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Abstract— Reverse nearest neighbor (RNN) queries have a broad 
application base such as decision support, profile-based 
marketing, resource allocation, data mining, etc. Previous work 
on RNN search does not take obstacles into consideration. In the 
real world, however, there are many physical obstacles (e.g., 
buildings, blindages, etc.), and their presence may affect the 
visibility/distance between two objects. In this paper, we 
introduce a novel variant of RNN queries, namely visible reverse 
nearest neighbor (VRNN) search, which considers the obstacle 
influence on the visibility of objects. Given a data set P, an 
obstacle set O, and a query point q, a VRNN query retrieves the 
points in P that have q as their nearest neighbor and are visible to 
q. We propose an efficient algorithm for VRNN query processing, 
assuming that both P and O are indexed by R-trees. Our methods 
do not require any pre-processing, and employ half-plane 
property and visibility check to prune the search space. In 
addition, we extend our solution to tackle the visible reverse k-
nearest neighbor (VRkNN) search, which finds the points in P 
that have q as one of their k nearest neighbors and are visible to q. 
Extensive experiments on synthetic and real datasets have been 
conducted which demonstrate the efficiency and effectiveness of 
our proposed algorithms.  
 

I. INTRODUCTION  
Reverse nearest neighbor (RNN) search has received 

considerable attention from the database research community 
in the past few yeas, due to its importance in a wide spectrum 
of applications such as decision support [1], profile-based 
marketing [1], [2], resource allocation [1], [3], data mining [4], 
etc. Given a set of data points P, and a query point q in a 
multidimensional space, an RNN query finds the points in P 
that have q as their nearest neighbor (NN). A popular 
generalization of RNN is the reverse k-nearest neighbor 
(RkNN) search, which returns the points in P whose k nearest 
neighbors (NNs) include q. Formally, RkNN(q) = {p ∈ P | q ∈ 
kNN(p)}, where RkNN(q) and kNN(p) are the set of reverse k 
nearest neighbors of query point q and the set of k nearest 
neighbors of point p, respectively. Figure 1(a) illustrates an 
example with four data points, labelled as p1, p2, p3, p4, in a 
2D space. Each point pi (1 ≤ i ≤ 4) is associated with a circle 
centered at pi and having dist(pi, NN(pi))1 as its radius. In 
other words, the circle cir(pi, NN(pi)) covers pi’s NN. For 
example, the circle cir(p3, NN(p3)) encloses p2, the nearest 
neighbor to p3 (i.e., NN(p3)). For a given RNN query issued at 
point q, its answer set RNN(q) = {p4} as q is only inside the 
 

1Without loss of generality, dist(p1, p2) is a function to return the 
Euclidean distance between two points p1 and p2. 

circle cir(p4,NN(p4)). It is worth noting the asymmetric NN 
relationship, i.e., p ∈ kNN(q) does not necessary imply q ∈ 
kNN(p) (i.e., p ∈ RkNN(q)). In Figure 1(a), for instance, we 
notice that NN(p4) = p3, but NN(p3) = p2.  
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(a) RNN search                              (b) VRNN search  

Fig. 1  Example of RNN and VRNN queries  

A. Motivation  
There are many RNN/RkNN query algorithms that have 

been proposed in the database literature. Basically, they can 
be classified into three categories: (i) pre-computation based 
algorithms [1], [3], [5]; (ii) dynamic algorithms [2], [6], [7]; 
and (iii) algorithms for various RNN/RkNN query variants [8], 
[9], [10], [11], [12], [13], [14], [15], [16], [17]. However, none 
of the existing work on RNN/RkNN search has considered 
physical obstacles (e.g., buildings, blindages, etc.) that exist in 
the real world. The presence of obstacles may have a 
significant impact on the visibility/distance between two 
objects, and hence affects the result of RNN/RkNN queries. 
Furthermore, in some applications, users may be only 
interested in the objects that are visible or reachable to them.  

Actually, the existence of physical obstacles has been 
considered in certain types of spatial queries. These include (i) 
obstructed nearest neighbor (ONN) query [18], [19], that is to 
return the k (≥ 1) points in P that have the smallest obstructed 
distances2 to q; (ii) visible k-nearest neighbor (VkNN) search 
[20], that is to retrieve the k nearest points that are visible to q; 
and (iii) clustering spatial data in the presence of obstacles 
[21], [22], [23], that is to divide a set of 2D data points into 
smaller homogeneous groups (i.e., clusters), considering the 
influence of obstacles. However, to the best of our knowledge, 
this paper is the first work to consider the obstacles in the 
context of RNN/RkNN search.  

 
2The obstructed distance between two points p1, p2 ∈ P is defined 

as the length of the shortest path that connects p1 to p2 without 
crossing any obstacle from O. 



B. Contributions  
In this paper, we introduce a novel form of RNN queries, 

namely visible reverse nearest neighbor (VRNN) search, 
which considers the obstacle influence on the visibility of 
objects. Given a data set P, an obstacle set O, and a query 
point q, a VRNN query retrieves all the points in P that have q 
as their NN and are visible to q. In other words, there is no 
other point p′ ∈ P such that p′ is visible to p and dist(p′, p) < 
dist(q, p). A natural generalization is the visible reverse k-
nearest neighbor (VRkNN) retrieval, which finds all the 
points p ∈ P that have q as one of their k NNs and are visible 
to q. Take a VRNN query issued at point q as an example (as 
shown in Figure 1(b)), it returns {p1} as the result set which is 
different from the result of RNN query.  

We focus this paper on VRNN search, not only because the 
problem has not been studied in the literature but also because 
it has a large application base. Some of the example 
applications are listed as follows.  

Selection of Promotion Sites.  Suppose Yao Restaurant & 
Bar decides to open a new restaurant YEEHA in Shanghai, and 
wants to distribute coupons to its potential customers for 
business promotions. In order to guarantee the effectiveness of 
the promotion, it locates all the office buildings and residential 
buildings that have YEEHA as their top-3 restaurants (in 
terms of spatial proximity) and identifies customers working 
or staying in those buildings as its high potential customers. 
Although RNN search can be applied here to find all the 
buildings that have YEEHA as one of their 3 nearest 
restaurants, VRNN considers the visibility of YEEHA (and 
other restaurants) affected by obstacles such as buildings and 
malls. VRNN can identify all the buildings that have YEEHA 
as their 3 visible nearest restaurants. As the coupons are sent 
to those customers who do not know YEEHA, the visibility 
plays an important role and it is more likely that those 
customers who can see YEEHA directly will visit it and try.  

Outdoor Advertisement Planning.  Suppose P&G decides 
to post advertisements in billboards to promote a new 
shampoo. In order to encourage customers to try this new 
product, they decide to distribute samples near billboards as 
well. Due to the high cost of sample distribution, only those 
locations that can reach a big pull of potential customers are 
considered. Ideally, the more people can view the billboards, 
the more effective the promotion will be. Consequently, 
VRNN/VRkNN searches can be conducted to compare the 
optimality of any two locations q1 and q2 in terms of the base 
of potential customers they can reach. Suppose every 
customer only pays attention to the billboard located closest to 
him/her, VRNN(q1)/VRNN(q2) can be issued. It takes inputs 
of a set P of office buildings/residential buildings/shopping 
malls that represents the potential customer base, a set O of 
obstacles (e.g., buildings) and q1/q2 as a query point and 
returns the customers that will take a look at billboard located 
at q1/q2. The one with more customers is better.  

A naive solution to process VRkNN (k ≥ 1) queries is to 
find a set of points p ∈ P (namely dataset Sq) that are visible 
to a given query point q, perform VkNN search on each of 
them, and then return those p ∈ Sq with q ∈ VkNN(p). 

However, this approach is very inefficient as it needs to 
browse the dataset P and obstacle set O multiple times, 
resulting in high I/O cost and long CPU time, especially when 
|VRkNN(q)| << |Sq| 3 . The poor performance of this naive 
approach will be further demonstrated by our experimental 
results to be presented in Section VI.  

In this paper, we propose an efficient search algorithm for 
VRNN retrieval, assuming that both the data set and the set of 
obstacles are indexed by R-trees [24]. Our solution follows a 
filter-refinement framework, and requires zero pre-processing. 
Specifically, a set of candidate objects (i.e., a superset of the 
actual query result) is retrieved in the filter step and gets 
refined in the refinement step, with two steps integrated into a 
single R-tree traversal. As the size of the candidate objects has 
a direct impact on the search efficiency, we employ half-plane 
properties (as [7]) and visibility check to prune the search 
space. In addition, the search algorithm is general and can be 
easily extended to support VRkNN search. In brief, the key 
contributions of this paper can be summarized as follows:  

 We introduce and formalize VRNN query, a novel 
addition to the family of RNN queries, which is very 
useful in many applications involving spatial data and 
physical obstacles for decision support.  

 We propose an efficient search algorithm for VRNN 
(and VRkNN) queries, analyze the cost of VRNN 
algorithm, and prove its correctness.  

 We conduct extensive experiments using both synthetic 
and real datasets to evaluate the performance of our 
proposed algorithms in terms of efficiency and 
effectiveness.  

The rest of this paper is organized as follows. Section II 
formalizes VRNN query and reviews related work. Section III 
discusses how to decide whether an object is visible to q in the 
presence of obstacles, and proposes the concept of visible 
region to improve the performance. Section IV proposes an 
efficient search algorithm for VRNN query processing and 
conducts analytical analysis to proof its correctness. Section V 
extends our solution to deal with the VRkNN search. 
Extensive experimental evaluations and our findings are 
reported in Section VI. Finally, Section VII concludes the 
paper with some directions for future work.  

II. BACKGROUND  
In this section, we present the formal definition of VRkNN 

query, reveal its properties, and then briefly review some 
related work, including RNN/RkNN query and visibility 
queries. Table I summarizes the notations to be used in the 
rest of this paper.  

A. Problem Statement  
Given a data set P, an obstacle set O, and a query point q, 

visible k nearest neighbor and visible reverse k nearest 
neighbor search are defined in Definition 2 and Definition 3, 
respectively, with the visibility defined in Definition 1.  

Definition 1:  Visibility.  Given a data set P and an obstacle 
set O, points p and p′ (∈ P) are visible to each other iff the 
 

3Without loss of generality, |P| represents the cardinality of a set P. 



straight line connecting p and p′ does not cut through any 
obstacle o, i.e., ∀ o ∈ O, pp' o∩ = ∅ .                                   □ 

TABLE I 
FREQUENTLY USED SYMBOLS  

Notation Description 
p, P  A data point p and the data point set P, with p ∈ P  
o, O  An obstacle o and the obstacle set O, with o ∈ O  
Tp, To  The R-tree on P, and the R-tree on O  
q  A query point  
e  An entry (point or MBR node) in an R-tree  
RkNN(q) Result set of a RkNN query issued at q 
VkNN(q) Result set of a VkNN query issued at point q 
VRkNN(q) Result set of a VRkNN query issued at point q 

 
Definition 2:  Visible k Nearest Neighbor (VkNN).  Given 

a data set P, an obstacle set O, a query point q, and an integer 
k, the visible k nearest neighbor (VkNN) of q retrieves a set of 
points, denoted by VkNN(q), that satisfy following conditions: 
(i) ∀p ∈ VkNN(q) is visible to q; (ii) |VkNN(q)| = k; and (iii) ∀ 
p′ ∈ P − VkNN(q) and ∀p ∈ VkNN(q), if p′ is visible to q, 
dist(p, q) ≤ dist(p′, q).                                                             □ 

Definition 3:  Visible Reverse k Nearest Neighbor 
(VRkNN) Query.  Given a data set P, an obstacle set O, a 
query point q, and a positive integer k, a visible reverse k-
nearest neighbor (VRkNN) query finds a set of points 
VRkNN(q) ⊆ P, such that ∀ p ∈ VRkNN(q), q ∈ VkNN(p), i.e., 
VRkNN(q) = {p ∈ P | q ∈ VkNN(p)}.                                     □ 

Property 1:  VRkNNs might not be localized to the 
neighborhood of the query point.                                           □ 

Property 2:  Given a query point q, the cardinality of q’s 
VRkNNs, denoted by |VRkNN(q)|, varies which is affected by 
the position of the query point and the distributions of data 
points and obstacles.                                                               □ 

Property 3:  p ∈ VkNN(q) does not imply p ∈ VRkNN(q).□ 
Some of the important properties of VRkNN query that will 

be utilized to process VRkNN search are detailed in Property 
1, Property 2, and Property 3, respectively. In order to 
facilitate the understanding, we illustrate those properties 
using the example depicted in Figure 1(b). First, point p1 is 
farthest from the specified query point q compared with other 
points, but it is still an answer object to the query VRNN (q). 
In contrast, point p2 that is closer to q than p1 is not included 
in VRNN (q). Second, for a same k, VRkNN queries issued at 
different locations obtain different answers with various 
number of answer points. For example, |VRNN(q)| = |{p1}| = 1, 
|VRNN(q′)| = |{p3, p4}| = 2, and |VRNN(q′′)| = |∅| = 0. Third, 
the relationship of visible nearest neighbour is asymmetric. 
For example, VNN(q)= p2, but VRNN(q) = {p1} that does not 
includes p2.  

B. Related Work  
1)  Algorithms for RNN/RkNN Search:  Since the concept 

of RNN was first introduced by Korn and Muthukrishnan [1], 
many algorithms have been proposed which can be clustered 
into three categories. The first category is based on pre-
computation [1], [3], [5]. For each point p, it pre-computes the 

distance between p and its nearest neighbor p′ (i.e., NN(p)) 
and forms a vicinity circle cir(p, p′) that is centered at p and 
has dist(p, p′) as the radius. For a given query point q, it 
examines q against all the vicinity circles cir(p, p′) with p ∈ P 
and those having their vicinity circles enclosing q form the 
answer set, i.e., RNN(q) = {p ∈ P | q ∈ cir(p, NN(p))}. To 
facilitate the examination, all the vicinity circles are indexed 
with RNN-tree [1] or RdNN-tree [3]. Approaches of this 
category mainly have two shortcomings. First, the index 
construction cost and update overhead is very expensive. To 
tackle this issue, bulk insertion in the RdNN-tree has been 
proposed [25]. Second, although these methods can be 
extended to deal with the RkNN retrieval (if the corresponding 
kNN information for each point is available), they are limited 
to answer RkNN queries for a fixed k. To support various k, an 
approach for RkNN search with local kNN-distance estimation 
has been proposed [26].  

The second category does not rely on pre-computation but 
adopts a filter-refinement framework [2], [6], [7]. In the filter 
step, the space is pruned according to defined heuristics and a 
set of candidate objects are retrieved from the dataset. In the 
refinement step, all the candidates are verified according to 
kNN search criteria and those false hits are removed. For 
example, based on a given query point q, the original 2D data 
space can be partitioned around q into 6 equal regions, such 
that the NNs of q found in each region are the only candidates 
of RNN query [2]. Thus, in the filter step, 6 constrained NN 
queries [27] are conducted to find the candidates in each 
region, and then, at the second step, NN queries are applied to 
eliminate the false hits. The efficiency of this approach is 
owing to the small number of candidates, e.g., at most 6 for an 
RNN search in a 2D space. However, the number of 
candidates grows exponentially with the increase of the search 
space dimensionality which implies the search efficiency can 
only be guaranteed in a low-dimensional space. To process 
RNN queries in a high-dimensional space, an approximated 
algorithm is proposed [6]. It retrieves m nearest points to q as 
candidates with m (a randomly selected number) larger than k, 
and then verifies the candidates using range queries. However, 
the accuracy and performance of this algorithm is highly 
dependent on m. The larger m is, the more candidates are 
identified. Consequently, it is more likely that a complete 
result set is returned but with a higher processing cost. A 
small m favours the efficiency but it may incur many false 
misses (points that are RkNNs but missed from the final query 
result set).  

In order to conduct exact RNN search, an efficient 
algorithm namely TPL is proposed [7]. TPL exploits a half-
plane property in space to locate RkNN candidates. Applying 
the best-first traversal paradigm [28], TPL traverses the data 
R-tree to retrieve the NNs of q as RkNN candidates. Every 
time an unexplored data point p is retrieved, a half-plane is 
constructed along the perpendicular bisector between p and q, 
denoted as ⊥(p, q). The bisector divides the data space into 
two half-planes: HPq (p, q) that contains q and HPp (p, q) that 
contains p. Any point p′ or minimum bounding rectangle 
(MBR) N falling inside HPp (p, q) must have p closer to it 



than q. As depicted in Figure 2, the bisector ⊥(p3, q) partitions 
the space into two half-planes. As point p1 falls inside the 
half-plane HPq (p, q), it is closer to q than to p3. In other 
words, the number of half-planes HPp (p, q) that a given point 
p′ falls in represents the number of data points that are closer 
to p′ than q. Hence, if a data point is inside at least k HPp (p, q) 
half-planes, it cannot be an RkNN candidate, and thus can be 
safely discarded. The filter step terminates when all the nodes 
of R-tree are either pruned or visited. As illustrated in Figure 2, 
points p1, p3, and p4 are identified as the RNN candidates in 
the filter step, while points p2 that is inside HPp1 (p1, q) ∩ 
HPp3 (p3, q) and N (enclosing points p5, p6) that is inside HPp3 
(p3, q) ∩ HPp4 (p4, q)) are filtered out. Later, in the refinement 
step, TPL removes false hits by reusing the pruned 
points/MBRs. Continuing the running example, points p3 and 
p4 are false hits, as their vicinity circles enclose other points. 
The final query result set is {p1}. Our proposed algorithm for 
VRNN and VRkNN queries employs half-plane property and 
visibility check to identify result candidates and prune the 
search space.  

 
Fig. 2  Example of TPL algorithm  

Algorithms belonging to the third category are to process 
various RNN/RkNN query variants, like bichromatic RNN 
queries[8], [29], aggregate RNN queries over data stream [9], 
RkNN query over moving objects with fixed velocities [14], 
[29], RkNN queries in the context of large graphs and ad-hoc 
subspaces [10], [11], RkNN query processing in metric spaces 
[12], [13], continuous RNN/RkNN monitoring [15], [16], [31], 
and ranked RNN search [17].  

2)  Visibility Query:  Visibility computation algorithms that 
determine object visibility from a given viewpoint or a 
viewing cell have been well-studied in the area of computer 
graphics and computational geometry [32]. However, there 
are only a few works on visibility queries in the database 
community [33], [34], [35]. The main idea is to employ 
various indexing structures (e.g., LoD-R-tree [33], HDoV-tree 
[35], etc.) to process visibility queries in visualization systems. 
These specialized access methods are designed only for the 
purpose of visualization and contain no distance information. 
They are not capable of supporting efficient VRkNN query 
processing. Recently, the visible k-nearest neighbor (VkNN) 
search has been investigated, where the goal is to retrieve the 
k nearest objects that are visible to a given query point as 
mentioned earlier [20].  

III. PRELIMINARIES  

As VRNN search considers the influence of obstacles in 
terms of visibility, all the objects that are invisible to q for 
sure will not be the result. Consequently, an essential issue we 
have to address is how to determine whether an object is 
visible to q. A naive approach is to examine a given object p 
against all the obstacles w.r.t. q, which is inefficient because 
the examination of each object p requires a scanning of the 
obstacles. In this paper, we derive a visible region for the 
query point q, denoted by VRq, by visiting the obstacle set 
once and the visibility of an object p w.r.t. q can be 
determined by checking whether p is located inside VRq. In 
this section, we explain the formation of the visible region.  

Before we present the detailed formation algorithm, we first 
discuss the presentation of a visible region. As shown in 
Figure 3, a visible region is in irregular shape and we can use 
vertex to present it. However, it might not be so 
straightforward to determine whether an object is inside an 
irregular polygon. Alternative, we propose to use obstacle 
lines, as defined in Definition 4.  

Definition 4:  Obstacle line.  The obstacle line of an 
obstacle o4 w.r.t. q, denoted by olo, is the line segment that 
obstructs the sight lines from q.                                              □ 

Suppose the rectangle o as shown in Figure 3 is an obstacle, 
its corresponding obstacle line is olo. As blocked by olo, the 
shadowed area is not visible to q, and the rest (except o) is 
within the visible region of q (i.e., VRq). Based on the concept 
of obstacle line, we define the angular bound and the distance 
bound of an obstacle line in Definition 5 and Definition 6 
respectively, to facilitate the visibility checking.  

q x

o

olo.minA

olo.maxA

olo.minD

obstacle line olo
olo.maxD

obstacle

invisible region of q
y search space

olo

 
Fig. 3  An example obstacle line, and its angular and distance bounds  

Definition 5:  Angular bound of an obstacle line.  Taking 
q as an origin in the search space, the angular bound of o’s 
obstacle line (i.e., olo) w.r.t. q is denoted by [olo.minA, 
olo.maxA] where olo.minA and olo.maxA are respectively the 
minimum angle and the maximum angle of olo, and olo.minA ≤ 
olo.maxA (see Figure 3). If q is located inside o, the angular 
bound of olo w.r.t. q is set to [0, 2π].                                      □ 

Note that Definition 5 does not hold when olo intersects 
with the positive x-axis in the search space. In this case, we 
partition olo horizontally along the x-axis into olo1 and olo2 
such that Definition 5 remains valid for both olo1 and olo2. 
Given two obstacles, the intersection of their angular bounds 
has a direct impact on whether they will affect each other’s 
visibility w.r.t. q, as listed in Property 4.  
 

4Although an obstacle o may be an arbitrary convex polygon (e.g., 
triangle, pentagon, etc.), we assume that o is a rectangle in this paper.  



Property 4:  Given two obstacles o and o′, if their angular 
bounds are disjoint, i.e., [olo.minA, olo.maxA] ∩ [olo′.minA, 
olo′.maxA] = ∅, then they will not affect each other’s visibility 
w.r.t. q.                                                                                   □ 

Definition 6:  Distance bound of an obstacle line.  The 
distance bound of o’s obstacle line (i.e., olo) w.r.t. q is denoted 
by [olo.minD, olo.maxD] where olo.minD and olo.maxD are the 
minimal distance and maximal distance from q to olo, 
respectively (see Figure 3).                                                    □ 

Without any obstacle, the visible region for q (i.e., VRq) is 
the entire search space. As obstacles are visited, VRq gets 
shrunk. Consequently, an issue we have to solve is how to 
decide whether a new obstacle might contribute to the 
formation of VRq. Although we assume the obstacle is in 
rectangular shape, we first explain the test based on a line 
segment (or edges) and then extend the algorithm for 
rectangles.  

 
Algorithm 1 Edge Visibility Check Algorithm (EVC)  
  algorithm EVC (q, Lq, e, boolean)  
  1:  flag = invisible  
  2:  Amin = e.minA; Amax = e.maxA  
  3:  for each obstacle line l ∈ Lq do  
  4:      if l.maxA ≤ Amin then  
  5:          continue  
  6:      else if l.maxA > Amin and l.minA ≤ Amin then  
  7:          e′ = edge(e, [Amin, MIN(l.maxA, Amax)])    // get edge  
  8:          l′ = edge(l, [Amin, MIN(l.maxA, Amax)])  
  9:          f = CheckEdges (e′, l′, q, Lq, boolean)  
10:      else if l.minA ≤ Amax and l.minA > Amin then  
11:          e′ = edge(e, [l.minA, MIN(l.maxA, Amax)])  
12:          l′ = edge(l, [l.minA, MIN(l.maxA, Amax)])  
13:          f = CheckEdges (e′, l′, q, Lq, boolean)  
14:      else    // l.minA ≥ Amax  
15:          break  
16:      if flag = invisible then flag = f  
17:  return flag  
 
  function CheckEdges (lN, l, q, Lq)  
  1:  lN = [s, e]; l = [s′, e′]  
  2:  if l.maxD ≤ lN.minD then 
  3:      return IV    // invisible  
  4:  else if l.minD ≥ lN.maxD then 
  5:      if (boolean = TURE) then Lq= Lq− l + lN  
  6:      return AV    // all-visible  
  7:  else    // lN intersects with l  
  8:      p = intersection(lN, l)    // get intersection point  
  9:      if dist(q, s) < dist(q, e) then 
10:          if (boolean = TURE) then Lq = Lq − [p, e] + [s, p]  
11:      else  
12:          if (boolean = TURE) then Lq = Lq − [p, s] + [e, p]  
13:      return PV    // part-visible  

 
Algorithm 1 lists the pseudo-code of the Edge Visibility 

Check algorithm (EVC), with set Lq keeping all the obstacles 
found so far that affect the visibility of a given query point q.  
Based on the angular property of obstacle (i.e., Property 4), a 
given obstacle o might affect those obstacles with angular 
bounds overlapping with o’s but definitely not the test.  
Consequently, EVC visits the obstacle lines in Lq according to 
the ascending order of their minimal angle. An example is 

illustrated in Figure 4, with Lq = {o1, o2, o3}, and e2 being the 
edge we are going to evaluate. According to the angular 
bounds of l (∈ Lq) and e2, there are three cases: (i) case 1: 
l.maxA ≤ e2.minA (e.g., l = olo1), indicating that e2 will not 
affect the visibility of l w.r.t q according to Property 4; (ii) 
case 2: [l.minA, l.maxA] ∩ [e2.minA, e2.maxA] ≠ ∅ (e.g., l = 
olo2), meaning that a detailed examination is necessary as e2 is 
very likely to affect the visibility of l w.r.t. of q; and (iii) case 
3: l.minA ≥ e2.maxA (e.g., l = olo3), indicating that l and all the 
rest of obstacles in Lq with larger minA than that of l’s will not 
be affected by e2 and hence the examination can be terminated.  

    
(a) Obstacle placement                        (b) New visible region  

Fig. 4  Example of EVC algorithm  

Now the only left task is how to change Lq when a new 
obstacle line lN overlaps with some existing obstacle line l in 
Lq (i.e., case 2), which is handled by Function CheckEdges 
presented in Algorithm 1. Again, there are three possible cases. 
First, l.maxD ≤ lN.minD and lN has a zero impact on VRq. For 
example, although e1 overlaps with o1 in terms of angular 
bounds, it is invisible to q and thus can be ignored. Second, 
l.minD ≥ lN.maxD and the entire lN is visible to q. Hence, lN is 
inserted into Lq and the part of l that is blocked by lN is 
removed.  For example, e4 is within the angular bound of o3 
and its maximal distance to q is smaller than the minimal 
distance between o3 and q. Consequently, e4 that is visible to q 
is included into Lq and olo3 is shrunk, as shown in Figure 4(b). 
Third, lN and l intersects which means part of lN is visible to q 
and the part of l blocked by lN becomes invisible. Lq needs 
include the new visible part of lN and remove the invisible part 
of l. For instance, the obstacle lines of e3 and o1 intersect and 
that of e2 and o2 intersect. We find the intersection points, and 
update Lq accordingly.  After evaluating new edges e1, e2, e3, 
e4, the visible region of q is updated to the shaded area shown 
in Figure 4(b). Please note that the parameter boolean in the 
function is to control if the update operation on Lq is necessary 
and it is set to TRUE only when e refers to a real obstacle.  

 
Algorithm 2 Object Visibility Check Algorithm (OVC)  
  algorithm OVC (e, Lq, q)  
  1:  if e is an obstacle then  
  2:      return EVC (q, Lq, e, TRUE)  
  3:  else if e is a point then  
  4:      return EVC (q, Lq, e, FALSE)  
  5:  else    // e is a MBR  
  6:      for each edge ei of e do  
  7:          fi = EVC (q, Lq, ei, FALSE)  
  8:      if ∀ fi = IV then return IV  
  9:      else if ∀ fi = AV then return AV  
10:      else return PV  



Since we understand how to evaluate the impact of an edge 
on the visible region of q, we explain how to determine that of 
a node N (i.e., a rectangle). As a rectangle is consisted of four 
edges, we evaluate each of them. If four edges are all invisible 
to q, N is invisible to q and hence N and all its enclosed child 
nodes can be pruned. If all the edges are visible to q, N is 
visible to q and its child nodes need further exploration. 
Otherwise, only edges must be visible/part-visible to q and N 
might enclose some obstacles that are visible to q and thus its 
child nodes need further evaluation. Algorithm 2 shows the 
pseudo-code of Object Visibility Check algorithm (OVC). It is 
important to note that the input e might not be obstacles, as it 
can be a data point because a result object for VRNN/VRkNN 
search must be visible to the query point. We will explain how 
VRNN query processing invokes OVC to perform the 
visibility check in Section IV. A data point p can be regarded 
as a special case of an edge with p.minA = p.maxA and p.minD 
= p.maxD = dist(p, q).  

Now we are ready to present our Visible Region 
Computation algorithm (VRC). We assume all the obstacles 
are indexed by an R-tree To and VRC traverses To in a best-
first manner with obstacles closer to the query point visited 
first. A running example is depicted in Figure 5, with To for 
obstacle set O = {o1, o2, o3, o4, o5, o6, o7, o8} shown in Figure 
5(b). We use Lq to store all the obstacle lines that affect the 
visibility of q, sorted in ascending order of their minimum 
bounding angles, and a heap H to maintain all the unvisited 
nodes. Initially, H = {N1, N2, N3} and the algorithm always de-
heaps the top entry for examination until H becomes empty. 
First, N1 is accessed. As it is visible to q, its child nodes are 
en-heaped for later examination, after which H = {o1, N2, N3, 
o3, o2}. Next, o1 is evaluated. As it is the first obstacle 
checked, o1 for sure affects q’s visibility and is added to Lq (= 
{olo1}). Third, N2 is checked. According to current Lq, N2 is 
visible to q and hence its child nodes are en-heaped with H 
={o5, N3, o3, o2, o4, o6}. Fourth, o5 is examined and becomes 
the second obstacle affecting the visibility of q, i.e., Lq = {olo5, 
olo1}. Next, N3 is de-heaped and its child nodes are en-heaped 
with H = {o7, o3, o2, o4, o8, o6}. In the sequel, VRC de-heaps 
obstacles from H and keeps updating Lq until H = ∅. Finally, 
Lq = {olo7, olo62, olo5, olo3, olo2, olo1}.  
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(a) Obstacle placement                        (b) The obstacle R-tree  

Fig. 5  Example of VRC algorithm  

Algorithm 3 presents the pseudo-code of VRC algorithm. It 
continuously checks the head entry e of H. The detailed 
examination varies, dependent on the type of e. If e is an 

obstacle, it is checked against all the obstacle lines maintained 
in Lq (lines 6-7). If it is visible to q, e might contribute to the 
formation of VRq and thus Lq is updated. On the other hand, e 
must be a node and all its entries that are visible to q are en-
heaped for later examination (lines 8-10). VRC also explores 
an early termination condition (lines 4-5), as proved by 
Lemma 1.  

Lemma 1:  Suppose heap H maintains all the unvisited 
nodes sorted according to ascending order of their minimal 
distances to the query point q and the set Lq keeps all the 
obstacles found so far that affect the visibility of q. If Lq is 
closed (i.e., ∪l∈Lq[l.minA, l.maxA] = [0, 2π]) and mindist(e, q) 
> dmax = MAXl∈Lq(l.maxD), e and hence all the entries in H are 
invisible to q.                                                                          □ 

Proof:  Lq is closed, and suppose there is an entry e with 
mindist(e, q) > dmax visible to q. As e is visible to q, there must 
be at least one line segment issued at q and reaching a point of 
e (denoted as p) without cutting through any other obstacle 
(Definition 1). On the other hand, since Lq is closed, [ole.minA, 
ole.maxA] ⊆ ∪l∈Lq[l.minA, l.maxA] with ole being the obstacle 
line of e. Without loss of generality, we can assume the 
extension of line segment qp  intersects a line l ∈ Lq at point p′ 
with dist(p, q) ≤ dist(p′, q) ≤ dmax. As we know mindist(e, q) ≤ 
dist(p, q), consequently mindist(e, q) ≤ dmax which contradicts 
our previous assumption.                                                        ■ 

 
Algorithm 3 Visible Region Computation Algorithm (VRC)  
  algorithm VRC (To, q, Lq)  
  1:  list Lq = ∅, min-heap H = {To.root}  
  2:  while H ≠ ∅ do  
  3:      de-heap the top entry (e, key) of H  
  4:      if Lq.isclose = TRUE and mindist(e, q) > dmax then  
  5:          break    // terminate  
  6:      if e is an obstacle then   
  7:          OVC (e, Lq, q)  
  8:      else    // e is a MBR (i.e., an intermediate node)  
  9:          for each entry ei ∈ e and OVC (ei, Lq, q) ≠ IV do  
10:              insert (ei, mindist(ei, q)) into H  

IV. VRNN QUERY PROCESSING  
In this section, we explain how to process VRNN query. 

We first present the pruning strategy, detail the search 
algorithm and then analyse the cost of VRNN algorithm and 
proof its correctness.  
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Fig. 6  Illustration of pruning based on half-planes and visibility check 

A. Pruning Strategy  
We use half-plane property (as [7]) and visibility check to 

prune the search space. Consider the perpendicular bisector 



between a data point p1 and a given query point q, i.e., ⊥(p1, q) 
(i.e., line l1) as illustrated in Figure 6. The bisector divides the 
whole data space into two half-planes, i.e., HPp1 (p1, q) 
containing p1 (i.e., trapezoid EFCD) and HPq (p1, q) 
containing q (i.e., trapezoid ABFE). All the data points (e.g., 
p2, p3) and nodes (e.g., N1) that fall inside HPp1 (p1, q) but are 
visible to p1 must have p1 closer to them than q, and thus they 
cannot be/contain a VRNN of q. However, all the data points 
(e.g., p6, p7) and nodes (e.g., N2, N3) that fall completely inside 
HPp1(p1, q) and are part-visible/invisible to p1 might become 
or contain a VRNN of q. Therefore, they cannot be discarded, 
and a further examination is necessary. In the following 
description, we term p1 as a pruning point.  

B. The VRNN Algorithm  
We adopt a two-step filter-and-refinement framework to 

deal with VRNN queries, assuming that both data set P and 
obstacle set O are indexed by R-trees. In order to improve the 
performance, these two steps are combined into a single 
traversal of the trees. In particular, the algorithm accesses 
nodes/points in ascending order of their distance to the query 
point q to retrieve a set of potential candidates, maintained by 
a candidate set Sc. All the points and nodes that cannot 
be/contain a VRNN of q are pruned by the above mentioned 
pruning strategy, and inserted (without being visited) into a 
refinement point set Sp and a refinement node set Sn, 
respectively. At the second step, the entries in both Sp and Sn 
are used to eliminate false hits. Algorithm 4 presents the 
pseudo-code of the VRNN Search algorithm (VRNN) that 
takes data R-tree Tp, obstacle R-tree To, and a query point q as 
inputs, and outputs exactly all the VRNNs of q. We use an 
example shown in Figure 7 to elaborate the VRNN algorithm. 
Here, P = {p1, p2, …, p13, p14}, O = {o1, o2, o3, o4}, and the 
corresponding Tp is depicted in Figure 7(b). A primary heap 
Hw is maintained to keep all the unvisited nodes ordered in 
ascending order of their smallest distance to the query point q.  

 
Algorithm 4 VRNN Search Algorithm (VRNN)  
  algorithm VRNN (Tp, To, q)  
  1:  initialize sets Sc = ∅, Sp = ∅, Sn = ∅, Sr = ∅  
  2:  VRNN-Filter (Tp, To, q, Sc, Sp, Sn)  
  3:  VRNN-Refinement (q, Sc, Sp, Sn, Sr)  
  4:  return Sr  
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(a) Data and obstacle placement                    (b) The data R-tree  

Fig. 7  Example of VRNN algorithm  

1)  The Filter Step: Initially, VRNN visits the root of Tp and 
inserts its child entries N8 and N9 that are visible to q into Hw 
(= {N8, N9}), and adds the entry N10 that is invisible to q to Sn 
(= {N10}). Then, the algorithm de-heaps N8, accesses its child 
nodes, and en-heaps all the entries that are visible to q, after 
which Hw = {N3, N9, N1, N2}. Next, N3 is visited and it updates 
Hw to {p1, N9, N1, N2, p11}. The next de-heaped entry is p1. As 
it is visible to q, p1 is the first VRNN candidate (i.e., Sc= {p1}) 
and becomes the current pruning point cp that is used for 
pruning in the subsequent execution.  

 
Algorithm 5 Filter for VRNN Algorithm (VRNN-Filter)  
  algorithm VRNN-Filter (Tp, To, q, Sc, Sp, Sn)  
  1:  point cp = NULL, min-heaps Hw = {To.root} and Ha = ∅  
  2:  VRC (To, q, Lq)  
  3:  while Hw ≠ ∅ do  
  4:      de-heap the top entry (e, key) of Hw  
  5:      if e is a data point then  
  6:          Sc = Sc + {e}; cp = e; VRC (To, cp, Lcp)  
  7:          while Hw ≠ ∅ do  
  8:              de-heap the top entry (e′, key) of Hw  
  9:              if e′ is a data point and Trim (q, cp, e′) = ∞ then  
10:                  if OVC (e′, Lcp, cp) = AV then Sp = Sp + {e′}  
11:                  else insert (e′, dist(e′, q)) into Ha  
12:              else if e′ is a data point and Trim (q, cp, e′) ≠ ∞ then 
13                   insert (e′, dist(e′, q)) into Ha  
14:              else    // e′ is a MBR (i.e., an intermediate node)  
15:                  for each entry ei′ ∈ e′ do  
16:                      if OVC (ei′, Lq, q) ≠IV and Trim (q, cp, ei′) = ∞ then 
17:                          if OVC (ei′, Lcp, cp) = AV then  
18:                              if ei′ is a data point then Sp = Sp + {ei′}  
19:                              else Sn = Sn + {ei′} 
20:                          else if OVC (ei′, Lcp, cp) = PV then  
21:                              insert (ei′, mindist(ei′, q)) into Hw  
22:                          else insert (ei′, mindist(ei′, q)) into Ha  
23:                      else if OVC (ei′, Lq, q) ≠ IV and Trim (q, cp, ei′) ≠ ∞  
24:                          insert (ei′, mindist(ei′, q)) into Hw  
25:                      else    // OVC (ei′, Lq, q) = IV  
26:                          if ei′ is a data point then Sp = Sp + {ei′}  
27:                          else Sn = Sn + {ei′} 
28:          swap (Hw, Ha)    // change the roles between Hw and Ha  
29:      else    // e is a MBR (i.e., an intermediate node)  
30:          for each entry ei ∈ e do  
31:              if OVC (ei, Lq, q) ≠ IV and cp = NULL then  
32:                  insert (ei, mindist(ei, q)) into Hw  
33:              else if OVC (ei, Lq, q) ≠ IV and cp ≠ NULL then   
34:                  if Trim (q, cp, ei) = ∞ then  
35:                      if OVC (ei, Lcp, cp) = AV then  
36:                          if ei is a data point then Sp = Sp + {ei}  
37:                          else Sn = Sn + {ei}  
38:                      else insert (ei, mindist(ei, q)) into Hw  
39:                  else insert (ei, mindist(ei, q)) into Hw  
40:              else    // OVC (ei, Lq, q) = IV  
41:                  if ei is a data point then Sp = Sp + {ei}  
42:                  else Sn = Sn + {ei}  

 
The next de-heaped entry is N9. As cp (= p1) is not empty, 

VRNN uses Trim algorithm (as [7]) to check whether N9 can 
be pruned. As part of N9 lies in HPq (cp, q), it has to be 
accessed and VRNN visits its child nodes. Child node N5 is 
discarded as it locates inside HPcp (cp, q) and it is all-visible 
to cp, meaning that it cannot contain any qualifying candidates. 
Thus, N5, which is a MBR, is added to Sn, i.e., Sn = {N10, N5}. 



The other child entry N4 is en-heaped into Hw (= {N4, N1, N2, 
p11}) because it falls partially into HPcp (cp, q) and is also all-
visible to cp, indicating that N4 may contain VRNN candidates. 
VRNN proceeds to de-heap N4, and visits its child entries, i.e., 
data points p2 and p5. As p2 falls inside HPq (cp, q) and is 
visible to cp, it is added to Hw (= {p2, N1, N2, p11}). On the 
other hand, point p5 is inserted into Sp = {p5} since it locates 
inside HPcp (cp, q) and is visible to cp. Next, p2 is de-heaped. 
As it cannot be pruned by current pruning point (p1), it 
becomes the second pruning point and maintained by an 
auxiliary heap Ha = {p2}. Next, VRNN accesses node N1 in 
which points p4 and p8 (children of N1) are inserted into Hw (= 
{N2, p4, p8, p11}). Note that although p8 falls fully inside HPcp 
(cp, q), it is invisible to cp due to the obstruction of obstacle o2, 
and hence p8 cannot be pruned by the current pruning point 
(i.e., p1). The next processed entry N2 is added to Sn (= {N10, 
N5, N2}) directly, as it locates inside HPcp (cp, q) and is all-
visible to cp. In the sequel, p4 and p8 are retrieved and inserted 
into Ha, after which Ha = {p2, p4, p8} ordered based on 
ascending order of their mindist to q. Finally, p11 is de-heaped 
and it is added to Sp = {p5, p11} since it satisfies the pruning 
condition. As Hw is empty, the first loop stops, with Ha, Sc, Sp, 
and Sn being {p2, p4, p8}, {p1}, {p5, p11}, and {N10, N5, N2}, 
respectively. Next, the roles of Hw and Ha are switched. In 
other words, in the rest of current iteration, the algorithm uses 
Hw as an auxiliary heap, but takes Ha as a primary heap. 
VRNN proceeds in the same loop until Hw = Ha = ∅, i.e., all 
the pruning points are either pruned (i.e., inserted into Sp) or 
become candidates (i.e., inserted into Sc). Finally, we have Sc 
= {p1, p2, p4, p8}, Sp = {p5, p11}, and Sn = {N10, N5, N2}. 

Algorithm 5 shows the pseudo-code of the Filter for VRNN 
algorithm (VRNN-Filter). When an intermediate node is 
visited, it calls OVC algorithm to check its visibility to the 
query point q and then processes it. Similarly, when a data 
point is accessed, it invokes OVC algorithm to examine its 
visibility to the current pruning point cp and then processes it. 
For each pruning point cp discovered, VRNN-Filter applies 
VRC algorithm to get its visible region, i.e., find the obstacles 
from To that can affect cp’s visibility. Note that all pruned 
entries are stored in their corresponding refinement set but not 
removed since they are used for verifying candidates in the 
next refinement step.  

2)  The Refinement Step: When the filter step finishes, the 
refinement step starts, with Algorithm 6 depicting the pseudo-
code of the Refinement for VRNN algorithm (VRNN-
Refinement). In the first place, VRNN-Refinement conducts 
self-filtering (lines 2-4), that is, it prunes the candidates that 
are closer to each other than q. Then, the algorithm enters the 
next refinement step, where it verifies whether each remaining 
candidate in Sc is a true result (lines 6-16). First it calls Round 
of Refinement algorithm (Refinement-Round), defined in 
Algorithm 7, to eliminate false candidates from Sc based on 
the content of Sp and Sn, without any extra node access. The 
remaining points p in Sc need further refinement, with each 
associated with p.toVisit that records the nodes which might 
enclose some not-yet visited points that may invalidate p. 
Consequently, nodes in p.toVisit are visited with each access 

updating the content of Sp and Sn. Note Sp and Sn are reset to ∅ 
after each round of Refinement-Round (line 11) to avoid 
duplicated checking. The refinement step continues until Sc is 
empty.  

 
Algorithm 6 Refinement for VRNN Algorithm (VRNN-Refinement)  
  algorithm VRNN-Refinement (q, Sc, Sp, Sn, Sr)  
  1:  for each point p ∈ Sc do  
  2:      for each other point p′ ∈ Sc do  
  3:          if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then  
  4:              Sc = Sc − {p}; goto 1  
  5:      if p is not eliminated from Sc then initialize p.toVisit = ∅  
  6:  if Sc ≠ ∅ then  
  7:      repeat   
  8:          Refinement-Round (q, Sc, Sp, Sn, Sr)  
  9:          let N be the lowest level node of p.toVisit for p ∈ Sc  
10:          remove N from all p.toVisit and access N  
11:          Sp = Sn = ∅    // for the next round  
12:          if N is a leaf node then  
13:              Sp = {p′ | p′ ∈ N and p′ is visible to p}  
14:          else  
15:              Sn = {N′ | N′ ∈ N and N′ is visible to p}  
16:  else return    // terminate  

 
Algorithm 7 Round of Refinement Algorithm (Refinement-Round)  
  algorithm Refinement-Round (q, Sc, Sp, Sn, Sr)  
  1:  for each point p ∈ Sc do  
  2:      for each point p′ ∈ Sp do  
  3:          if OVC (p′, Lp, p) ≠ IV and dist(p′, p) < dist(q, p) then  
  4:              Sc = Sc − {p}; goto 1  
  5:      for each node N ∈ Sn do  
  6:          if OVC (N, Lp, p) = PV then  
  7:              if minmaxdist(N, p) < dist(q, p) then  
  8:                  Sc = Sc − {p}; goto 1  
  9:      for each node N ∈ Sn do  
10:          if OVC (N, Lp, P) ≠ IV and mindist(N, p) < dist(q, p) then  
11:              add N to p.toVisit  
12:      if p.toVisit = ∅ then Sc = Sc − {p}; Sr = Sr + {p}  

 
Now we explain the detail of Refinement-Round algorithm. 

Specifically, it has three tasks, i.e., pruning false positive, 
returning result objects, and identifying nodes that might 
invalidate the remaining points in Sc. First, points p in Sc 
satisfying following any condition are for sure false positives 
and can be pruned: (i) ∃ p′ ∈ Sp such that p′ is visible to p and 
dist(p′, p) < dist(q, p) (lines 2-4), or (ii) ∃ N ∈ Sn such that N 
is all-visible to p and minmaxdist(N, p) < dist(q, p) (lines 5-8). 
Note that minmaxdist(N, p) is the upper bound of the distance 
between p and its closest point in N. Hence, minmaxdist(N, p) 
< dist(q, p) means that N contains at least one point that is 
nearer to p than q. For example, in Figure 7 p2 ∈ Sc can be 
safely discarded as N5 ∈ Sn is all-visible to it and 
minmaxdist(N5, p2) < dist(q, p2). Second, ∀ p ∈ Sc can be 
reported immediately as an actual VRNN of q when the 
following two conditions are satisfied: (i) ∀ p′ ∈ Sp, p′ is 
either invisible to p or dist(p′, p) > dist(q, p), and (ii) ∀ N ∈ Sn, 
it is all-visible/part-visible to p and mindist(N, p) > dist(q, p). 
In our example, p4 and p8 satisfy the above conditions, and 
thus, they are removed from Sc and reported as the VRNNs of 
q immediately. The points p in Sc cannot be pruned or 



reported as real result objects must have some nodes in Sn that 
contradict above conditions, and we use a set p.toVisit to 
record all the nodes (lines 9-11). Take p1 as an example. As 
p1.toVisit ={N2}, we access N2 and find out the enclosed point 
p3 is the VNN of p1 and hence p1 is invalidated.  

If there are multiple nodes in p.toVisit for each p remaining 
in Sc, we can access all of them to invalidate the candidate 
objects. However, not all the accesses are necessary. Hence, 
we adopt an incremental approach to access the lowest level 
nodes first in order to achieve better pruning. In our example 
shown in Figure 7, the second refinement round starts with Sc 
= {p1}, Sp = {p3, p7} (i.e., points enclosed in N2), Sn = ∅, and 
Sr = {p4, p8}. Point p1 is eliminated as a false positive as p3 is 
visible to p1 and dist(p3, p1) < dist(q, p1), and then the VRNN 
algorithm terminates.  

C. Discussion  
The cost of R-tree traversal dominates the total overhead of 
the VRNN algorithm. We first derive the upper bound of the 
number of traversals on the R-trees Tp and To, respectively.  

Lemma 2:  The VRNN algorithm traverses the data R-tree 
Tp at most once, and the obstacle R-tree To at most (|Sc| + 1) 
times.                                                                                      □ 

As shown in Algorithm 5, the VRNN-Filter algorithm only 
traverses Tp once to retrieve a set of VRNN candidates. It then 
uses half-plane property and visibility check to prune false 
candidates and calls the VRC algorithm once for each 
candidate p ∈ Sc to find the obstacles affecting its visibility 
(line 6 in Algorithm 5). Moreover, VRNN-Filter also invokes 
the VRC algorithm once to retrieve the obstacles that can 
affect the visibility of q (line 2 in Algorithm 5). Consequently, 
the VRNN algorithm traverses To at most (|Sc| + 1) times.  

Theorem 1:  The time complexity of the VRNN algorithm 
is O ((log|Tp| × (|Sc| + 1) log|To|) + (|Sc|2 + |Sc| (|Sp| + |Sn|))).   □ 

Proof:  Let |Tp| and |To| be the tree size of Tp and To 
respectively, and |Sc|, |Sp|, and |Sn| be the cardinality of Sc, Sp, 
and Sn respectively. A VRNN algorithm calls VRNN-Filter 
and VRNN-Refinement algorithms with complexities being O 
(log|Tp| × (|Sc| + 1) log|To|) and O (|Sc|2 + |Sc| (|Sp| + |Sn|)). 
Therefore, the total time complexity of the VRNN algorithm 
is O ((log|Tp| × (|Sc| + 1) log|To|) + (|Sc|2 + |Sc| (|Sp| + |Sn|))).  ■ 

Theorem 2:  The VRNN algorithm retrieves exactly the 
VRNNs of a given query point q, i.e., the algorithm has no 
false negatives and no false positives.                                    □ 

Proof:  First, the VRNN algorithm only prunes away those 
non-qualifying points/nodes in the filter step by using our 
proposed pruning strategy. Hence, no result is missed (i.e., no 
false negatives). Second, every candidate p ∈ Sc is verified in 
the refinement step by comparing it with each data point 
retrieved during the filter step and each node that may 
potentially contain VNNs of p, which ensures no false 
positives.                                                                                 ■ 

V. VRKNN QUERY PROCESSING  
In this section, we discuss how our solution can be adapted 

to answer more general VRkNN queries that find all the points 
whose VkNN set includes q. First, the pruning strategy 

(described in Section IV-A) can be extended to arbitrary 
values of k. Assume a VRkNN query and a dataset P with n (≥ 
k) data points p1, p2, …, pn. Let D = {θ1, θ2, …, θk} be a subset 
of P. If a point/node falls completely inside 1

k
i=∩ HPθi (θi, q) 

and is all-visible to each point in D, it must have k points (i.e., 
θ1, θ2, …, θk) closer to it than q. Hence, it can be safely 
pruned away. On the other hand, if a point/node locates inside 

1
k
i=∩ HPθi (θi, q) and is part-visible/invisible to any subset of D, 

it can be/contain a VRkNN of q and thus needs further 
examination.  

Next, we explain how to extend the VRNN algorithm for 
VRkNN query processing. Similarly, it follows a filter-
refinement framework. Specifically, VRkNN first finds a set 
Sc of VRkNN candidates that contains all the actual query 
results. Then, the algorithm eliminates/validates every 
candidate in Sc to remove all the false hits. The VRNN-Filter 
algorithm can be easily adapted to support VRkNN query, by 
integrating the aforementioned pruning strategy. The VRNN-
Refinement algorithm can also be extended for VRkNN 
retrieval. During the processing, all the points p ∈ Sc with at 
least k points visible to q within dist(p, q) are pruned as false 
candidates, while the rest form the final result set. Since the 
number of points within dist(p, q) and meanwhile visible to p 
determine whether p is a final result, we associate a counter 
cnt with each p ∈ Sc during the refinement phase. Every time 
we find a point p′ ∈ Sc that satisfies the following two 
conditions: (i) p′ is visible to p, and (ii) dist(p′, p) < dist(q, p), 
the p’s counter cnt is increased by one. Eventually, p can be 
removed as a false positive when cnt ≥ k. The pseudo-codes of 
the algorithms for VRkNN query processing are ignored for 
space saving.  

VI. EXPERIMENTAL EVALUATION  
In this section, we evaluate the efficiency and effectiveness 

of our proposed VRNN and VRkNN algorithms via 
experiments on synthetic and real datasets. First, Section VI-A 
describes the experimental settings, and then Sections VI-B 
and VI-C present experimental results and our findings for 
VRNN and VRkNN queries, respectively. All the algorithms 
(i.e., Naive, VRNN, and VRkNN) were implemented in C++. 
Experiments were conducted on a PC with a Pentium IV 3.0 
GHz CPU and 2GB RAM, running Microsoft Windows XP 
Professional Edition.  

Here, the Naive algorithm refers to the naive solution 
introduced in Section I-B. It retrieves all the points that are 
visible to a given query point q, denoted by Sq; and then 
performs VkNN search on each point p ∈ Sq in order to 
determine whether q is included into VkNN(p). The set of 
points p that have q ∈ VkNN(p) form the final result set.  

A. Experimental Setup 
We deploy five real datasets5, which are summarized in 

Table II. Synthetic datasets are created following the Uniform 

 
5LB, NA, and LA are available at http://www.maproom.psu.edu/ 

dcw/, Cities and Rivers available at http://www.rtreeportal.org.  



distribution and Zipf distribution, with the cardinality varying 
from 0.1 × |LA| to 10 × |LA|. The coordinate of each point in 
Uniform datasets is generated uniformly along each 
dimension, and that of each point in Zipf datasets is generated 
according to Zipf distribution with skew coefficient α = 0.8. 
All the datasets are mapped to a [0, 10000] ×  [0, 10000] 
square. As VRNN and VRkNN queries involve a data set P 
and an obstacle set O, we deploy five different combinations 
of the datasets, namely CR, LL, NL, UL, and ZL, 
representing (P, O) = (Cities, Rivers), (LB, LA), (NA, LA), 
(Uniform, LA), and (Zipf, LA), respectively. Note that the 
data points in P are allowed to lie on the boundaries of the 
obstacles but not in their interior.  

TABLE II 
DESCRIPTION OF REAL DATASETS USED IN EXPERIMENTS  

Dataset Cardinality Description 
LB  58945  2D point in Long Beach  
NA  470759  2D point in North America  
LA  131461  2D MBRs of streets in Los Angeles  
Cities  5922  2D cities (as point) in Greece  
Rivers  21645  2D MBRs of rivers in Greece  

TABLE III 
PARAMETER RANGES AND DEFAULT VALUES  

Parameter Range Default
k 1, 2, 4, 8, 16 1, 4 
|P|/|O| 0.1, 0.2, 0.5, 1, 2, 5, 10 1 
buffer size (% of tree size) 0, 10, 20, 30, 40, 50, 60 0 

 
All data and obstacle sets are indexed by R*-trees [24] with 

a disk page size of 1K bytes. Note that we choose a small page 
size to simulate practical scenarios where the cardinalities of 
the data and obstacle sets are much larger. The experiments 
investigate the efficiency and effectiveness of VRNN and 
VRkNN algorithms under a variety of parameters which are 
listed in Table III. In each experiment, we vary only one 
parameter while the others are fixed at their default values and 
run 200 queries with their average performance reported. The 
query distribution follows the underlying dataset distribution 
and the total query cost is evaluated. Both the I/O overhead 
(by charging 10ms per page fault, as in [7]) and CPU time 
contribute to the query cost. We assume the server maintains a 
buffer with LRU as the cache replacement policy. Unless 
specifically stated, the size of buffer is 0, i.e., the I/O cost is 
determined by the number of node/page accesses.  

B. Results on VRNN Queries  
The first set of experiments compares the performance of 

the Naive algorithm and VRNN algorithm for VRNN queries, 
with the total query cost (in seconds) of CR datasets depicted 
in Figure 8. Here, each result is broken into two components, 
corresponding to the filter step and the refinement step, 
respectively. The number with percentage on top of each bar 
is the percentage of I/O time in the total query cost. For 
example, Naive algorithm incurs extremely high I/O cost, 
97% of the total query cost. The number inside the brackets on 
top of each bar is the cardinality of the candidate set, i.e., |Sc|. 
For instance, Naive algorithm retrieves 68 candidate objects in 

the filter step while VRNN algorithm only retrieves 2.8 
candidates on average. Finally, the number with percentage 
inside the performance bar indicates the ratio of the cost 
incurred in the filter step to that of the total query cost. For 
example, Naive algorithm spends 94% of the cost in the filter 
step while VRNN algorithm spends 99% of the cost in the 
filter step.  
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Fig. 8  Naive vs. VRNN (k = 1, CR)  

As expected, VRNN outperforms Naive significantly. For 
200 queries, VRNN can improves the query cost to up to 11% 
and reduces the number of candidates to only 4%, compared 
with that of Naive algorithm. The reason behind is that Naive 
needs to traverse the data R-tree Tp and the obstacle R-tree To 
multiple times, incurring extremely expensive I/O overhead 
and distance computation. As demonstrated in Lemma 2 
(presented in Section IV-C), VRNN traverses Tp at most once, 
and To at most (|Sc| + 1) times, which saves considerable I/O 
cost.  

In addition, we observe that Filter step actually dominates 
the overall overhead (> 90%), especially for VRNN. This is 
because: (i) VRNN reuses all the points and nodes pruned 
from the filter step to perform candidate verification in the 
refinement step, and hence duplicated accesses to the same 
points/nodes are avoided; and (ii) most candidates in Sc are 
eliminated as false hits directly by other candidates in Sc or 
points/nodes maintained in the refinement set Sp or Sn which 
does not cause any data access. The remaining candidates can 
be verified by visiting a limited number of additional nodes. 
Since Naive for sure performs worse than VRNN (several 
orders of magnitude), its performance is omitted in the rest of 
experimental results.  
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(a) UL                                                      (b) ZL  

Fig. 9  VRNN cost vs. |P|/|O| (k = 1)  

Next, we investigate the effect of the ratio |P|/|O| on the 
proposed VRNN algorithm using two dataset combinations 



(i.e., UL and ZL). Figure 9 plots the total query cost of the 
VRNN algorithm as a function of |P|/|O|, fixing k = 1. It is 
observed that the cost of VRNN demonstrates a stepwise 
behaviour. Specifically, it increases slightly as |P|/|O| changes 
from 0.1 to 1, but then ascends much faster as |P|/|O| grows 
further. This is because, as the density of data set P grows, the 
number of the candidates retrieved in the filter step increase as 
well, which results in more traversals of To, more visibility 
check, and more candidate verification. Similar as previous 
evaluation, VRNN is very efficient in the refinement step, 
especially when the ratio |P|/|O| is small (e.g., 0.1, 0.2).  
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(a) UL (|P|/|O| = 1)                                    (b) ZL (|P|/|O| = 1) 

Fig. 10  VRNN cost vs. buffer size (k = 1)  

Finally, we examine the performance of the VRNN 
algorithm in the presence of an LRU buffer, by fixing k to 1, 
and varying the buffer size from 0% to 60% of the tree size. 
To obtain stable statistics, we measure the average cost of the 
last 100 queries, after the first 100 queries have been 
performed for warming up the buffer, with its results under 
UL and ZL dataset combinations shown in Figure 10. The 
total query cost is reduced as buffer size increases. In 
particular, as the buffer size enlarges, the VRNN-Filter cost is 
observed to drop, but the VRNN-Refinement cost remains 
almost the same. This is because that the filter step of VRNN 
requires traversing the obstacle R-tree To (|Sc| + 1) times (by 
Lemma 2). Consequently, it may access the same nodes (e.g., 
the root of To, i.e., To.root) multiple times, and hence a buffer 
space can improve the performance by keeping the nodes 
locally available.  

C. Results on VRkNN Queries  
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Fig. 11  Naive vs. VRkNN (k = 4, CR)  

The second set of experiments evaluates the efficiency and 
effectiveness of VRkNN query processing algorithms. First, 
we compare the efficiency of alternative algorithms (i.e., 

Naive and VRkNN) for VRkNN queries, fixing k = 4 which is 
the median value of all the ks we evaluate. Figure 11 presents 
our experimental results on the CR dataset combination. 
Similar as performance of VRNN search presented in Figure 8, 
we also demonstrate the I/O cost percentage, the number of 
candidates, and the percentage of the filter step. It is observed 
both Naive and VRkNN search algorithms demonstrate 
similar performance trends as that under k = 1.  

Next, we evaluate the impact of the number k of requested 
VRNNs on the performance of the VRkNN algorithm, using 
LL, NL, UL, and ZL dataset combinations. Figure 12 
illustrates the total query cost of the VRkNN algorithm as a 
function of k which varies from 1, to 2, to 4, to 8, and finally 
to 16. As expected, the overhead of VRkNN grows with k, due 
to the significant increase in the cost of VRkNN-Filter (notice 
that the number of candidates retrieved during the filter step 
increases almost linearly with k).  
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Fig. 12  VRkNN cost vs. k (logarithmic scales)  
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Fig. 13  VRkNN cost vs. |P|/|O| (k = 4, logarithmic scales)  

In the following experiments, we explore the effects of 
different parameters, including the ratio |P|/|O| and buffer size, 
on the performance of the VRkNN algorithm, using UL and 



ZL dataset combinations. In Figure 13, we show the efficiency 
of the algorithm for VRkNN queries by fixing k = 4 and 
varying |P|/|O| between 0.1 and 10. In Figure 14, we plot the 
cost of the VRkNN algorithm with respect to the buffer sizes. 
All the observations made for the VRkNN search are similar 
to those we make for the VRNN retrieval and thus the detailed 
explanation is ignored.  
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Fig. 14  VRkNN cost vs. buffer size (k = 4, logarithmic scales)  

VII. CONCLUSIONS 
In this paper, we identify and solve a novel type of reverse 

nearest neighbor queries, namely visible reverse nearest 
neighbor (VRNN) search. Although both the RNN search and 
the VNN search have been studied, there is no previous work 
that considers both the visibility and the reversed spatial 
proximity relationship between objects. On the other hand, 
VRNN search is useful in many decision support applications 
involving spatial data and physical obstacles. Consequently, 
we propose an efficient search algorithm for VRNN query, 
assuming that both P and O are indexed by R-trees. We 
employ half-plane property and visibility check to prune the 
search space, analyze the cost of the proposed VRNN 
algorithm, and proof its correctness. In addition, we generalize 
our methods to handle visible reverse k-nearest neighbor 
(VRkNN) search. An extensive experimental study with real 
and synthetic datasets has been conducted which further 
demonstrates the efficiency and effectiveness of our proposed 
algorithms for dealing with VRNN and VRkNN queries, 
under various experimental settings.  

In the future, we plan to extend our techniques to other 
VRNN variations such as constrained VRNN and Top-k 
VRNN etc. Also, we intend to investigate efficient algorithms 
for tackling the VRNN retrieval with respect to a line segment 
which contains continuous query points instead of a fixed 
query point.  
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