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THE PERSISTENCE OF GOODNESS 

Ashok S. Guha* and Brishti Guha** 

Abstract 

Experimental evidence and economic examples like Basu’s (1984) taxi driver 
problem illustrate that many people are honest (or ‘good’) even when beyond the 
reach of the law, and without repeated interactions or reputation effects. We provide 
game theoretic underpinnings of the level of goodness in a population. For 
appropriate parameter ranges, a certain level of good behaviour will emerge as an 
evolutionarily stable equilibrium: virtue will not be driven out of the population, even 
in a Darwinian world of the survival of the fittest. The long-run equilibrium 
proportion of good behaviour is independent of the level of intrinsic goodness. 

JEL Classifications: C73, C72, D03, D82 

1. Introduction 

One of the major puzzles of contemporary economics, highlighted by casual 
observation and confirmed by behavioral experiments, is that people often exhibit a 
degree of honesty or philanthropy or sense of fairness that far exceeds the predictions 
of conventional game-theoretic rationality.  Standard explanations of such behavior 
run in terms of fear of the law or of retaliation by one’s partner where a game is 
indefinitely repeated between two individuals or of loss of reputation that may hinder 
one’s future dealings with others.  However, people often seem to act contrary to their 
narrow self-interest in situations beyond the reach of the law, and where chances of a 
repeat encounter are minimal and anonymity rules out any reputation effect.  BASU 
[1984] has illustrated this observation by asking why we usually pay taxi-drivers:  we 
could after all simply walk away in most cases after reaching our destinations.  We 
are unlikely to meet the taxi-driver again, and he cannot ruin our reputations since he 
cannot readily identify us to others.  In a city like Delhi (rather than New York), one 
can in fact turn Basu’s question on its head and ask why we board taxis in the 
expectation of being safely delivered to our destinations instead of being driven to a 
lonely spot and stripped of our possessions when the taxi-driver can evade the law by 
the simple expedient of a fake number plate. 
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We could of course assert that goodness is an innate human trait – as 
HAUSER [2006] has persuasively argued, morality is part of our genetic heritage – 
and that knowledge of the distribution of unselfish virtue in the population enables us 
to trustingly conclude many transactions that we would otherwise shun in a society of 
universal suspicion and iron-clad contracts.  Honesty and trust are what makes the 
world go round, or at least saves the taxi business from extinction.  GHATAK AND 
INGERSENT [1984], for instance, stress the role of honesty and trust in determining 
credit transaction cost in informal money markets. 

Hauser’s answer unfortunately amounts to a mere restatement of Basu’s 
Paradox.  The really interesting question is how virtue can survive in a competitive 
environment – since opportunists stand to do better than the virtuous and can squeeze 
the latter out of the market.  This is an exact analog of the question in evolutionary 
biology that bedeviled the protagonists of group selection: if some individuals exhibit 
a trait that fosters the welfare and multiplication of their species at the expense of 
themselves, why shouldn’t their lower survival rate lead eventually to their effective 
eclipse?  The analog is worth noting since evolutionary game theory – later a tool 
much used by economists – originated in the application of game theory to biological 
contexts, especially after MAYNARD SMITH (1972) and MAYNARD SMITH 
AND PRICE (1973) applied game theory to animal conflict. The analog can be best 
understood in terms of “replicator dynamics” subsequently formalized by TAYLOR 
AND JONKER (1978), which specified how given phenotypes in a population 
multiply. According to the replicator dynamics, the fraction of individuals in a 
population exhibiting a given trait grows in proportion to the extent by which the 
average fitness of these individuals exceeds the average fitness of the entire 
population. From this, it is evident that any trait that benefits others in the population, 
but lowers the individual’s fitness on average below the population mean, will die out 
in time as individuals with this trait can replicate much more slowly than other 
individuals. Why then do we still observe some individuals with these “altruistic” 
traits?1 Economists have adapted the replicator dynamics to their own purposes by 
assuming that the share of a population playing a given strategy increases for high-
payoff strategies and decreases for strategies which yield low payoffs 
(SAMUELSON [2002]). Extending the analog to the problem we study, we may pose 
the following question: if virtue is a basic human trait, why shouldn’t its role in 
economic transactions be reduced to insignificance – given that opportunists can on 
average extract higher payoffs than the virtuous?  Indeed, why should virtue remain a 
basic human trait in a Darwinian world of survival of the fittest? 

                                                 
1 An interesting possibility that Taylor and Jonker do not consider is what would happen if relatively 
more robust groups, rather than – or in addition to – relatively more robust individuals, were able to 
replicate faster than average. In this case it is plausible that a trait which lowers individual fitness but 
benefits the group might still survive if the group’s increased rate of replication were fast enough to 
offset the presumably lower than average replication rate of the altruistic individual.  
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These are questions that possibly explain why, despite massive evidence of 
the innate goodness of a fraction of society (for instance ANDERSON [2000], 
GNEEZY [2005], HAUSMAN AND MCPHERSON[1996]) the dominant paradigm 
in economics in general and game theory in particular remains that of the 
opportunistic maximizer.  Perhaps, it may be felt, innate goodness is an illusion:  
good behaviour is simply the outcome of behavioral constraints that we do not fully 
appreciate.  Or, perhaps it is simply transient, a disequilibrium phenomenon on its 
way to extinction.  These questions need to be explored and answered before 
economists will be prepared to incorporate the possibility of honesty in their 
theorizing. 

MYERSON [2004] has in fact already produced a game-theorist’s solution of 
the taxi-driver riddle.  He argues that taxi-drivers demand and passengers pay fares at 
the established rate without allegiance to any principles of morality; they do so 
because payment at this rate for a taxi-ride is a convention that acts as a focal point 
for all taxi-drivers, passengers and, indeed, pedestrians, coordinating their behavior in 
a situation in which multiple equilibria exist.  This is a solution that may not fully 
satisfy everyone.  The coordination of behavior achieved through the convention is 
quite imperfect.  While the majority of drivers and passengers follows it, a significant 
minority does not.  Quite a few drivers do in fact rob passengers, and a not-entirely-
negligible number of passengers escape without payment.  Ideally, one would want 
an equilibrium in which different types of behavior coexist. 

MUKHERJEE [1984] rejects game-theoretic analyses of the problem and 
proposes instead a solution in terms of bounded rationality, a rule of thumb adopted 
by the taxi-rider in the face of uncertainty, presumably about the possible combined 
impact of the strong arm of the taxi-driver and the long arm of the law in the event of 
non-payment. 

This paper seeks to take some tentative steps towards a game-theoretic answer 
different from Myerson’s.  We suggest that a minimal level of good behaviour is 
essential for bad behaviour to be profitable, that long run processes drive a society 
towards a stable evolutionary equilibrium at this level and that, since bad behaviour at 
this point is no more profitable than good, bad people cannot compete the good 
people out of the market.  In essence, our model is the well-known hawk-dove model 
of evolutionary game theory, and our innovation is to show how it fits into the taxi-
driver riddle and, more generally, into the problem of the persistence of virtue.  

We define good behaviour by an individual as activity that increases the 
payoffs of agents with whom he transacts.  Intrinsic goodness implies that one 
persists in such activity even if it reduces one’s own payoffs.  0pportunists on the 
other hand always seek to maximize their personal payoffs, which may or may not 
involve good behaviour.  Bad behaviour of course reduces the payoffs of others.  No 
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one is intrinsically bad.  People are either innately good or opportunists.  In what 
follows, we use the terms ‘honesty’ and ‘cheating’ as shorthand for good and bad 
behaviour. 

2. A Model of Unilateral Moral Hazard  

Visualize a two-good economy, peopled by two groups of individuals. Individuals in 
these two groups differ in their initial stocks of goods, creating opportunities for 
profitable trade between members of the two groups.  All individuals in any one 
group are identical in tastes and endowment (though not in morality). However, any 
transaction between members of separate groups is beset by moral hazard.   

We assume in our initial model that this hazard is unilateral – that only the 
second party has the opportunity to cheat.  The first party may abandon the 
transaction, but if it does undertake the transaction, has no opportunity to cheat.  The 
second party has the additional option of cheating, which offers a higher payoff than 
honesty. We could interpret this in terms of a sequential game where the first movers 
are group 1 individuals. Group 2 individuals respond to group 1 individuals’ move. 
For example, a group 1 individual could be a trader who decides whether or not to 
extend credit to a customer drawn from a large population with whom he is unlikely 
to have repeat dealings. The group 2 individual would be the customer, who, if he 
gets the trade credit, may then either repay (if he is honest) or default (if he is 
opportunistic). Of course, it is easy to see that if all group 2 individuals were 
opportunistic, the game described above would reduce to a standard hold-up problem, 
so that no group 1 individuals would extend trade credit. In our setup, however,  a 
fraction λ of the population (of either group) always acts honestly while the rest are 
opportunistic.   

The value of λ is common knowledge and one believes that one’s partner in 
any transaction is drawn at random from this population.  For our purposes, λ, the 
initial proportion of intrinsically honest agents, is exogenous (we  explore long-run 
evolution of honest behavior later in the paper). It could  be a function of history: a 
society beset by wars, invasions or a history of mutual distrust may have a low λ ; one 
with a relatively peaceful history with successful mutual co-operation may have a 
higher one. Alternatively, λ could be a genetic trait or a joint product of genes and 
history.  At the outset of the game, the players decide whether to transact. Those who 
decide against transacting, exit the game.  Those who continue transact honestly or 
cheat and realize their payoffs. 

Since opportunists in the second group can cheat with impunity, they always 
do so while the honest ones do not.  Agents in the first group have no opportunity to 
cheat; their payoffs amount to α1 > 0 if their partners act honestly and α2 < 0 if their 
partners cheat.  Their expected income from the transaction    
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λα1 + (1 – λ)α2 ≥ 0 

iff λ ≥ - α2/[ α1- α2]=│α2│/[α1 + │α2│] = λ 

Below this honesty threshold, such transactions do not occur.  Above it, they do and 
opportunists in the second group always cheat and capture a surplus over honest folk. 

 There are however two factors that may erode or disrupt such an equilibrium.  
We have assumed up to this point that there is no competition between honest and 
opportunistic individuals.  If however they do compete for a scarce resource, this will 
drive the intrinsically honest out of the market.  All group 2 agents who remain in the 
market will cheat; since their potential partners expect this they do not enter the 
market at all. We prove this later in the more general context of bilateral moral hazard 
and defer further consideration of the issue at this point. 

Even if there is no competition between honest folk and opportunists to 
disrupt the static equilibrium, the market will eventually collapse in a dynamic model 
that allows for the long run evolution of the honesty coefficient λ.  We model this 
process in an overlapping generations framework in which each generation lives for 
two periods.  Individuals are not economically active in the first period:  they simply 
learn from observation and parental and cultural example and precept. In the second 
period, they produce, transact and earn while cheating or acting honest; they also 
reproduce and bring up their children.  At the end of the second period, they die.  VH 
is the expected payoff from honesty and VC that from cheating. 

We assume plausibly that evolutionary fitness is increasing in utility levels. 
To see why this assumption (a standard one made in evolutionary game theory) is 
reasonable, suppose that in contrast, fitness were not directly related to utility levels. 
Then, many people would maximize their utility by following strategies which make 
them unfit; hence they would die out. Thus, the argument is not that every one 
necessarily optimizes, but that of the pool of survivors we see in practice, the 
overwhelming majority will consist of optimizers, as others will have died out. See 
SAMUELSON [2002] for a similar discussion and justification of this assumption. 
Each parent produces (1 + s) surviving children.  s is a function of parental utility. 
Thus, an honest parent leaves (1 + s(VH)) surviving children while an opportunist is 
survived by (1 + s(VO)), where the opportunist’s payoff is VO = max [VH, VC].   
Children conform to their parental types unless culturally conditioned to switch types 
during their childhood:  v is the probability of such a switch and is a function of the 
honesty premium VH – VC (or the ‘dishonesty premium’ VC – VH) in that period.  
Then, if H and O are the numbers of intrinsically honest and opportunistic individuals 
(with the appropriate time-subscripts), the long run dynamics are  given by 

Ht + 1 – Ht = ΔHt = s(VHt)Ht + v(VHt – VCt)Ot   if VHt > VCt                             
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ΔHt = s(VHt)Ht –  v(VCt – VHt)Ht   if VHt < VCt                                                 

Ot + 1 – Ot = ΔOt = s(VHt)Ot – v(VHt – VCt)Ot   if VHt > VCt                              

ΔOt = s(VCt)Ot + v(VCt – VHt)Ht   if VHt < VCt                                                  

Such a dynamical system partially separates the genetic and cultural factors in 
honesty, represented by the functions s( ) and v( ) respectively.  The separation 
however is not complete.  As long as cultural influences affect honesty, our 
assumption that children conform to parental type unless their culture induces a 
switch involves transmission of acquired characteristics to one’s children, a process 
that cannot be purely genetic. 

Now, since for all λ, VHt < VCt,  

ΔHt/Ht = s(VHt) –  v(VCt – VHt), 

ΔOt/Ot = s(VOt) +  v(VCt – VHt)Ht/Ot > ΔHt/Ht. 
The proportion of honest agents in the population falls continuously, so that the 
honesty coefficient ends up below the threshold λ and trade breaks down.                                                     

A model with unilateral moral hazard does not therefore offer a stable 
sustained solution to Basu’s Paradox. 

Bilateral Moral Hazard 

Now add to our model the possibility that the first party may also cheat 
profitably.  The two parties to a transaction each have three strategies open to them – 
to abandon the transaction, to transact honestly or to cheat.  If they decide to transact, 
they must both prepare in advance for the strategy of their choice – so that they are 
pre-committed to this strategy without prior knowledge of the option selected by their 
potential partner.  Basu’s passenger, if he plans to cheat, must pack his gun but no 
money – and so must the taxi-driver if he has similar designs. 

Let αij and βij be the surpluses from the transaction earned by the first- and 
second-group players respectively when the actions of the first and second players are 
indexed by i and j respectively (i = h, c according as the first player acts honestly or 
cheats, j likewise for the actions of the second player). 

We assume that αch > αhh > 0 > αhc > αcc, βhc > βhh > 0 > βch > βcc.  Each 
agent finds the transaction worthwhile if his partner acts honestly, but each finds 
cheating more rewarding in that event.  If his partner cheats, the transaction results in 
losses which would be maximal if both cheat (since this would lead to mutually 
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destructive conflict, perhaps a gun-fight in Basu’s case); it would be preferable to cut 
one’s losses by bowing out honestly – though it would have been even better not to 
enter the transaction at all.   

The payoffs to mutual honesty αhh and βhh correspond to the utility levels of 
the two types in their standard offer curve equilibrium.  They represent the surplus of 
these utility levels over the autarchy utility levels and are fixed as long as the 
indifference maps of the agents do not change.  The other payoffs all reflect cheating 
and depend on the technology and equipment for cheating of each agent.  We assume 
that they too are parameters for our purposes. 

The structure of the game is as follows2: 

1. Both parties decide whether to participate or not.  If either withdraws, the 
game ends and they receive the payoffs (0, 0). 

2. But if both decide to participate, they either act honest or cheat and receive 
the payoffs indicated above.  

We solve the game by backward induction, assuming initially that both have 
decided to participate.  The resulting subgame is a standard Harsanyi game of 
incomplete information with a solution in mixed strategies.  The expected surplus of 
the first agent from acting honestly depends on his beliefs regarding the probability of 
the second agent’s acting honestly.  This, in turn, is the sum of the likelihood of the 
latter’s being intrinsically honest (λ) and the probability of his being opportunistic but 
choosing to act honest..  Suppose that, if he is an opportunist, he chooses to act honest 
with probability p (i.e. opportunistic second group agents play a mixed strategy in 
which the probability of their acting honest is p).  Then the first agent expects to 
encounter honest behaviour with probability λ + (1 – λ)p = p + (1 – p)λ and cheating 
with probability (1 – λ)(1 – p).  The surplus he expects from acting honestly himself 
will therefore be   

V1h = (p + (1 – p) λ)αhh + (1 – λ)(1 – p)αhc                                                     (1) 

while that from cheating is 

V1c = (p + (1 – p) λ)αch + (1 – λ)(1 – p)αcc                                                       (2) 

In a Bayes-Nash equilibrium, the two will be equal, yielding 

                                                 
2 At first this game may seem to be very similar to the “sophisticated prisoners dilemma” in BASU 
[1995], in which two parties play a PD game with an option to enter or stay out. However, our game 
differs in the important respect that it is a hawk-dove rather than a PD game ; the best response to bad 
behavior /cheating in our model is to be good (honest) as doing otherwise will lead to an escalation of 
violence. In the PD, of course, the dominant strategy is to always be bad/cheat. 
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p(λ) = [(λ/(1 – λ)( αch – αhh) + (αcc – αhc)]/(αhh – αhc – αch + αcc)                             (3) 

Such an equilibrium is feasible for the subgame iff 1 ≥ p* ≥ 0, which implies  

λ ≤ (αcc – αhc))/(αhh – αhc – αch + αcc) = λ1 

For higher values of the honesty coefficient, the first agent will expect a higher 
surplus from cheating regardless of the second’s behaviour.  If he is an opportunist, 
he will therefore invariably cheat. 

Similarly, the second agent expects to encounter honest behaviour with 
probability q + (1 – q)λ where he believes opportunistic first group agents will play 
honest with probability q.  In Bayes-Nash equilibrium, the value of q that makes 
cheating and honesty indifferent for the second agent is 

q(λ) = [(λ/(1 – λ))( βhc – βhh) + (βcc – βch)] /( βhh – βch – βhc + βcc)                          (4)  

The non-negativity restriction on q implies                               

λ ≤ (βcc – βch))/( βhh – βch – βhc + βcc) = λ2 

 Consider now the decisions of the players to opt out or stay in the game.  Each 
stays in if the value of the subgame for him Vih = Vic  (i = 1, 2) is non-negative. A 
little manipulation shows that 

V1h
* = V1c

* = (αhh αcc – αhc αch)/(αhh – αhc – αch + αcc) 

The denominator is negative, so that the non-negativity of V1h
* = V1c

* requires 

(αhh αcc – αhc αch) ≤ 0                                                                   (5) 

The non-negativity of V2h * = V2c
*  implies 

(βhh βcc – βhc βch) ≤ 0                                                                     (6)                                  

 All this may be summed up in  

Proposition 1.  Given a mass λ of intrinsically honest individuals in the population, if 
λ ≤ min [λ1, λ2], and conditions (5) and (6) obtain, a Bayes-Nash equilibrium emerges 
in which opportunistic agents of both groups employ mixed strategies with p and q 
given by equations (3) and (4).   
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 A notable feature of the equilibrium in which opportunists of both groups play 
mixed strategies is that the probabilities of a randomly chosen member of either 
group acting honest (λ + (1 – λ)p and λ + (1 – λ)q ) will be independent of the index 
of intrinsic honesty λ, provided the latter is less than λ1 and λ2. 

λ + ( 1 – λ)p  = (αcc – αhc))/(αhh – αhc – αch + αcc) = λ1 

λ + (1 – λ)q = (βcc – βch))/( βhh – βch – βhc + βcc) = λ2 

Within this domain (0 ≤ λ ≤ min[λ1, λ2 ]) honest behaviour reflects not 
intrinsic honesty, but the structure of payoffs to honesty and cheating.  In particular, 
if λ = 0, p = λ1 and q = λ2: a perfectly opportunistic population will display the same 
probability of honest behaviour as one with a positive fraction of intrinsically honest 
people (provided this fraction is not higher than the indicated threshold). 

  Taking into account the dependence of p on λ, V1h and V1c can be plotted 
against λ as in Fig. 1.  For λ ≤ λ1, V1h = V1c at a constant level.  For λ > λ1, p = 0 and 
both V1h and V1c are linear increasing functions of λ with V1c increasing more steeply 
than V1h.  Likewise, we can construct V2h and V2c (analogously defined for group 2 
individuals) as constant and equal functions of λ for λ ≤ λ2 and linearly increasing 
functions for λ > λ2 with V2c having the steeper gradient.  In the figure, the solid lines 
denote the expected payoffs from honesty and cheating over each range of  λ. 

What if the conditions in Proposition 1 are violated?  If λ > max [λ1, λ2] but 
(5) and (6) continue to hold, cheating will be the dominant strategy for opportunists 
of both groups so that p = q = 0; the high proportion of honest agents will ensure that 
expected incomes from honesty on both sides of the market remain positive though 
cheating will be more rewarding than honesty for both groups.   

On the other hand, if λ lies between λ1 and λ2, with (5) and (6) still holding, 
things will be different.  If λ1 > λ > λ2, all opportunists in the second group will cheat 
(p = 0).  Inserting p = 0 in equations (1) and (2), we infer that condition (5) ensures 
that honesty is the dominant strategy for first group opportunists (q = 1). In turn, it 
can readily be checked that q = 1 implies that, for  λ1 > λ > λ2, V2c =  βch > βhh = V2h.   
Vice versa if λ2 > λ > λ1. 

     We have assumed so far that inequalities (5) and (6) are satisfied.  If either of 
these is violated (say (5)), the relevant common horizontal level of the V1h and V1c 
functions will no longer lie in the non-negative quadrant as in Fig. 1.  Fig. 2 
illustrates this situation.  First group agents will withdraw unless the level of intrinsic 
honesty is high enough for V1h and V1c to be non-negative.  If it is high enough, they 
could participate in the market (provided second group agents do); however, all 
opportunists among them will cheat (since this is the more profitable option) and be 
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recognized as doing so.  The honest first group agents participate if V1h  ≥ 0 – which 
implies 

λ ≥ – αhc/[– αhc + αhh] = λ3 

If this condition is violated, they will not participate, it will be recognized that all first 
group players remaining in the market will cheat, ensuring a negative expected 
outcome for any potential partner. No transaction will therefore take place. If λ ≥ λ3, 
transactions are feasible because the fraction of behaviorally honest agents is high 
enough to raise the expected payoff of their partners to non-negative levels.  Again, 
the solid lines in Fig. 2 indicate the expected payoffs from each course of action for 
any value of λ.  There are no solid lines in the region λ < λ3, since no transactions can 
take place here. Similarly, if (6) is violated, the participation of honest second group 
agents (and therefore the occurrence of any transaction) requires 

λ ≥ – βch/[– βch + βhh] = λ 4 

If these conditions are not fulfilled, the honest individuals in the group (or groups) 
that expect(s) negative income from honesty will withdraw from the game at the 
outset:  only opportunists will remain in the group in the second period and they can 
all be expected to cheat, which means that their partner’s payoffs will be negative in 
all cases.  Anticipating this, the potential partners would prefer to withdraw from the 
game at the outset.   Therefore, unless both conditions are satisfied (λ ≥ max [λ3, λ4]), 
no transaction takes place.  It can readily be checked that λ1 ≥ λ3  iff condition (5) is 
fulfilled, and that λ2 ≥ λ4 iff condition (6) is satisfied.  We restate all this in  

Proposition 2: If either (5) or (6) is violated and λ ≥ max [λ3, λ4], opportunists 
of both groups cheat, but the honest also break even.  But if λ < max [λ3, λ4], no 
transaction can take place. 

We have assumed so far that there is no competition between the honest and 
opportunistic types.  However, if, for instance, all agents require a scarce resource, 
competition for it between the honest and the opportunistic may drive down the 
return to everyone who uses it, depressing αhh and βhh, until honest agents can no 
longer break even in equilibrium.  Since everyone knows that, in this event, only 
cheats will remain in the market, all trade will collapse.  

Proposition 3: If cheating is the best strategy for opportunists, and if 
individuals of both types compete for an essential resource, trade collapses if the 
opportunists’ requirement of the fixed resource equals or exceeds its supply. 

Proof: To capture this process using our model, it suffices to restrict our 
attention to individuals from group 1 (a symmetric argument holds for those from 
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group 2). Suppose we are in a parameter range where V1c > V1h.   Opportunistic 
individuals of group 1 cheat while intrinsically honest individuals act honestly. 
However, suppose all group 1 individuals require a fixed quantity of an essential 
resource without which they cannot transact.  This fixed requirement is normalized to 
one.  The aggregate supply of the resource is less than the number of opportunistic 
group 1 agents.  The resource is allocated through a sealed-bid auction.  The payoffs 
in this game are simply those of the previous game less the price of the scarce 
resource.   The structure of this game is as follows: 

1. The agents decide whether to play or to stay out. 
2. Group 1 agents who opt in bid for the resource, and, if successful, either 

cheat or play honestly, provided they can find a partner from group 2.  
Group 2 agents who opt in either cheat or transact honestly  

Solve the game as before by backward induction.  Consider the subgame that would 
unfold if agents of both groups stay in initially. It is trivial that the unique Nash 
equilibrium price that the group 1 agents will offer for the resource will be the 
maximum that the opportunists among them can offer without their net expected 
payoffs turning negative: V1c.  No higher price can be offered by any agent involved 
in the auction while any lower price can be outbid by an opportunist who wishes to 
ensure his access to the resource.  But if the equilibrium bid for the resource is V1c 
and V1c > V1h, no honest first group agent can make non-negative profits after paying 
for the resource. 

It follows that all honest first group agents will opt out at the outset.  But then 
all second group agents know that any first group agent they may encounter will 
cheat them, ensuring that their profits are necessarily negative.  So no second group 
agent will enter and trade will collapse. A parallel argument holds for group 2.   

Combining Proposition 3 with our earlier results, we derive  

Proposition 4.  If opportunists and honest individuals compete for an 
essential resource, trade collapses for all parameter ranges except when conditions (5) 
and (6) hold and λ ≤ min [λ1, λ2]. 

Proof.  When individuals of both types compete, Propositions 2 and 3, taken 
together, rule out any transaction if either condition (5) or condition (6) is violated. 

If both conditions (5) and (6) hold, and λ > max [λ1, λ2], opportunists of both 
groups find cheating to be their best strategy, so that Proposition 3 ensures the 
breakdown of trade.  If with (5) and (6) holding, λ1 > λ > λ2, all opportunists of the 
second group find cheating profitable, so that, by Proposition 3, they drive all honest 
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members of their group out of the market and trade therefore collapses.  Opportunists 
of the first group do likewise if λ2 > λ > λ1. 

Thus, trade can be sustained iff (5) and (6) hold and λ ≤ min [λ1, λ2].  In that 
event, neither type can oust the other, since cheating and honesty are equally 
profitable. 

Nor will the long run evolution of the honesty coefficient erode this 
equilibrium as it would under unilateral moral hazard.   Since there is no premium for 
either honesty or dishonesty in equilibrium, there will be no endogenous change in λ.  
Further, societies whose parameters do not permit such an equilibrium (societies, for 
example, with λ > max [λ1, λ2]) will in the long run retreat into autarky and be unable 
to enjoy the gains from trade.  They will therefore rank lower in the scale of 
evolutionary fitness than a population that is other wise identical but in which (5) and 
(6) hold and λ ≤ min [λ1, λ2].  The latter will multiply faster than the former.  In the 
event of conflict between them, the former will very likely lose out.  Thus, 
evolutionary selection between populations will in fact increase the likelihood of our 
encountering societies in which our equilibrium obtains. 

 

4. Conclusion 

We have shown the possibility, with certain configurations of payoffs, of the 
persistence of virtue. A coefficient of intrinsic goodness higher than a specified 
threshold cannot be sustained.  However, once the coefficient drops down to the 
threshold, or below it, it will not change endogenously, since now good and bad 
behaviour are equally profitable.  Game theory, while it sets a ceiling to the level of 
intrinsic virtue sustainable in a society, does not dictate any further erosion below this 
level, certainly not its extinction.  The threshold is independent of the intrinsic 
goodness index and is determined entirely by the structure of payoffs.  Good 
behaviour is thus independent of the exact value of the proportion of innately good 
individuals – provided this proportion is not too large – in the long run, though not in 
the short run.   
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