility
check, and more candidate verification. Similar as previous
evaluation, VRNN is very efficient in the refinement step,
especially when the ratio |P|/|O| is small (e.g., 0.1, 0.2).

0

10

20

30

40

0 10 20 30 40 50 60
Buffer size (% of the tree size)

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

99%
99%

98%
97%

95%

98%

96%

92%

91%

88%
86%

83%

76%
70%

(8.1)

(8.1)

(8.1)
(8.1)

(8.1)

(8.1)
(8.1)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
Buffer size (% of the tree size)

Q
ue

ry
 ti

m
e

(s
ec

)

VRNN-RefinementVRNN-Filter

98%
98%

97%
97%

94%

97%

96%

89% 90% 88% 88%
87%

83%

76%

(6.2) (6.2) (6.2) (6.2)
(6.2)

(6.2)

(6.2)

(a) UL (|P|/|O| = 1) (b) ZL (|P|/|O| = 1)

Fig. 10 VRNN cost vs. buffer size (k = 1)

Finally, we examine the performance of the VRNN
algorithm in the presence of an LRU buffer, by fixing k to 1,
and varying the buffer size from 0% to 60% of the tree size.
To obtain stable statistics, we measure the average cost of the
last 100 queries, after the first 100 queries have been
performed for warming up the buffer, with its results under
UL and ZL dataset combinations shown in Figure 10. The
total query cost is reduced as buffer size increases. In
particular, as the buffer size enlarges, the VRNN-Filter cost is
observed to drop, but the VRNN-Refinement cost remains
almost the same. This is because that the filter step of VRNN
requires traversing the obstacle R-tree To (|Sc| + 1) times (by
Lemma 2). Consequently, it may access the same nodes (e.g.,
the root of To, i.e., To.root) multiple times, and hence a buffer
space can improve the performance by keeping the nodes
locally available.

C. Results on VRkNN Queries

0

10

20

30

40

50

Naive VRkNN

Q
ue

ry
 c

os
t (

se
c)

RefinementFilter

94%

99%

93%

92%

(73)

(8.9)

Fig. 11 Naive vs. VRkNN (k = 4, CR)

The second set of experiments evaluates the efficiency and
effectiveness of VRkNN query processing algorithms. First,
we compare the efficiency of alternative algorithms (i.e.,

Naive and VRkNN) for VRkNN queries, fixing k = 4 which is
the median value of all the ks we evaluate. Figure 11 presents
our experimental results on the CR dataset combination.
Similar as performance of VRNN search presented in Figure 8,
we also demonstrate the I/O cost percentage, the number of
candidates, and the percentage of the filter step. It is observed
both Naive and VRkNN search algorithms demonstrate
similar performance trends as that under k = 1.

Next, we evaluate the impact of the number k of requested
VRNNs on the performance of the VRkNN algorithm, using
LL, NL, UL, and ZL dataset combinations. Figure 12
illustrates the total query cost of the VRkNN algorithm as a
function of k which varies from 1, to 2, to 4, to 8, and finally
to 16. As expected, the overhead of VRkNN grows with k, due
to the significant increase in the cost of VRkNN-Filter (notice
that the number of candidates retrieved during the filter step
increases almost linearly with k).

0.1

1

10

100

1000

1 2 4 8 16
k

Q
ue

ry
 ti

m
e

(s
ec

)

VRkNN-RefinementVRkNN-Filter

95.2%
95%

95%
95%

95%

(6.8)
(16)

(33)
(60)

(106)

99%
99% 99%

99%
99%

0.01

0.1

1

10

100

1000

1 2 4 8 16
k

Q
ue

ry
 ti

m
e

(s
ec

)

97%
97%

97%
97%

97%

(8)
(18.5)

(39)
(77)

(145)

VRkNN-RefinementVRkNN-Filter

99%
99% 99%

99%
99%

(a) LL (b) NL

0.1

1

10

100

1000

1 2 4 8 16
k

Q
ue

ry
 ti

m
e

(s
ec

)

94%
94%

94%
94%

94%

(8.3)
(19)

(38)
(70)

(121)
VRkNN-RefinementVRkNN-Filter

98%
99% 99%

99%
99%

1

10

100

1000

1 2 4 8 16
k

Q
ue

ry
 ti

m
e

(s
ec

)

89%
89%

88%
87%

86%

(6.2)
(14)

(28)
(53)

(97)
VRkNN-RefinementVRkNN-Filter

97%
98% 99%

99%
99%

(c) UL (|P|/|O| = 1) (d) ZL (|P|/|O| = 1)

Fig. 12 VRkNN cost vs. k (logarithmic scales)

0.01

0.1

1

10

100

1000

0.1 0.2 0.5 1 2 5 10
|P|/|O|

Q
ue

ry
 ti

m
e

(s
ec

) 94% 94% 94% 94% 89% 86% 82%
(21) (25) (33) (34) (35) (37) (38)

VRkNN-RefinementVRkNN-Filter

99% 99%
99%

99%

99%

99%

99%

0.1

1

10

100

1000

0.1 0.2 0.5 1 2 5 10
|P|/|O|

Q
ue

ry
 ti

m
e

(s
ec

)

91% 90% 89% 88% 85% 79%
66%

(20) (22) (26) (28) (33) (36)
(36)

VRkNN-RefinementVRkNN-Filter

99% 99%
99%

99%

97%

99%

98%

(a) UL (b) ZL

Fig. 13 VRkNN cost vs. |P|/|O| (k = 4, logarithmic scales)

In the following experiments, we explore the effects of
different parameters, including the ratio |P|/|O| and buffer size,
on the performance of the VRkNN algorithm, using UL and

ZL dataset combinations. In Figure 13, we show the efficiency
of the algorithm for VRkNN queries by fixing k = 4 and
varying |P|/|O| between 0.1 and 10. In Figure 14, we plot the
cost of the VRkNN algorithm with respect to the buffer sizes.
All the observations made for the VRkNN search are similar
to those we make for the VRNN retrieval and thus the detailed
explanation is ignored.

0.1

1

10

100

1000

0 10 20 30 40 50 60
Buffer size (% of the tree size)

Q
ue

ry
 ti

m
e

(s
ec

)

87% 85% 80% 77% 70%
51% 42%

(38) (38) (38) (38) (38)
(38) (38)

VRkNN-RefinementVRkNN-Filter

99% 99%
99% 98%

97%

99%
98%

1

10

100

1000

0 10 20 30 40 50 60
Buffer size (% of the tree size)

Q
ue

ry
 ti

m
e

(s
ec

)

82% 81% 79% 78% 75%
63%

47%

(29) (29) (29) (29) (29)
(29)

(29)

VRkNN-RefinementVRkNN-Filter

99% 99%
98% 98%

97%

98%
98%

(a) UL (|P|/|O| = 1) (b) ZL (|P|/|O| = 1)

Fig. 14 VRkNN cost vs. buffer size (k = 4, logarithmic scales)

VII. CONCLUSIONS
In this paper, we identify and solve a novel type of reverse

nearest neighbor queries, namely visible reverse nearest
neighbor (VRNN) search. Although both the RNN search and
the VNN search have been studied, there is no previous work
that considers both the visibility and the reversed spatial
proximity relationship between objects. On the other hand,
VRNN search is useful in many decision support applications
involving spatial data and physical obstacles. Consequently,
we propose an efficient search algorithm for VRNN query,
assuming that both P and O are indexed by R-trees. We
employ half-plane property and visibility check to prune the
search space, analyze the cost of the proposed VRNN
algorithm, and proof its correctness. In addition, we generalize
our methods to handle visible reverse k-nearest neighbor
(VRkNN) search. An extensive experimental study with real
and synthetic datasets has been conducted which further
demonstrates the efficiency and effectiveness of our proposed
algorithms for dealing with VRNN and VRkNN queries,
under various experimental settings.

In the future, we plan to extend our techniques to other
VRNN variations such as constrained VRNN and Top-k
VRNN etc. Also, we intend to investigate efficient algorithms
for tackling the VRNN retrieval with respect to a line segment
which contains continuous query points instead of a fixed
query point.

REFERENCES
[1] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest

neighbor queries,” in SIGMOD, 2000, pp. 201–212.
[2] I. Stanoi, D. Agrawal, and A. El Abbadi, “Reverse nearest neighbor

queries for dynamic databases,” in SIGMOD Workshop DMKD, 2000,
pp. 44–53.

[3] C. Yang and K.-I. Lin, “An index structure for efficient reverse nearest
neighbor queries,” in ICDE, 2001, pp. 485–492.

[4] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos, “C2P:
Clustering based on closest pairs,” in VLDB, 2001, pp. 331–340.

[5] A. Maheshwari, J. Vahrenhold, and N. Zeh, “On reverse nearest
neighbor queries,” in CCCG, 2002, pp. 128–132.

[6] A. Singh, H. Ferhatosmanoglu, and A. Tosun, “High dimensional
reverse nearest neighbor queries,” in CIKM, 2003, pp. 91–98.

[7] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN search in arbitrary
dimensionality,” in VLDB, 2004, pp. 744–755.

[8] I. Stanoi, M. Riedewald, D. Agrawal, and A. Abbadi, “Discovery of
influence sets in frequently updated databases,” in VLDB, 2001, pp.
99–108.

[9] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse nearest
neighbor aggregates over data streams,” in VLDB, 2002, pp. 814–825.

[10] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao, “Reverse nearest
neighbors in large graphs,” in ICDE, 2005, 186–187.

[11] M. L. Yiu and N. Mamoulis, “Reverse nearest neighbors search in ad-
hoc subspaces,” in ICDE, 2006, p. 76.

[12] E. Achtert, C. Bohm, P. Kroger, P. Kunath, A. Pryakhin, and M. Renz,
“Efficient reverse k-nearest neighbor search in arbitrary metric spaces,”
in SIGMOD, 2006, pp. 515–526.

[13] Y. Tao, M. L. Yiu, and N. Mamoulis, “Reverse nearest neighbor search
in metric spaces,” TKDE, vol. 18, no. 9, pp. 1239–1252, 2006.

[14] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest and
reverse nearest neighbor queries for moving objects,” VLDB Journal,
vol. 15, no. 3, pp. 229–250, 2006.

[15] T. Xia and D. Zhang, “Continuous reverse nearest neighbor
monitoring,” in ICDE, 2006, p. 77.

[16] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang,
“Continuous evaluation of monochromatic and bichromatic reverse
nearest neighbors,” in ICDE, 2007, pp. 806–815.

[17] C. K. Ken Lee, B. Zheng, and W.-C. Lee, “Ranked reverse nearest
neighbor search,” TKDE, vol. 20, no. 7, pp. 894−910, 2008.

[18] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu, “Spatial queries in
the presence of obstacles,” in EDBT, 2004, pp. 366–384.

[19] C. Xia, D. Hsu, and A. K. H. Tung, “A fast filter for obstructed nearest
neighbor queries,” in BNCOD, 2004, pp. 203–215.

[20] S. Nutanong, E. Tanin, and R. Zhang, “Visible nearest neighbor
queries,” in DASFAA, 2007, pp. 876–883.

[21] V. Estivill-Castro and I. Lee, “Autoclust+: Automatic clustering of
point-data sets in the presence of obstacles,” in TSDM, 2000, pp. 133–
146.

[22] A. K. H. Tung, J. Hou, and J. Han, “Spatial clustering in the presence
of obstacles,” in ICDE, 2001, pp. 359–367.

[23] O. R. Zaiane and C.-H. Lee, “Clustering spatial data in the presence of
obstacles: A density-based approach,” in IDEAS, 2002, pp. 214–223.

[24] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: An efficient and robust access method for points and rectangles,”
in SIGMOD, 1990, pp. 322–331.

[25] K.-I. Lin, M. Nolen, and C. Yang, “Applying bulk insertion techniques
for dynamic reverse nearest neighbor problems,” in IDEAS, 2003, pp.
290–297.

[26] C. Xia, W. Hsu, and M.-L. Lee, “ERkNN: Efficient reverse k-nearest
neighbors retrieval with local kNN-distance estimation,” in CIKM,
2005, pp. 533–540.

[27] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. Abbadi,
“Constrained nearest neighbor queries,” in SSTD, 2001, pp. 257–278.

[28] G. R. Hjaltason and H. Samet, “Distance browsing in spatial
databases,” TODS, vol. 24, no. 2, pp. 265−318, 1999.

[29] T. Xia, D. Zhang, E. Kanoulas, Y. Du, “On computing top-t most
influential spatial sites,” in VLDB, 2005, pp. 946–957.

[30] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
neighbor and reverse nearest neighbor queries for moving objects,” in
IDEAS, 2002, pp. 44–53.

[31] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan, “Continuous reverse k-
nearest-neighbor monitoring,” in MDM, 2008, pp. 132−139.

[32] T. Asano, S. K. Ghosh, and T. C. Shermer, Visibility in the plane,
Handbook of Computation Geometry, Elsevier, 2000.

[33] M. Kofler, M. Gervautz, and M. Gruber, “R-trees for organizing and
visualizing 3D GIS databases,” Journal of Visualization and Computer
Animation, vol. 11, no. 3, pp. 129–143, 2000.

[34] L. Shou, C. Chionh, Y. Ruan, Z. Huang, and K. L. Tan, “Walking
through a very large virtual environment in real-time,” in VLDB, 2001,
pp. 401–410.

[35] L. Shou, Z. Huang, K. L. Tan, “HDoV-tree: The structure, the storage,
the speed,” in ICDE, 2003, pp. 557–568.

