
DSI: A Fully Distributed Spatial Index for Location-based
Wireless Broadcast Services ∗

Wang-Chien Lee
The Pennsylvania State University
University Park, PA 16802, USA

wlee@cse.psu.edu

Baihua Zheng
Singapore Management University

Singapore
bhzheng@smu.edu.sg

Abstract

Recent announcement of the MSN Direct Service has
demonstrated the feasibility and industrial interest in utiliz-
ing wireless broadcast for pervasive information services.
To support location-based services in wireless data broad-
cast systems, a distributed spatial index (called DSI) is pro-
posed in this paper. DSI is highly efficient because it has
a linear yet fully distributed structure that facilitates multi-
ple search paths to be naturally mixed together by sharing
links. Moreover, DSI is very resilient in error-prone wire-
less communication environments. Search algorithms for
two classical location-based queries, window queries and
kNN queries, based on DSI are presented. Performance
evaluation of DSI shows that DSI significantly outperforms
R-tree and Hilbert Curve Index, two state-of-the-art spatial
indexing techniques for wireless data broadcast.

Keywords: Location-based services, spatial index, wire-
less data broadcast systems

1 Introduction
With the ever growing popularity of smart mobile de-

vices and rapid advent of wireless technology, the vision of
pervasive information access has come closer to a reality.
While information is important to users, it is only valuable
when available at the right time, right place. The demand
for location dependent data (e.g., pollution index, local traf-
fic conditions, restaurant locations, navigation maps, etc.)
is tremendous due to the broad application base. Thus, lo-
cation is a very important aspect of pervasive information
services.

Pervasive information access via today’s wireless tech-
nologies (e.g., Bluetooth, IEEE 802.11, UMTS, Satellite)
can be captured by two basic approaches: on-demand ac-
cess and periodic broadcast. In on-demand access, the

∗Wang-Chien Lee was supported in part by US National Science Foun-
dation grant IIS-0328881; Baihua Zheng was supported by the Singapore
Management University under grant number 04-C220-LEE-001.

server processes a query and returns query result to the
user via a point-to-point channel. On the other hand, pe-
riodic broadcast has the server actively pushing data to the
users. The server determines the data and its schedule for
broadcast. A user listens to a broadcast channel to re-
trieve data based on its queries and, thus, is responsible
for query processing. On-demand access is good for light-
loaded systems when contention for wireless channels and
server processing is not severe. Broadcast, allowing an ar-
bitrary number of users to access data simultaneously, is
suitable for heavy-loaded systems or big events (e.g., the
Olympic Games) where the users seek for similar infor-
mation. Recent announcement of the MSN Direct Service
(http://www.msndirect.com), which allows mobile devices
to receive timely information such as airline schedules, lo-
cal traffic, weather and news via FM radio subcarrier fre-
quencies, has demonstrated the feasibility and industrial in-
terest in utilizing wireless broadcast for pervasive informa-
tion services.

Previous research has studied various system issues of
wireless data broadcast [2, 3, 4]. In this paper, we address
the demand of location dependent data by proposing a novel
spatial index, called Distributed Spatial Index (DSI), in sup-
port of location-based queries from mobile users in wireless
data broadcast systems. The design of DSI has also taken
the inherently unreliable and error-prone wireless commu-
nication into consideration. DSI is highly efficient due to
the following properties: 1) it has a linear structure that fits
the wireless broadcast environment very well; 2) it natu-
rally mixes multiple search paths by sharing links among
them and thus minimizes the overall storage overhead; 3) it
has a fully distributed structure that allows query processing
to start very quickly; 4) it is very resilient under error-prone
wireless communication environments because interrupted
query processing can resume effectively.

Algorithms for processing window queries and k Nearest
Neighbor (kNN) queries, two essential queries for location-
based services, on DSI are developed. The issues involved
in kNN query processing are particularly challenging. Our

study has led to an innovative solution based on broadcast
reorganization and resulted in very efficient query process-
ing. Extensive performance evaluation in both error-free
and error-prone wireless communication environments has
shown that the proposed DSI achieves a significantly better
performance than R-tree and Hilbert Curves Index (HCI),
two state-of-the-art spatial indexing techniques for wireless
data broadcast.

The rest of this paper is organized as follows. Back-
ground and existing work to our study is provided in Sec-
tion 2. The index structure of DSI and algorithms for win-
dow and kNN queries are presented in Section 3. Per-
formance evaluation of DSI, HCI, and R-trees indexes for
wireless data broadcast is presented in Section 4. Section 5
tests the resilience of these indexes under error-prone wire-
less environments. Finally, we conclude this paper in Sec-
tion 6.

2 Preliminaries
Here the background and related work for supporting

location-based wireless broadcast services are provided.

2.1 Background

Consider a wireless data broadcast system that period-
ically broadcasts a collection of data objects to mobile
clients. Each data object consists of a set of attribute val-
ues. Among them, location is particularly important since it
is the focus of this paper. Access efficiency and energy con-
servation are two critical issues for mobile users, concern-
ing how fast a request could be satisfied and how energy-
efficient a technique is. To facilitate energy conservation,
a smart mobile device is expected to support two operation
modes: active mode and doze mode. The device normally
operates in active mode; and switches to doze mode to save
energy when the system becomes idle. In the literature,
two performance metrics, namely access latency and tun-
ing time, are used to measure access efficiency and energy
conservation for mobile clients in a wireless data broadcast
system, respectively [7, 8, 9]:
• Access Latency: The time elapsed from the moment a

query is issued to the moment it is satisfied.
• Tuning Time: The time a mobile client stays active to

receive the requested data items.
In wireless data broadcast systems, a client has to stay

active to continuously receive and check the broadcast data
until the data objects of interest arrive. This process con-
sumes a lot of energy. The average tuning time is a half of a
broadcast cycle, a period when all the available data objects
are broadcast once. Air indexing is often used for energy
conservation at mobile clients [9, 10]. The basic idea is that
the broadcast server precomputes indexing information (in-
cluding indexed attributes and arrival time of data objects)
and interleaves it with data objects on the broadcast chan-
nel. To facilitate search of data objects via air index, each

data object includes an offset to the next broadcast of in-
dex information. As such, mobile clients are able to predict
the arrivals of their desired data by examining the index in-
formation. Thus, they can stay in doze mode most of time
and tune into the broadcast channel when the interested data
objects arrive.

Many spatial index structures have been proposed for
accessing spatial data, including R-tree, KD-tree, Quad-
tree, etc [6, 13, 14]. Among those, R-tree is the most
well received. A search algorithm based on R-tree typi-
cally expands the search space around the query point using
a branch-and-bound approach. The navigation order of R-
tree is dynamically determined based on the position of the
query point, which results in backtracking. Thus, R-tree is
better supported by random access storages, such as mem-
ory and disk.

o 2o 1 o 3 o 4

R2R1

R1 R2Root

To Data Buckets

(a) R-tree Index

R1�
�
�
�
�
�

R2 R1R21o 3o 2o 4o 1o 3o 2o 4o ���
���
���

�
�
��

���
���
���

��
Broadcast Cycle

Data Data

(b) Branch-and-Bound Search

Figure 1. Linear Access on Broadcast Channel

In a wireless broadcast system, however, data objects are
broadcast based on a pre-defined sequence (called a broad-
cast program) and thus an object is only available when
it is on the air. Consequently, search algorithms designed
based on random access may incur a significant access la-
tency. Figure 1 depicts an example. Assume that a search
algorithm visits the root node, R2 and then R1, while the
server broadcasts nodes in the order of root, R1, and R2.
Consequently, if a client wants to visit node R1 after it re-
trieves R2, it will have to wait until the next cycle because
R1 has already been broadcast. This significantly extends
the access latency and it occurs every time a search order
is different from the broadcast order. To address this issue,
the navigation order of R-tree needs to follow the broadcast
order of index nodes.

Figure 2. Hilbert Curve of Order 3

Since most location-based queries search for objects lo-
cated closely, one strategy for wireless data broadcast is to
schedule spatially near objects to broadcast close to each
other. To achieve this, an idea is to broadcast data objects
based on a space-filling curve (e.g., Hilbert Curves (HC)

[5]) and build an air index upon. The key is to keep neigh-
bors in a high dimensional space remaining close to each
others in the broadcast channel. Figure 2 shows an HC of
order 3. The numeric labels represent the positions of the
objects in terms of HC values. For instance, point (1, 1)
has the HC value of 2. The order of the curve is decided
by the object distribution in the space. HC of higher or-
der is needed for denser object distribution since the curve
has to pass through all the objects. There is a 1-1 corre-
spondence between the coordinate and HC value of a data
object. Given the mapping function of HC, it is easy for
a client to perform conversion between coordinates and HC
values in a constant time. The detailed conversion algorithm
is available in [12].
2.2 Related Work

Imielinski et al. has extended B+-tree to support the
access of broadcast data. Two approaches are proposed to
interleave the index and data in a broadcast channel, namely
(1, m) and distributed index [9]. The former treats the
whole index as a segment and replicates the index segment
m times during one broadcast cycle. Thus, the clients suffer
a longer access latency since the m duplicated index seg-
ments extend the overall broadcast cycle. The distributed
index replicates only the top part of an index tree (see Fig-
ure 3 for illustration). It has been shown that the distributed
index scheme is more efficient than (1, m) in terms of ac-
cess latency.

 Part

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

b6b4b3 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27

b1 b2 b7 b8 b9

a2 a3 a1

I

Replicated Part

Non-Replicated

Figure 3. Distributed Index for Broadcast

Ideas of indexing the attribute ranges of exponentially
increasing number of data objects were discussed in the lit-
erature, e.g., Chord [15], flexible index [8] and exponential
index [16]. However, the focus of these work is totally dif-
ferent from our study. Chord aims at providing peer-to-peer
lookup based on a hashed search key, while flexible index
and exponential index investigate optimal tuning of the ac-
cess latency and tuning time in support of simple search
of broadcast data based on single attribute. None of them
considered complex location-based queries as we do in this
paper.

Some air indexes have been recently proposed to support
broadcast of location dependent data [17, 18, 19]. Among
them, the D-tree is a paged binary search tree to index a
given solution space in support of planar point queries [17],
while the Grid-partition index is specialized for the (one)
nearest neighbor problem [19]. Hilbert Curve Index (HCI)

is designed to support both of window queries and nearest-
neighbor queries at the same time. It adopts a B+-tree to
index data objects broadcast according to the Hilbert Curve
order [18]. The HCI index structure and search algorithms
are totally different from DSI. Also worthnoting is that the
reorganized DSI data broadcast does not follow HC order.

3 Distributed Spatial Index (DSI)
All the spatial air indexes reviewed earlier are based on

tree structures. Thus, a search always starts at the root,
which results in some deficiencies. First, the clients have
to wait for the arrival of the root node to start the search.
Moreover, the search has to be stopped once an index node
along the search path is lost. The client must wait for the
next root or blindly scan all the following nodes in order to
resume the search. Therefore, those indexes only perform
well under an ideal situation where no packet loss happens.

To address these inherited deficiencies of tree indexes on
air, we propose a fully distributed spatial index structure,
namely DSI, to allow a client to start query processing as
soon as possible in order to minimize the access latency
while still conserving tuning time. DSI distributes the in-
dex information over the whole broadcast cycle and equips
a client, whenever it tunes into the channel, with sufficient
information to conduct the location-based search.

In the following, we introduce the index structure of DSI,
energy efficient forwarding, and the search algorithms for
window query and k-Nearest-Neighbor (kNN) query. A
technical challenge which arises in kNN search is discussed
and a refined broadcast organization is proposed to further
improve the search performance.

3.1 The Index Structure

Taking into account the sequential access property of
wireless broadcast, Hilbert Curve (HC) is adopted in the
initial design of DSI to determine broadcast order of data
objects. By default, data objects are broadcast in the as-
cending order of their HC values. The basic idea is to divide
the whole set of data objects into nF frames and associate
with each frame an index table. The index table maintains
information regarding to the HC values of data objects to
be broadcast with specific waiting interval from the current
frame1.

A DSI index table consists of a number of table entries,
τi, in the form 〈HC ′

i, Pi〉, where 0 ≤ i ≤ (logr(nF)−1), r
is a selected exponential base (called index base), and nF is
the number of the frames within one broadcast cycle. Note
that, logically, the set of frames starting from any arbitrary
frame F until the frame before reappearance of F forms a
broadcast cycle. Therefore, the index table associated with
a frame F is designed to cover the next (nF − 1) frames
following F , i.e., providing index information on HC val-

1This interval can be denoted by time or by number of data packets.

ues of all the frames within a broadcast cycle. Pi points to
the next rith frame. HC ′

i is the smallest HC value of the
objects within the frame pointed by Pi. Thus, the ith entry
of the index table provides range information of HC values
amongst data objects in the rith to (ri+1 − 1)th frames. In
other words, the number of frames covered is exponentially
increased with the order of index table entries.

The number of data objects within a frame no (called
object factor) can be decided based on various parameters
such as the size of data packets, etc. Object factor is corre-
lated to the overall index size and the average waiting time
to reach the next index table. Additionally, the index base
r can be chosen to control the overhead of index table, i.e.
the number of entries within one index table. For simplic-
ity, we assume the object factor to be 1 and the index base
to be 2 in our discussion. Figure 4 shows the broadcast of
data objects based on the example in Figure 2 and the index
tables. In this example, nF = 8 and thus each index table
has 3 entries. The DSI tables corresponding to frames of
data objects O6 and O32 are also shown in the figure. Take
the index table for frame O6 as an example: τ0 contains a
pointer to the next upcoming frame whose HC value is 11,
τ1 contains a pointer to the second frame with HC value
17, and the last entry τ2 points to the fourth frame with HC
value 32.

O6 O11 O17 O27 O32 O40 O51 O61 O6 O11 O17 O27

6

32

17

11

32

6

51

40

Figure 4. DSI for the Running Example

3.2 Energy Efficient Forwarding

One essential operation for DSI, called energy efficient
forwarding (EEF), is to efficiently reach a frame contain-
ing the data object of a given location. This operation be-
comes point query if the reached frame is scanned to find
the queried data object. The EEF algorithm based on DSI is
informally given as follows.

Given a target point p, a client first computes the HC
value of point p, denoted as HCp, and then tunes into
the broadcast channel. After the initial probe, it down-
loads the index table associated with the first frame en-
countered. By comparing HCp with HC ′

is maintained in
the index table, the client follows the pointer Pi, where
HCp ∈ [HC ′

i, HC ′

i+1). In other words, the client goes
into the doze mode and wakes up when the frame specified
by Pi arrives. This process continues until the frame con-
taining data object located at p is reached. As shown earlier,
DSI organizes the index information in a way such that the
ranges of HC values amongst exponentially increasing seg-

ments of frames are maintained in the index tables. As a
result, EEF is logically like a binary search (when the index
base is 2) and the distances between visited frames and the
final target frame decrease rapidly.

3.3 Window Queries

A window query returns all the data objects associated
with locations within a given query window W (e.g., a rec-
tangle in a two-dimensional space). To process a window
query with DSI, all segments along the HC located within
W (called target segments) are found. Since HC is linear,
a target segment seg within W must share some common
endpoints with segments outside W . All these common
endpoints must be on the boundary of W . Hence, the win-
dow query algorithm first detects all the intersections be-
tween the HC and the boundary of W . Without loss of gen-
erality, we assume that all the segments located inside the
query window form a target segments set H . Upon receiv-
ing an index table, the client sequently scans each entry and
follows the first pointer Pi with the range [HC ′

i, HC ′

i+1)
overlapping with some segment segj of H . The EEF al-
gorithm is then invoked to reach the first frame on segj to
retrieve data objects. Thereafter, the segment segj is re-
moved from H . This process continues until H is empty.
As shown, EEF allows clients to move from one target seg-
ment to the next one efficiently. The detailed window query
algorithm is provided in Algorithm 1.

Algorithm 1 Window Query
Input: a query window w;
Output: objects within query window;
Procedure:
1: compute the target segments set H , with each segi denoted by

[H2i−1, H2i];
2: begin the initial probe and retrieve frame Fs; result = ∅;
3: let segi be the target segment closest to Fs;
4: Fs = EEF(H2i−1);
5: while H is not empty do
6: for each object O covered by one target segment do
7: result = result ∪ {O};
8: end for
9: H = H - [H2i−1, H2i];

10: scan index table and let HC ′

i
be the first HC value covered by H

11: Fs = EEF(HC′

i
)

12: end while
13: return result;

Figure 5 illustrates the window query processing with
DSI. Suppose the shaded area in the figure is a query win-
dow. The client first has to detect all the target segments.
In this example, the set H has three target segments, [10,
11], [28, 35], and [52, 53]. Suppose the client tunes into the
channel as depicted, the first frame F1 it receives contains
object O6, which is not located within the query window.
The client then follows the first index entry to retrieve O11

and removes the target segment [10, 11] from H . By com-
bining index tables in F1 and F2, the client has the knowl-

edge of most of the objects, i.e., (6, 11, 17, 27, 32, 40).
Thus, she skips F3 and F4 by going to doze mode (as indi-
cated by dark frames) and only wakes up to retrieve F5. At
this moment, the search still does not terminate since there
may be objects within segment [52, 53]. After receiving F7,
the search terminates since O52 and O53 do not exist.

Figure 5. Window Query Processing

3.4 K Nearest Neighbor Queries

A k nearest neighbor (kNN) query finds the nearest k

objects to a query point. The basic idea behind our kNN
algorithms is to determine a search space based on the par-
tial knowledge of object distribution obtained from index
table. The search space will continuously shrink as more
knowledge of the data distribution is obtained.

The challenge is to quickly determine a precise search
space which contains all the k objects. The initial search
space is the whole spatial region covering all the data ob-
jects in the system. As a client tunes into the broadcast
channel to receive the first index table, a circle centered at
the query point (which specifies a search space) is drawn to
include at least k data objects. If the query point is located
far away from the current broadcast frame, the circle could
be very large because the index table has very limited infor-
mation about distribution of data objects far away (due to
exponential increase of data objects covered by index table
entries). As the client continues to monitor the broadcast
channel and to obtain more information about object distri-
bution from index tables of subsequently broadcast frames,
the circle can be shrunk to avoid retrieval of frames con-
taining unwanted objects. On the other hand, if a query
point is close to the current broadcast frame, the search
space will converge very rapidly and the search process typ-
ically will terminate quickly, because there are more index
entries in DSI covering data objects to be broadcast soon.
The search space is finalized when no more objects could
further reduce the radius. The search is completed when all
the objects within the search space are retrieved. Based on
how to determine the search space, two strategies for kNN
query processing, namely conservative and aggressive, are
described.

Conservative Approach. This approach retrieves a data
object if it may potentially be in the answer set. Thus, a
client tends to retrieve a lot of subsequent frames and use
their associated index tables to reduce the search space.
This simple approach has small access latency but suffers
from the high energy expense due to slow search space con-
vergence. Instead of going into detailed algorithm (see Al-
gorithm 2), we use a simple example (shown in Figure 6) to
illustrate the conservative kNN query processing.

O17 O32

Tune in

O11O6 O27 O40 O51 O61

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

F1

11

40

27

17

6

32

17

11

O17 O32O11O6 O27O61

32

6

51

40

27

61

40

32

40

11

61

51

q

O17 O32O11O6 O27 O40 O51 O61

F1 F2 F3 F4 F5

O17 O32O11O6 O27O61

F6 F7 F8 F9 F10 F11 F12

Tune in

F2 F3 F4 F5 F6 F7

Aggressive Approach

Conservative Approach

Finish

Finish

*

KNN Queries

Figure 6. kNN Query Processing

A client physically located at the spot labelled by HC
value 33 would like to find 3 nearest neighbors (e.g., restau-
rants) and tunes into the channel as depicted. From the in-
dex table of F1, the client knows the existence of objects
O6, O11, O17, and O32. Accordingly, the client can deter-
mine that objects O6, O11, O32 are the three nearest neigh-
bors she knows so far (among them, O6 located farthest
from the query point). Thus, a solid circle across O6 is de-
termined as the search space (see Figure 6). After retrieving
object O6, the client follows the first pointer to access F2,
and detects the existence of objects O27 and O40. Conse-
quently, the search space is further reduced to the dashed
circle across O27. The client ignores object O11 and skips
download of frame F3 (since they are outside of the current
search circle), and then accesses F4 directly. The process of
refining search space continues and only qualified objects
are retrieved. Eventually, the search space will stop shrink-
ing (i.e. the inner solid circle) and all the searched objects
within the space (i.e., O32, O40 and O51) are retrieved. The
search process is terminated after O51 is retrieved because
no object in the following broadcast frame will be within
the search range. As Figure 6 shows (dark frame means the
client is in doze mode), the access latency is 7 frames and
the tuning time is 6 frames.
Aggressive Approach. This approach uses a different strat-
egy in determining the next frame to retrieve. As discussed
earlier, the index tables associated with frames far away

Algorithm 2 Conservative kNN query processing
Input: a query point, q, and the number of nearest neighbors, k;
Output: k nearest neighbors to q;
Function: insert(result, object, k) - insert object into result and

maintain only the k nearest candidates in result; finally return
the maximal distance between query point and the candidates.

end insert
Procedure:
1: r=∞; res = ∅; F ′ = NULL;
2: begin the initial probe and retrieve frame Fs;
3: while Fs do
4: for all the pointers Pi in the index table of Fs do
5: o′

i
= the object represented by HC ′

i
;

6: if dis(o′
i
, q) < r then

7: r = insert(res, o′
i
, k);

8: end if
9: end for

10: for all the data objects obji within Fs do
11: if distance(obji, q) <= r then
12: retrieve obji; r = insert(res, obji, k);
13: end if
14: end for
15: for all the pointers Pi in the index table of Fs do
16: Fp = the frame pointed by the pointer Pi;
17: if dis(o′, q) <= r with HCo′ ∈ [HC′

i
, HC′

i+1
) then

18: F ′ = Fp; break;
19: end if
20: end for
21: Fs = F ′; F ′ = NULL;
22: end while
23: return res;

from the query point usually do not provide good knowl-
edge about data distribution that we are interested in. It will
be wise to access index tables closer to the query point in
order to shrink the search space more rapidly and to skip
data objects which eventually fall out of the search space.
Thus, the aggressive approach follows an index entry which
points to a frame closest to the query point. The advan-
tage of this approach is fast convergence of the search space
and energy efficiency. However, it may possibly skip some
queried objects and have to wait until the next broadcast
cycle to retrieve them.

Since the algorithm is very similar to the conservative
approach, it is not listed in the paper to save space. Instead,
the same running example is used to illustrate the aggressive
kNN processing (also shown in Figure 6). Based on the in-
dex table of F1, the client knows the objects distribution is
like (6, 11, 17, ?, 32, ?, ?, ?), where ? represents the un-
known objects. Thus, the solid circle across O6 is drawn to
obtain the search space. Next, it follows the third pointer to
retrieve F5, the reachable frame nearest to the query point.
As a result, frames F2, F3, and F4 are skipped (i.e., the
client turns to doze mode as indicated by dark frames). Ac-
cording to the index table of F5, the client has more knowl-
edge of the objects distribution, i.e. (6, 11, 17, ?, 32, 40,
51, ?). Since objects O32, O40, O51 are the three nearest
neighbors the client knows so far, a circle across O40 (i.e.,

the inner solid circle) is drawn as the search space. Since
O32 is right in front of the query point (i.e., 33), the fol-
lowing search steps are similar to those in the conservative
approach, i.e., sequentially retrieving all the data objects lo-
cated within the search space. After retrieving O51, how-
ever, the search process cannot be terminated yet since the
HC range 11..31 has been skipped earlier (note that O7..O10

have been known to be non-existing back then). As a result,
O28 and O31 may still exist in the converged search space
and thus need to be checked. Finally, the client goes into
doze mode to skip F8 to F11 and then wakes up to retrieve
O27 (i.e., F12). The index table shows the next object is
O32, ruling out the existence of O28 and O31, and thus ter-
minates the search process. As Figure 6 shows, the access
latency is 12 frames and the tuning time is 5 frames.

O11 O17

Tune in

O32O6 O40 O51 O27 O61

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

F1 F2 F3 F4 F5

32

51

40

11

6

17

11

32

O11 O17O32O6 O40O61

51

32

61

27

40

61

51

17

F6

*

Finish

q

KNN Queries

Figure 7. Broadcast Reorganization

3.5 Broadcast Reorganization

DSI tables allocate more index entries on nearby frames
(i.e., those to be broadcast soon) and fewer index entries
on remote frames which are still far away. Thus, the search
space of a kNN query determined from low precision object
distribution information of remote frames usually is exces-
sively large. To avoid missing any qualified data object,
the conservative approach retrieves all the objects within
the current search space. Thus, it may waste a significant
amount of energy for retrieving a lot of data objects which
may eventually fall out of the final answer set, like objects
O6 and O27 in the previous example. Even though addi-
tional index information is obtained when new frames are
retrieved, it may not provide significant help to the conser-
vative approach because the index tables close to each other
usually have a lot of overlapped coverage on object distri-
bution. On the contrary, aggressive approach skips a lot of
frames (by tuning into doze mode) to get closer to the query
point. Hence, the aggressive approach converges the search
space faster and retrieves less unqualified objects (i.e., it is
very energy efficient). A drawback for this approach is the
longer access latency needed to terminate the search. For
example, frames F2 to F4 are skipped in the aggressive ap-
proach, which extends the access latency to nearly one and
a half broadcast cycle. Thus, the conservative and aggres-

sive approaches represent a tradeoff between access latency
and energy efficiency.

With the current HC order of data broadcast in DSI, nei-
ther conservative nor aggressive approach can minimize ac-
cess latency and tuning time at the same time. To address
this issue, a broadcast reorganization is proposed to facili-
tate retrieval of more accurate object distribution informa-
tion about remote frames. The basic idea is to reorganize
the broadcast of data objects in an order other than linear
ascending to allow the clients to receive index information
about remote object distribution without missing qualified
data objects.

The reorganization of data broadcast is simple yet ef-
fective. Suppose a broadcast cycle is based on the as-
cending order of objects’ HC values. The broadcast cycle
can be evenly divided into m broadcast segments with the
same number of frames. Next, the broadcast cycle is re-
constructed by interleaving frames from these m segments.
Figure 7 shows a broadcast cycle reorganized by interleav-
ing two broadcast segments (i.e., m = 2). The advantage
of this broadcast reorganization is that the search space of
a kNN query can be quickly reduced by jumping into a re-
mote area (i.e., a different segment) closer to the query point
because higher precision object distribution surrounding the
query point can be obtained. One can still come back to the
original segment without losing desired data objects. This
allows a mobile client to obtain different views of the ob-
ject distribution from different broadcast segments and thus
quickly shrink the search space. As the running example in
Figure 7 shows, the two-segment broadcast reorganization
(with the conservative search strategy) improves both the
access latency (4 frames) and tuning time (6 frames).

4 Performance Evaluation
This section evaluates the performance of DSI by com-

paring it with R-tree and Hilbert Curve Index (HCI). Two
datasets, UNIFORM and REAL, are used in the evaluation.
In the UNIFORM dataset, 10, 000 points are uniformly gen-
erated in a square Euclidean space. The REAL dataset con-
tains 5848 cities and villages in Greece, extracted from the
point dataset available in [1]. Since data objects are avail-
able a priori, the STR packing scheme is employed to build
R-tree in order to provide an optimal performance [11]. On
the other hand, B+-tree is used in HCI to index data ob-
jects broadcast in linear order of Hilbert Curve. Thus, they
are denoted as R-tree and HCI in our discussions. Both im-
plementation of R-tree and B+-tree are based on the well
known distributed indexing scheme [9].

DSI can be constructed based on different configurations
of exponential base r and object factor no. For simplicity,
r is fixed to 2 in our simulation. There is a relationship be-
tween no and nF , i.e., the total number of data objects N

equals to nF · no. To determine the object factor no, we

allocate one packet for each index table associated with a
frame. Thus, the number of table entries that could fit into
one packet, i.e. log2(nF), is obtained and the total num-
ber of frames, nF , can also be derived. DSI is thereafter
constructed based on nF and no.

The simulation model consists of a base station,
an arbitrary number of clients, and a broadcast chan-
nel. The WinSideRatio for window query is defined as

the side length of query window
the side length of the whole search space (default = 0.1).

The packet size, denoted as Capacity, varies from 25 bytes
to 29 bytes in the experiments (default = 64 bytes). The size
of a data object is set to 1024 bytes. A two-dimensional
coordinate is represented by two floating-point numbers (8
bytes each) and the HC value is represented in the same to-
tal size (16 bytes). For each pointer in the index table, 2
bytes are allocated. We use total bytes instead of number of
packets to measure access latency and tuning time because
the packet capacity is varied in many experiments2. Show-
ing results in terms of number of packets in figures does
not reveal much insight between implementations based on
different packet sizes. Also note that R-tree is not imple-
mented with packet size of 32 bytes because more space is
needed to maintain MBR and pointers in index nodes. This
is a limitation of R-tree which does not exist in DSI and
HCI. Thus, the figures involving R-trees do not include per-
formance result under packet capacity of 32 bytes. Due to
space constraint, we only present in figures the simulation
results using UNIFORM dataset. The results obtained using
REAL dataset are summarized in our discussions.

8

6

4

2

0
 32 64 128 256 512A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

Packet Capacity (#Bytes)

Reorganized
Original

(a) Latency (Win)

20

15

10

5

0
 32 64 128 256 512

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

04)

Packet Capacity (#Bytes)

Reorganized
Original

(b) Tuning Time (Win)
16

12

8

4

0
 32 64 128 256 512A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

Packet Capacity (#Bytes)

Reorganized
Conservative

Aggressive

(c) Latency (10NN)

30

26

22

18

14
 32 64 128 256 512

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

04)

Packet Capacity (#Bytes)

Reorganized
Conservative

Aggressive

(d) Tuning Time (10NN)

Figure 8. Broadcast Reorganization (UNIFORM)

4.1 Broadcast Reorganization

DSI does not necessarily follow HC order! In this paper,
we propose to reorganize the broadcast order of data ob-

2With a known packet capacity, conversion between the number of
packets and total bytes is straightforward.

jects in order to address issues arise in kNN query process-
ing. Here we validate our proposal of broadcast reorga-
nization under both window and kNN queries. We adopt
a two-segment broadcast reorganization in the experiment
and compare it with the original broadcast based on the as-
cending order of HC values. Figure 8 shows the perfor-
mance of DSI with or without object reorganization under
the UNIFORM dataset. For kNN query, both conservative
and aggressive algorithms of the original broadcast are in-
cluded. The curve labelling in the figures is self-explained.

The improvement of access latency made by broadcast
reorganization on window queries is quite evident, reduc-
ing an average (over all packet capacities) of 28% ac-
cess latency over the original broadcast program. It also
improves the tuning time performance, with an improve-
ment of around 7% (average over all packet capacities).
We also observe that the access latency is not affected by
packet capacity, while the optimal tuning time performance
is reached when packet capacity = 128 bytes (see Fig. 8(a)-
(b)). The performance enhancement on window queries is
due to more flexible access to different broadcast segments
facilitated by broadcast reorganization. On the other hand,
the improvement of the broadcast reorganization on kNN
queries is even more astonishing (in both of access latency
and tuning time). Fig. 8(c)-(d) show that the conservative
approach is good for access latency while the aggressive
approach can save tuning time. Nevertheless, the broadcast
reorganization is the best. It allows a client to access use-
ful distribution information of remote objects near a query
point early such that search space converges quickly (like
the aggressive approach). Meanwhile, data objects belong-
ing to the answer set are not missed (like the conservative
approach). For the rest of experiments, we employ reorga-
nized broadcast for DSI.

8

6

4

2

0
 64 128 256 512A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

Packet Capacity (#Bytes)

HCI
R-tree

DSI

(a) Access Latency

20

15

10

5

0
 64 128 256 512

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

04)

Packet Capacity (#Bytes)

HCI
R-tree

DSI

(b) Tuning Time

Figure 9. Performance of Window Queries vs. Packet
Capacities (UNIFORM)

4.2 Window Queries

Here we compare the performance of window query of
the evaluated indexes. We first fix the size of query window
and vary packet capacity from 32 to 512 bytes to evaluate
the performance of window query processing (the points
corresponding to packet capacity=32 bytes are not shown
due to the constraint of R-tree). Figure 9 shows that DSI
is superior to R-tree and HCI. As the packet capacity in-

creases, the performance of DSI remains stable while the
access latency and tuning time of R-tree and HCI both in-
crease. On average, DSI requires only 85.4% of R-tree la-
tency and 77.7% of HCI latency under UNIFORM dataset.
The advantage of DSI under REAL dataset (not shown to
save space) is even more significant, requiring only 59.7%
of R-tree latency and merely 50.5% of HCI latency, respec-
tively. DSI also performs very well in terms of tuning time.
On average, it consumes only 79.6% tuning time of R-tree
and 63.7% tuning time of HCI under UNIFORM dataset.
Meanwhile, it consumes only 75.2% tuning time of R-tree
and 41.5% tuning time of HCI under REAL dataset (not
shown to save space).

6.5

6.3

6.1

5.9

5.7

5.5
0.20.10.050.02A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

WinSideRatio

HCI
R-tree

DSI

(a) Access Latency

6

5

4

3

2

1

0
0.20.150.10.05

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

05)

WinSideRatio

HCI
R-tree

DSI

(b) Tuning Time

Figure 10. Performance of Window Queries vs. WinSid-
eRatio (UNIFORM)

In order to provide a comprehensive evaluation, we next
fix packet capacity to 64 bytes but vary query window sizes
by changing WinSideRatio. Figure 10 shows that DSI
outperforms R-tree and HCI in general. The simulation us-
ing REAL dataset has similar result. As expected, access
latency and tuning time for all indexes increase as the win-
dow size increases. DSI does not perform as well as R-tree
(in terms of tuning time) only when the window size is very
small. This is because R-tree ensures high spatial locality.
When the query window is very small, it needs to access less
number of leaf nodes, and hence has a better performance.
On the other hand, while DSI maintains a good degree of
spatial locality through HC, a small query window does not
necessarily imply a small HC range to search.

4.3 K Nearest Neighbor Queries

In this section, the performance of kNN queries under
different indexes is evaluated. We first examine NN and
10NN queries by varying packet capacity. Figure 11 plots
the performance of evaluated indexes using the UNIFORM
dataset. The result using REAL dataset has similar conclu-
sion and thus not included. DSI outperforms both R-tree
and HCI significantly. On average, DSI incurs only 23.3%
of HCI and 58.6% of R-tree access latency, respectively,
and DSI consumes 26.9% HCI and 41.7% R-tree tuning
time, respectively (for NN search). When k increases to
10, the advantage of DSI is still very significant. On aver-
age, DSI incurs 25.2% of HCI and 65.1% of R-tree access
latency, respectively (for 10NN search). Meanwhile, DSI
consumes 37.6% HCI and 31.8% R-tree tuning time (for

10NN search).

This experiment shows that the performance of DSI is
very stable under various packet capacities. The access time
is bounded by broadcast cycle and thus does not change
much. As for the tuning time, when the packet capacity
increases, DSI increases only slightly while HCI and R-
tree increase very rapidly. Compared with window queries,
the advantages of DSI are more dramatic for kNN queries.
Broadcast reorganization benefits our search strategy of re-
fining the search space gradually while advancing close to
the query point. Hence, the performance is significantly im-
proved.

24

20

16

12

8

4

0
 64 128 256 512A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

Packet Capacity (#Bytes)

HCI
R-tree

DSI

(a) Latency (k = 1)

4

3

2

1

0
 64 128 256 512

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

05)

Packet Capacity (#Bytes)

HCI
R-tree

DSI

(b) Tuning Time (k = 1)
24

20

16

12

8

4

0
 64 128 256 512A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

Packet Capacity (#Bytes)

HCI
R-tree

DSI

(c) Latency (k = 10)

8

6

4

2

0
 64 128 256 512

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

05)

Packet Capacity (#Bytes)

HCI
R-tree

DSI

(d) Tuning Time (k = 10)

Figure 11. Performance of kNN Queries Under Various
Packet Capacity (UNIFORM)

Next, we examine the impact of the number of searched
nearest neighbors on the performance of spatial air indexes.
Figure 12 shows the performance of different indexes under
different settings of k for the UNIFORM dataset. Again,
the result using REAL dataset has similar conclusion and
thus not included. As expected, DSI performs the best in all
the cases, in terms of both access latency and tuning time.
As k increases, the access latency, bounded by the size of a
broadcast cycle, does not change much. On the other hand,
the tuning time of DSI increases in a much slower speed
than that of R-tree and HCI.

20

15

10

5

0
302010531A

cc
es

s
L

at
en

cy
 (#

B
yt

es
⋅1

06)

K

HCI
R-tree

DSI

(a) Access Latency

8

6

4

2

0
302010531

T
un

in
g

T
im

e
(#

B
yt

es
⋅1

05)

K

HCI
R-tree

DSI

(b) Tuning Time

Figure 12. Performance of k-NN Queries vs. K (UNI-
FORM)

5 Resilience to Link Errors
The performance of different indexes presented earlier is

based on a reliable wireless communication environment,
which assumes no interference and packet loss. How-
ever, wireless environment is inherently unreliable and er-
ror prone due to radio propagation attenuation, fading and
noise. In such an environment, link errors occur frequently
and thus an air indexing technique which can facilitate re-
covery of query processing after interruption is highly de-
sirable. DSI is able to handle link errors easily owing to its
fully distributed index structure. There are multiple search
paths to reach a destination (frame). If a frame is corrupted,
the client can easily resume the query processing in the next
frame while continue to use the knowledge of data distribu-
tion obtained previously. Thus, the performance penalty is
minimized. This is a great advantage of DSI.

For a tree index, any node is only pointed by one par-
ent. Therefore, the immediate access to this node will be
lost if its parent node can not be reached. The client ei-
ther has to wait for rebroadcast of the lost parent node or
blindly retrieves all the following packets from the wireless
channel until the desired node is received. However, both
approaches are inefficient. The former incurs an extremely
large access latency since the loss of any node along the
search path will interrupt the search. The latter approach
wastes scarce power resources by scanning lots of useless
nodes.

Index θ
Window Query 10NN

Latency Tuning Latency Tuning

HCI
0.2 3.02% 0.97% 11.64% 6.00%

0.5 11.70% 4.76% 23.65% 9.27%

0.7 28.96% 12.07% 34.99% 18.13%

R-
tree

0.2 7.50% 1.10% 11.48% 6.19%

0.5 21.21% 5.27% 27.47% 12.84%

0.7 62.40% 14.12% 59.26% 18.16%

DSI
0.2 0.70% 0.88% 6.66% 3.93%

0.5 5.19% 3.71% 20.12% 7.16%

0.7 13.90% 8.03% 30.45% 10.41%

Table 1. Performance Deterioration in Error-Prone Envi-
ronments (UNIFORM)

The above analysis points out the strength of DSI and
deficiency of tree indexes in an error-prone environment.
Next, we evaluate the resilience of air spatial indexing tech-
niques to link errors quantitatively. We use a variable θ to
control the percentage of link errors in the broadcast sys-
tem. When θ is 0, there is no packet loss. When θ is 1, all
packets are lost. The performance of indexes under differ-
ent ratios of link errors is evaluated. The value of θ is varied
from 0, 0.2, and 0.5, to 0.7. Again, DSI shows a superior
performance in all scenarios. Table 1 summarizes the per-
formance deterioration (in percentage) under various link
error ratios in comparison with the same indexes in ideal,

lossless communication environment (i.e., θ = 0). Note
that DSI has the smallest performance deterioration and the
best baseline performance (as shown by experimental re-
sults in Section 4), which really showcases its resilience to
error-prone wireless communication environments.

6 Conclusion
A desirable air indexing technique should exploit proper-

ties of wireless broadcast, facilitate access and energy effi-
cient query processing, and be resilient in error-prone wire-
less environments. In this paper, a fully distributed spa-
tial index, named DSI, is proposed to address these require-
ments. DSI naturally mixes multiple search paths into a lin-
ear index structure which is fully distributed into the whole
broadcast cycle. As a result, it allows a search to start imme-
diately and facilitates instant recovery of interrupted query
processing when a packet is corrupted or lost.

This study significantly contributes to the development
of location-based wireless data broadcast services and the
research community in the following ways: 1) many
insights on location-based wireless broadcast and query
processing are obtained; these insights lead to the design
of this new and very novel DSI air index; 2) new algorithms
for window queries and k nearest neighbor search (based on
different strategies) are developed; 3) a broadcast reorgani-
zation technique is proposed for enhancement of DSI based
on obtained insights; 4) extensive (simulation-based) exper-
iments have been conducted to compare the performance of
DSI with R-trees and HCI (two state-of-the-art techniques)
in both of error-free and error-prone wireless environments.
The result shows the superiority of DSI in both environ-
ments (details were shown earlier).

As for the future work, we are currently looking into
prototyping of a location-based wireless broadcast system.
Meanwhile, we continue to exploit the potential impacts and
use of broadcast reorganization and the research issues in
unreliable wireless communication environments.

References
[1] Spatial datasets. Website at http://www.rtreeportal.org/spa-

tial.html.
[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broad-

cast disks: Data management for asymmetric communica-
tions environments. In Proceedings of ACM SIGMOD Con-
ference on Management of Data, pages 199–210, San Jose,
CA, USA, May 1995.

[3] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Kumar.
Adaptive broadcast protocols to support power conservation
retrieval by mobile users. In Proceedings of IEEE Interna-
tional Conference Data engineering, pages 124–133, Birm-
ingham, UK, April 1997.

[4] A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar. Broad-
cast protocols to support efficient retrieval from databases
by mobile users. ACM Transactions on Database Systems
(TODS), 24(1):1–79, March 1999.

[5] C. Gotsman and M. Lindenbaum. On the metric properties
of discrete space-filling curves. IEEE Transactions on Image
Processing, 5(5):794–797, May 1996.

[6] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 47–54, 1984.

[7] Q. L. Hu, W.-C. Lee, and D. L. Lee. Power conservative
multi-attribute queries on data broadcast. In Proceedings
of the 16th International Conference on Data Engineering
(ICDE’2000), pages 157–166, San Diego, CA, USA, Febru-
ary 2000.

[8] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Power
efficiency filtering of data on air. In Proceedings of the 4th
International Conference on Extending Database Technol-
ogy (EDBT’94), pages 245–258, Cambridge, UK, March
1994.

[9] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on
air - organization and access. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 9(3), May-June 1997.

[10] W.-C. Lee and D. L. Lee. Using signature techniques for
information filtering in wireless and mobile environments.
Journal of Distributed and Parallel Databases (DPDB),
4(3):205–227, July 1996.

[11] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. Str:
A simple and efficient algorithm for r-tree packing. In
Proceedings of the 13th International Conference on Data
Engineering (ICDE’97), pages 497–506, Birmingham, UK,
April 1997.

[12] D. Moore. Hilbert Curve. URL at http://www.caam.rice.edu/
∼dougm/twiddle/Hilbert.

[13] J. Robinson. The kdb tree: A search structure for large mul-
tidimentional dynamic indexes. In Proceedings of the 1981
ACM SIGMOD International Conference on Management of
Data, Ann Arbor, Michigan, 1981.

[14] H. Samet. The quad tree and related hierarchical data struc-
tures. ACM Computing Surveys, 16(2), 1984.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proceedings of ACM SIG-
COMM, pages 149–160, August 2001.

[16] J. Xu, W.-C. Lee, and X. Tang. Exponential index: A pa-
rameterized distributed indexing scheme for data on air. In
Proceedings of the 2nd ACM/USENIX International Confer-
ence on Mobile Systems, Applications, and Services (Mo-
biSys ’04), Boston, MA, June 2004.

[17] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy effi-
cient index for querying location-dependent data in mobile
broadcast environments. In Proceedings of the 19th IEEE
International Conference on Data Engineering (ICDE’03),
Bangalore, India, March 2003.

[18] B. Zheng, W. C. Lee, and D. L. Lee. Spatial index on air. In
Proceedings of the first IEEE International Conference on
Pervasive Computing and Communications (PerCom’03),
Dallas-Fort Worth, Texas, USA, March 2003.

[19] B. Zheng, J. Xu, W. C. Lee, and D. L. Lee. Energy-
conserving air indexes for nearest neighbor search. In Pro-
ceedings of the 9th International Conference on Extend-
ing Database Technology (EDBT’04), Heraklion - Crete,
Greece, March 2004.

