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Abstract

Survivorship bias pushes the performance of funds upwards. Least squares
methods often fail for �nancial data that have heteroscedastic and leptokurtic
distributions. We propose an estimator of the truncated regression model
that extends the Hodges and Lehmann-type generalized di¤erence estimator
based linear rank statistic.



1 Introduction

A substantial body of work on rank tests and rank estimates, more popularly
known as R-estimates, are mainly aimed at reducing the in�uence of gross
errors in the estimation of the standard multivariate regression model (see
for example, Spearman, 1904, Adichie, 1984, Cuzick, 1988, Gutenbruner et.
al.,1993, Gutenbrunner, 1997, Jureckova, 1971, 1977, 1999) These estimates
designed to be robust against distributions with fatter tails than normal
(leptokurtic) are often of the form

Y = [ 1 X ]

�
�
�

�
+ e; (1)

where Y is a N � 1 vector, 1 is a N � 1 vector of 1�s, X is a N � p matrix
of known regression constants, � is the scalar intercept parameter, � is a
p � 1 vector of unknown regression coe¢ cients and e is a N � 1 vector of
iid errors with the distribution F 2 
0, which is the class of all distributions
with median 0. In a rank based inference procedure the intercept term is
not identi�able, hence in order to make the columns of X orthogonal to the
intercept term, we consider it in the deviation form

Y = [ 1 Xc ]

�
��

�

�
+ e (2)

where Xc = X� 1 (x1; x2; x3; :::; xp) ; �� = � + �x0� and �x0 = (�x1; �x2; :::; �xp) ;
in particular we have the subspaces spanned by Xc and 1 are orthogonal.
We are only going to concentrate on the estimate of the regression slope
coe¢ cient � in a general single index model (see Stone, 1977, Pettitt,1982,
1983, 1987, Robinson, 1988, Powell, Stock and Stoker, 1989, Ichimura, 1993,
Horowitz, 1998).
The main motivation for this paper is the regularity in empirical �nance

about performance evaluation of money (or fund) managers that su¤ers from
a problem of survivorship bias (selection bias) as we only observe the sur-
vivors. This truncation (not censoring) is also complicated by di¤erent levels
or benchmarks associated with di¤erent types of money managers, for exam-
ple, the so-called growth and value or other style or industry based mutual
fund managers, Venture Capital or Leveraged Buyout for Private Equity
General Partners or managers of �rms or di¤erent types of hedge funds cat-
egories like arbitrage based, equity based, managed future or fund of funds.
Without going into the various classi�cation of styles the fact of the matter is
that these managers su¤er from "unobserved heterogeneity" in their perfor-
mance due to their ability ("hot hands") and it has been quite a challenging
task to separate out ability from noise (Chen and Khan, 2000). Furthermore,
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as a direct consequence of that we have heteroscedasticity in the data that
often translates to non-exogeneity or "endogeneity" of covariates (Blundell
and Powell, 2001, 2004, Blundell and Smith, 1989, 1994, Rosenbaum, 1993).
The need for a robust estimate of their performance given that the signal of
ability to noise ratio is more than su¢ ciently high.
In this paper we are going to explore some of the existing literature in rank

based estimates of the coe¢ cients in a multiple regression model and obtain
estimators by minimizing a criteria function better known as a class of min-
imum distance estimators. We are then going to look at a class of truncated
regression estimator based on pairwise di¤erences and �nally, a multivari-
ate extension of the well-known Hodges-Lehmann estimator of location. We
propose an estimator based on a robust rank measure that promises to be
an extension of the types of estimators discussed earlier, and that reduces
to the multivariate mth order Hodges-Lehmann location estimator and its
Bahadur-type representation as (Bahadur, 1966, Gregory, 1990, discussed
in Chaudhuri, 1991, 1992). One advantage of tests based on robust regres-
sion ranks is that it can reduce or remove the e¤ect of heteroscedasticity in
the residuals. A similar result was used by Koenker and Bassett (1982A,
1982B) for regression quantile case that is simply a dual of the regression
ranks (Gutenbrenner, 1994). Finally, we draw our conclusions and suggested
directions of future research.

2 Background and Motivation

2.1 Estimators based on Minimizing Dispersion of Er-
rors

Let us consider an even function D : RN ! R+ which is invariant to transla-
tion, this can possibly be used as a measure of dispersion of the residuals and
can be minimized to produce an estimate of the regression slope coe¢ cients
� based on ranks (Jureckova, 2008, Jureckova and Sen, 1996, Jureckova and
Saleh,2000). This will be an extension of the Hodges and Lehmann (1963)
location estimator equivalent in the linear regression setting.
Consider a non-decreasing sequence of score functions a1 � a2 � ::: � aN

which are non-constant with the added assumption of symmetry in the sense
ak+aN�k+1 = 0, so that we have

Pn
i=1 ak = 0. Then we can de�ne a measure

of dispersion of Z0= (Z1; Z2; :::; ZN) by

D(Z) =
NX
i=1

a[R(Zi)]Zi (3)
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where R(Zi) is the rank of Zi among Z1; Z2; Z3; :::; ZN . It is useful to note
that this measure of dispersion is not so severely a¤ected by gross errors like
the L2 counterpart variance, as it is a piecewise linear function of Z; which
will be explored in more details later in this exposition.
A rank estimate (R-estimate) of � is given by

�̂ = argmin
�2Rp

D(Y �X�) (4)

= argmin
�2Rp

NX
i=1

a[R(Yi � x0i�)](Yi � x0i�)

where X0= (x1;x2;x3; :::;xN). It can be shown that D(Y �X�) is a valid
measure of dispersion being a non-negative,continuous and convex function
of � (Jaeckel, 1972). He also claims that if the design matrix Xc is of full
rank, then D(:) attains a minimum, and this occurs for a bounded set of �.
Also the structure of D suggests that there exists a partition of the space
of � such that D is a linear function in each of those polygonal segments,
and hence, D (:) is really a piecewise linear function of the errors. Also the
partial derivative of D exists almost everywhere as

@

@�j
D (Y �X�) = �

NX
i=1

a [R (Yi � x0i�)] (xij � �xj) [= �Sj (Y �X�)] (5)

for j = 1; :::; p. Hence we see that a function of the regression rank statistic
is given by the partial derivative of the proposed measure of dispersion and
we can solve an equivalent set of normal equations by simply solving the �rst
order conditions given by

S (Y �X�) _=0 (6)

which is the negative of the gradient of the measure of dispersion D (:) : This
also suggests that this is an extension of the Hodges and Lehmann location
estimator in the linear model framework as we have ES (Y �X�) = 0, for
the true parameter �. For example, if we consider the Wilcoxon scores, we
have a (i) = �

�
i

N+1

�
, where � (u) =

p
12
�
u� 1

2

�
, this is normalized and

standardized Wilcoxon scores with mean 0 and variance 1.
Let us now focus on the limiting distribution of the rank estimate we ob-

tained by solving the optimization problem or solving the �rst order condi-
tion. Now, we work backwards from the linear approximation of the negative
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of the gradient, �OD (Y �X�) = S (Y �X�) to get a quadratic approxi-
mation of the measure of dispersion D (Y �X�). Our plan here is to �nd
out

~� =argmin
�2Rp

D(Y �X�): (7)

In can be shown that
p
n
�
~� � �0

�
converges to a limiting normal distribu-

tion and hence, it can be shown that �̂ has the same asymptotic distribution
as ~�.
We start with the following linearity for a vector of rank statistics S(Y �X�),

using the Wilcoxon scores where �0 is the true parameter of interest.

1p
N
S (Y �X�) = 1p

N
S (Y �X�)�

p
12

Z
f 2 (x) dx

1

N
X0
cXcN

1=2 (� � �0)

+ op (1) ; (8)

however, this can be generalized to more general scores namely
R 1
0
� (u)�f (u) du

as was done by Juréckova(1971) where
R 1
0
� (u) du = 0 and

R 1
0
�2 (u) du = 1

or � (u) is a score generating function and �f (u) =
f 0(F�1(u))
f(F�1(u)) . The problem

of regression quantiles and regression rank scores are primal and dual prob-
lems as has been discussed in Koenker and Bassett, 1978, Koenker, 2005,
Gutenbrunner and Jureckova, 1992.
Then we have some results under the following assumptions.

Assumptions
1. � (u) =

p
12
�
u� 1

2

�
; a (i) =

p
12
�

i
N+1

� 1
2

�
:

2.
�
1 X

�
has full column rank, p+ 1.

3. N�1 � 1 X
�0 �

1 X
�
converges to a p.d. matrix. Hence,N�1X0

cXc !
� is a positive de�nite matrix.

4. F 2 
0 and f(:) has �nite Fisher Information,this implies
R1
�1 f

2 (x) dx <
1:

Under these assumptions we have the linearity result earlier hold, i.e.,

1p
N
S (Y �X�) = 1p

N
S (Y �X�0)�

p
12

Z
f 2 (x) dx

1

N
X0
cXcN

1
2 (9)

� (� � �0) + op (1)
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this provides a linear approximation to 5D (Y �X�), this in turn provides
a quadratic approximation to the measure of dispersion D (Y �X�), by

Q (Y �X�) = D (Y �X�)� (� � �0)
0 S (Y �X�)+ (10)

1

2

p
12

Z
f 2 (x) dxN (� � �0)

0� (� � �0)

this function of �; Q (Y �X�) coincides with D (Y �X�) when � = �0.

Theorem 1 For any B > 0 and " > 0; under the given assumptions we have
,

P

(
supp

N jj���0jj�B
jQ (Y �X�)�D (Y �X�)j � "

)
�! 0

Proof. A more general version of the proof for general score functions is
given in Jaeckel (1972).

Theorem 2 Consider now the ~� de�ned in the following sense

~� = �0 +
1p

12
R
f 2 (x) dx

��1 1

N
S (Y �X�0)

Let �̂ be any point that minimizes D (Y �X�), then if �0is the true para-
meter ,under the assumptions given

p
N
�
~� � �o

�
! Z �MVN

 
0;

1

12
�R

f2 (x) dx
���1!

Proof. A more general version of the proof for general score functions is
given in Jaeckel(1972).
Jaeckel(1972) proved that the set of minimizers of D (Y �X�), say, BN

is bounded. Now we can also say that BN , is closed as a continuous function
D(:) is a constant in BN .He also showed that for moderate data sets the
cardinality of a set like BN is quite small.
An extension of this would be to obtain generalized variance of a multi-

variate estimator as the determinant of its variance-covariance matrix (see
for example, Wilks). The ARE of two asymptotically MVN estimators is the
1
p

th root of the ratio of their generalized variance, we can obtain the ARE of

the rank estimator �̂ relative to the least squares estimator �� is

e
�
�̂; �

��
=

8>><>>:
j�2��1j���� 1

12(
R
f2(x)dx)

2��1
����
9>>=>>;

1
p

= 12�2
�Z

f 2 (x) dx

�2
(11)
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which is the same as the Wilcoxon method compared with least squares.
Computationally, it is pretty challenging to compute these estimators

mainly because of lack of smoothness. However since D(:) is still a convex
surface we can �nd out the minimum, using a method like the steepest descent
or other interior point methods. We can think about a consistent one step
R-estimator form the linear approximation (McKean and Hettsmanperger,
1978). If we use a consistent estimator of

� =
1p

12
R
f 2 (x) dx

(= say; �̂) (12)

we can de�ne the estimator in the following iterative sequence

�̂1 = �̂0 + �̂ (X0
cXc)

�1
S
�
Y �X�̂0

�
(13)

For the one sample case,we can assume that the underlying distribution
F 2 
s, then � can be consistently estimated using the width of the Wilcoxon
con�dence intervals. The main problem in the above estimation is to consis-
tently estimate �̂ ,which in turn boils down to estimating  =

R
f 2 (x) dx =R

f (x) dF (x) ;we can use a kernel density estimator. So as is usual the
biggest challenge comes from the bandwidth selection once we know what
kernel w (:)to select. It can be shown that a consistent estimator of  is
given by

� =
1

NK
+

1

N (N � 1)hN

X
i6=

X
j

w

�
Yi � Yj
hN

�
(14)

where K is a constant and hN is the optimal bandwidth which is of the order
o
�
n�1=2

�
While Jaeckel (1972) and related papers like Adichie (1967, 1984), Ju-

réckova (1971), Han (1987A,1987B,1988), Gutenbrunner and Jureckova (1992),
Sherman (1993), Cavanagh and Sherman (1998), Hajek, Sidak and Sen,
(1999) proposed a more general framework for working with rank based esti-
mators, this can also be related to a more speci�c problem like one of looking
at a limited dependent variable models like truncated regression model as a
special case. However in case there is no problem of truncation or censoring
the dependent variable method like this would naturally lead to an exten-
sion of the Hodges-Lehmann type estimators based on the ranks of pairwise
di¤erences or averages. A natural direction to look at now to �nd some jus-
ti�cation in looking at estimators based on minimizing di¤erent measures of
distance or dispersion.
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2.2 Minimum Distance Estimation

If we have a symmetric (wlog around 0) error distribution and assume that
(X0X)�1 exists for all n � p. Consider the following functionV : R1�Rp 7�!
Rp, de�ned as (we remove the subscript c from X, although it is understood)

V (y; t) = A
X
i

xi fI (Yi � x0it �y)� I (�Yi + x0it <y)g ; (15)

where A = (X0X)�
1
2and I (E) is an indicator of event E:

Consider now a measure of distance or dispersion given by

M (t) :=

Z
V0 (y; t)V (y; t) dH (y) (16)

where H (y) is a non-decreasing right continuous function. We can imme-
diately see that given the symmetry of " around 0, EV (y; �) = 0: Hence,
we can de�ne a class of the so called Minimum Distance estimators �+ for
di¤erent H (:) by the minimizing M (t). It is worthwhile to note that, in
V (y; t) ;

E fI (Yi � x0it �y)� I (�Yi + x0it <y)g = F (y)� 1� F (�y) (17)

vanishes if the error terms "i have a symmetric distribution function F (:).
This also appeared before while estimating the coe¢ cients in the minimum
dispersion type estimates Jaeckel (1972).
If the symmetry assumption is not given for " we do not get the moment

condition right away as in the previous case. However, if
n�
X� �X

�0 �
X� �X

�o�1
exists when n � p and given �x0 := (�x1; :::; �xp) and

U (y; t) := A1

X
i

(xi � �x) I (Yi � y + x0it) ;

where A1 =
n�
X� �X

�0 �
X� �X

�o� 1
2
then E (U (y; �)) = 0 given that the

errors are identically distributed. We can also see that if

Q (t) :=

Z 1

�1
U0 (y; t)U (y; t) dy (18)

then we can de�ne an estimator of �, say �̂ which minimizes Q (t). It is
worthwhile to note that this is an extension of the Hodges and Lehmann
(1963) estimator for H (y) � y.
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If we compare the moment conditions for the minimization of the rank
estimator procedure and the minimum distance estimator, we can interpret
I (Yi � y + x0it) is being used as a generalized score as it satis�es the criterion
that it is nondecreasing in argument y; also if you consider the symmetric
error case then we also have them to be �symmetric�around 0:
Now it is easy to see that the estimators obtained by minimizing the

distance measures are translation invariant. Also it can be shown by simple
algebraic manipulation that for the case of symmetric iid errors we have the
problem reduced to

�+ =
1

2
argmin
t2Rp

pX
k=1

X
i

X
j

dikdjk

8<:
2
��H (Yi � x0it)�H

�
�Yj + x0jt

���
�
��H (�Yi + x0it)�H

�
�Yj + x0jt

���
�
��H (Yi � x0it)�H

�
Yj � x0jt

���
9=;
(19)

where A =
�
a(1); a(2); :::; a(p)

�
; dik = x0ia(k) and we have used the fact that

2max (a; b) � a+ b+ ja� bj for real a; b: Also we have

�+ = argmin
t2Rp

pX
k=1

X
i

X
j

dikdjk

� ��H (Yi � x0it)�H
�
�Yj + x0jt

������H (Yi � x0it)�H
�
�Yj + x0jt

��� �
(20)

where we have an added assumption on the structure on H (:) namely,

jH (a)�H (b)j = jH (�a)�H (�b)j 8a; b 2 R: (21)

Further if we haveH (:) is smooth enough,we can obtain �+ solves _M (t) = 0.
If we consider p = 1; xi1 = 1; H (y) � y we get the famous Hodges and
Lehmann(1963) one sample estimator for location which is the median of
Walsh averages. Also in a multi-sample setup with di¤erent sample sizes we
obtain a vector of H-L estimator for the group.
In case of the second case where we only assumed that the errors " are

identically distributed,using
P

i (xi � �x) = 0 we have

Q (t) = �1
2

pX
k=1

X
i

X
j

dikdjk
��Yi � x0it�Yj + x0jt�� (22)

where A1=
�
a1(1); a1(2); :::; a1(p)

�
; dik = (xi � �x)0 a1(k) Here again by using a

similar set of values we can get the two sample H-L location estimator.
This suggests that even if you only started with identically distributed

error terms "i; for the distance measure you consider for setting up the opti-
mization problem,you don�t really need to know the individual observations
of the errors but only the di¤erence between a pair of them depending on
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your selection of H (:) : This is a very crucial �nding on the part of the pa-
per as you can look at di¤erent applications like measures of �xed treatment
e¤ects by looking at the di¤erence of observations undergoing the treatment
(similar to Honoré ,1992), or the pairwise di¤erence estimator we are going
to discuss shortly (Honore and Powell, 1994).
Koul (1985) also claims that under certain regularity conditions on the

distribution function Fi and the respective densities fi of the error term "i
as well as the function H (y) (Theorem 1, pp.4) we have

A�1 ��+ � �
�
= B�1S+op (1) (23)

where

�i (y) := Fi (y)� 1 + Fi (�y) ; y 2 R; (24)

�2i (y) := Fi (y)� 1 + Fi (�y)� �2i (y) ; y � 0; 1 � i � n:

�2 (y) :=
X

jjcijj2 �2i (y) ; y > 0;

 (y) :=
X

jjcijj2 fi (y) ; y 2 R; ci � Axi:
� (y) := diag (f1 (y) ; f2 (y) ; :::; fn (y)) ;

�+ (y) := � (y) + � (�y) ;
K (y) := AX0�+ (y)XA;y 2 R;

B :=

Z
K 0 (y)K (y) dH (y) ;

S : = �
Z
K (y) fW (y) + b (y)g dH (y) ;

b (y) : =
X
i

ci�i (y) ;

W (y) := V (y; �)� b (y) ; y 2 R:

Moreover, given that if all the error terms have the same distribution F
with density f , and that f is square integrable with H, as well as 0 <R1
0
(1� F ) dH <1; and the integrals of f and f 2 are both continuous at 0

an some other regularity conditions if F is symmetric around 0, then

A�1 ��+��� =) N
�
0; � 2Ip�p

�
(25)

where � 2 :=
�
2
R
f 2dH

	�2 R R
[F (max fx; yg)� F (x)F (y)] d (x) d (y) :

Under similar analogous conditions of the �rst theorem we have given
Xc = X� �X; we have(Theorem 2, pp.5) that if Fi be the distribution func-
tion of "i with density fi; and if H (y) � y, then replacing the X0s by

9



Xc = X� �X and using d1 := A1 (xi��x) instead of c;

A�1
1

�
�̂ � �

�
= B�1

1 S1+op (1) (26)

Also under the added restrictions of square integrability of f and a �nite
integral for F (y) (1� F (y)) we have

A�1
1

�
�̂ � �

�
=) N

�
0; � 21Ip�p

�
(27)

where � 21 := (12)
�1 �R f 2 (y) dy	�2 .This is nothing but the asymptotic vari-

ance term of Wilcoxon rank estimator of �. He also goes on to establish
the ARE of these estimators as compared to least squares as well as robust-
ness properties like bounded in�uence functions (Huber, 1980, Newey and
McFadden, 1994).

2.3 Multivariate Location Estimation with R-Estimates

If we have two positive integers m and n such that 1 � m � n , if A(m)n

be the collection of all subsets of size m from the set f1; 2; :::; ng ; and
X1;X2; :::;Xn 2 Rd and for any � 2 A

(m)
n ; de�ne �X� =

1
m

P
i2�Xi; then

the mth order Hodges and Lehmann estimate could be �̂(m)n de�ned asX
�2A(m)n

����X� � �̂(m)n

��� = min
�2Rd

X
�2A(m)n

���X� � �
�� (28)

Unless we have points X̄� forming a single line this estimator will be unique.
For m = 1 this gives an estimate of a multivariate median and for m = 2
we have the standard one sample H-L estimate in d-dimension (Chaudhuri,
1992, Chaudhuri, Doksum and Samarov, 1994).
If further we de�ne the unit vector in the direction of x 2 Rd as U (x) =

jxj�1 x if x 6= 0;= 0 if x = 0: Also denote the d � d Hessian matrix of x ,
P (x) = jxj�1

�
Id � jxj�2 xx0

�
if x 6= 0;= 0 if x = 0: If X1;X2; :::;Xm 2 Rd

be a collection of iid random variables and de�ne �(m) be the median of the
sampling distribution of X̄m if

�(m) = arg min
�2Rd

g (�) (29)

= arg min
�2Rd

E
����Xm � �

��� ���Xm

��	
which is unique if X0

is are absolutely continuous with respect to the Lebesgue
measure Also we have E

�
U
����Xm � �(m)

���	 = 0; so we can without loss of
10



generality shift location �(m) to 0.Also de�ne,D(m)
1 = E

�
P
�
�Xm

�	
, U (m) (X1) =

E
�
U
�
�XmjX1

�	
andD(m)

2 = E
�
U (m) (X1)U

(m) (X1)
0	 :Now given the added

assumption that besides being iid random variables X1;X2; :::;Xm 2 Rd also
have an absolutely continuous density function f which is bounded in every
bounded subset of Rd we have

Theorem 3 Under the given assumption above,D(m)
1 is a p.d. matrix and a

Bahadur type representation for the mth order Hodges-Lehmann estimate is
given by:

�̂(m)n =
m! (n�m)!

n!

h
D
(m)
1

i�1 X
�2A(m)n

U
�
�X�

�
+Rn;

where as n! 1; the remainder term Rn is almost surely O
�
logn
n

�
if d� 3:

When d= 2, Rn is almost surely o
��

logn
n

�!�
as n tends to1 for any constant

! such that o < ! < 1:

Proof. See Chaudhuri(1992).

Corollary 4 If the assumptions above are satis�ed, then D
(m)
2 is a posi-

tive de�nite matrix ,and as n tends to 1;
p
n�̂

(m)
n converges weakly to a d-

dimensional normal random vector with mean zero and the dispersion matrix
given by

m2
h
D
(m)
1

i�1 h
D
(m)
2

i h
D
(m)
1

i�1
:

3 Limited Dependent Variable RegressionMod-
els

We start with the formulation in Li and Racine (2007 p. 316) and Powell
(1994, p.2456-2457)

y�1i = x
0
1i�1 + u1i (30)

y�2i = x
0
2i�2 + u2i: (31)

These latent variable models generates several Limited Depenedent Variable
(LDV) type models (Robinson, 1982, Maddala, 1983, 1995, Lewbel, 1998).
The simplest of them

y1i = I fy�1i > 0g (32)
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where I fAg is the indicator function gives the Binary Response Variable
model that has been investigated widely by Manski (1975, 1985, 1988),
Cosslett(1987), Horowitz (1992), Klein and Spady (1993), among others is
used to model dichotomous (or binary) variables (Chen and Khan, 2003). It is
usually more di¢ cult to identify the slope coe¢ cient �0 if x01i = (1 x1 x2:::xp)

0

and �1 = (�0 �1�2:::�p)
0 : Structurally similar polychotomous extension of the

binary response model are the ordered response models like the ordered pro-
bit and ordered logit models

y1i =

KX
j=1

I fy�1i > rjg (33)

where the support of the y�1i can be divided into (K + 1) categories or inter-
vals f(�1; r0]; (r0; r1]; (r1; r2]; :::; (rK ;1)g : Usually r0; r1; r2; :::; rK are un-
known (up to normalization like r0 = 0) and estimated along with the model.
We can also think of models where these cuto¤s are given. However, these are
all discrete dependent variable models that are of interest by themselves but
are not the main focus of the current paper (see Powell, 1994, pp. 2456-2457,
Cosslett, 1987, Blundell and Powell, 2004).
In some cases we can observe the response variable under certain restric-

tions or constraints, to get a variable with more information content like the
Censored Regression Model (Buckley and James, 1979, Horowitz, 1986, Lee,
1993, Buchinsky and Hahn, 1998, Chen and Khan, 2001, Chernozhukov and
Hong, 2002, Lewbel and Linton, 2002, Portnoy, 2003)

y1i = I fy�1i > 0g (34)

y2i = y�1iI fy1i = 0g (35)

which implies equations (30) is the same as (31). We observe

y1i = y�1iI fy�1i > 0g (36)

hence the latent variable y�1i is only visible when it is more than a threshold
or a censoring point. If the censoring point is �xed then we can normalize
it to zero. If not, we have a case of random censoring in the more general
formulation (Newey, 2001)

y1i = y�1iI fy�1i > cig =Max fy�1i; cig (37)

where ci is a the possibly random censoring point (see Honore, Khan and
Powell, 2002, Dabrowska, 1995).
The censored regression model is a special case of a more general Selection

or Tobit-type model (Tobin, 1958, Heckman, 1976, 1979, Powell, 1984, 1986a,
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1986b, Donald, 1995, Ahn and Powell, 1993, Lee, 1994, Honore, Kyriazidou,
and Udry, 1997, Honore and Kyriazidou, 2000, Newey, 1991, Das, Newey and
Vella, 2003)

y1i = I fy�1i > cig (38)

y2i = y�2iI fy1i = 1g (39)

gives a Type 2 Tobit model, that further generalizes to a more informative
Type 3 Tobit model

y1i =Max fy�1i; cig (40)

y2i = y�2iI fy�1i > cig : (41)

We also note that the censored regression model in equation (36) is the
product of the binary response variable model in equation (32) and the latent
variable model (30).
One of the LDV models that do not conform with the Tobit type models

or product of two models listed above is the Truncation Regression Model
(Amemiya, 1973, 1985, Tsui, Jewell and Wu, 1988, Lai and Ying, 1991,
1992, Lee, 1992, Cosslett, 2004)

y1i = y�1i if y
�
1i > 0 (42)

or more generally (with a possibility of random truncation, see Ould-Said
and Lemdani (2006))

y1i = y�1i if y
�
1i > ti (43)

where ti is the possibly random truncation point.
It is clear that the truncation regression model is less informative than the

censored regression model, and you can recover a truncated regression model
by dropping the censored observations from a censored regression model but
not vice versa. Moreover, in truncation only the observations that are more
than the threshold remain, with no information on the total number of points
in the untruncated sample. This of course make the coe¢ cient estimators
from truncated regression inconsistent (see Lee and Kim, 1998). Further,
since the original untruncated distribution cannot be easily identi�ed, the
only reliable information left are the relative ranks of the response variable
y.

13



3.1 Pairwise di¤erence Estimtors

Consider �rst the semiparametric censored regression model given by (Khan
and Powell, 2001, Khan and Tamer, 2009)

yi = max f0; x0i� + "ig ) yi � x0i� = max f�x0i�; "ig (44)

where "i had an unknown distribution independent of xi: Likelihood based
methods for a model like this are in general inconsistent if in particular the
distribution of the error terms is misspeci�ed. The new class of estimators
suggested here are closely associated with the R-estimators discussed ear-
lier. As our focus is mainly on the truncated regression model let us try to
motivate the idea using the following truncated regression model

y�i = x�0i � + "i (45)

yi = y�i if y
�
i > t�i

where t�i can a variable but observed point of truncation can also be referred
to as we have a data (yi; xi; ti) from a conditional distribution of (y�i ; x

�
i ; t

�
i ).

So we can write the residual as "i = y�i � x�0i �. Now let us for the sake of
exposition assume ti = 08i = 1; :::; n: Then we have

"i = yi � x0i� if y
�
i > 0) "i = yi � x0i� if "i > �x0i� (46)

Now consider the following pair of observations yi and yj, from the above
formula the corresponding error terms after it has been �trimmed� in the
feasible (observable range) is given by

"i = (yi � x0i�) if "i > max
�
�x0i�;�x0j�

	
(47)

so what we see is that we only need to make sure that the error term
"i > �x0j�. However , as we see this still doesn�t make it symmetric or
iid even if we know xi and xj: This goal can be achieved if we consider the
di¤erence between 2 such adjusted or trimmed error terms (Ruppert and
Carroll, 1980). This could be a worthwhile exercise as we have seen in the
case of the minimum distance estimator where we only know that the errors
are identically distributed we really don�t need to know each individual error
term, so long as we know the weighted di¤erence .So,although the motivation
for this exercise is totally di¤erent for the author,we have the following result

"i � "j =
�
yi � x0i� � yj � x0j�

�
if "i; "j > max

�
�x0i�;�x0j�

	
(48)

) "i � "j =
�
yi � x0i� � yj + x0j�

�
I
�
"i > �x0j�; "j > �x0i�

�
) "i � "j = (yi � yj � (xi � xj)

0�) I
�
"i > �x0j�; "j > �x0i�

�
:
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The above expression should be symmetrically distributed around 0 given xi
and xj.The corresponding estimator is given by

�ij (b) = (yi � yj � (xi � xj)
0b) I

�
yi � x0ib > �x0jb; yj � x0jb > �x0ib

�
(49)

= (yi � yj � (xi � xj)
0b) I

�
�yj < (xi � xj)

0 b < yi
�

which is symmetrically distributed around 0 given the truncated regression
model. So if we consider any odd function � of �ij(:) we can have the moment
condition given byE

�
I
�
�yj < (xi � xj)

0 b < yi
�
� ((yi � yj � (xi � xj)

0b))
�
=

0, this is true as we can only de�ne functions on the residual in the feasi-
ble or visible range. In order to make the above moment condition into a
valid �rst order condition, we need to de�ne the problem as a problem to
minimize E [t (yi; yj; (xi � xj)

0b) jxi; xj] as a function of (xi�xj)0b. If we con-
sider a function � (:) with a right continuous �rst derivative � (:) and other
characteristics of a distance or dispersion estimator then we have replacing
(xi � xj)

0b by �;

t (yi; yj; �) =

8<:
� (y1)
� (y1 � y2 � �)
� (�y2)

if � � �y2
if � y2 � � � y1
if � � y1

(50)

so we can estimate � by minimizing the sample counterpart as the �rst order
condition is satis�ed for (xi � xj)

0b = (xi � xj)
0� as seen from the previous

results they

Tn (b) =

�
n

2

��1X
i<j

t (yi; yj; (xi � xj)
0b) (51)

Honoré and Powell (1994) claim that an added assumption of log-concavity
of the errors " is su¢ cient to ensure that the solution to the FOC is the global
minimizer. If we consider a loss function or a dispersion measure given by
� (d) = jdj ;the moment condition is almost identical to the Mann-Whitney
type truncated regression estimator proposed by Bhattacharya, Cherno¤and
Yang (1983). The method they followed in this paper is to come up with
the moment condition �rst and then look at the optimization problem �rst
instead of the other way round , and use this moment condition as the �rst
order condition.
If there is no truncation or censoring the procedure outlined here will

result in the following criterion function to minimize

Wn (b) =

�
n

2

��1X
i<j

� (yi � yj � (xi � xj)
0b) (52)
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which will give the traditional two sample location estimator proposed by
Hodges and Lehmann (1963) if � (d) = jdj :The �rst order moment condition
which arises in this case is E (� (yi � yj � (xi � xj)

0�)) = 0 is similar to the
conditions of the rank regression estimators. Trivially, � (d) = d2 gives the
least squares estimator.
The procedure outlined here is one of minimizing second order U-Statistics

processes for which there are well established large sample theory available
(Nolan and Pollard,1987, 1988, Pakes and Pollard, 1989). However there is
one important shortcoming of the procedure here which is one of the regular-
ity conditions in the literature namely, uniform boundedness of the kernel of
the U-statistics. However ,this paper follows the relaxed regularity conditions
proposed by Sherman (1994).
Let us consider an estimator �̂ which minimize the mth order U-statistic

for a sample fzig of iid variables given by

Un (�) =

�
n

m

��1 X
c2Cfi1;i2;:::;img

p (zi1 ; zi2 ; :::; zim ; �) (53)

as U-statistics can be seen as an extension of the more popular M-estimators,
although most of the large sample results that are valid for the class of M-
estimators goes through for U-Statistics as well. Like under the assump-
tions of a compact parameter space �, measurable and continuous kernel
p(:) and that the absolute value of kernel p(:) is dominated by an inte-
grable function on the sample space, it can be shown (Theorem1 pp.248)
that Un (�) � E [Un (�)] converges to zero almost surely, uniformly in �: So
under the above assumptions the estimator �̂ = argmin�2� Un (�) is strongly
consistent for the true parameter �0 which minimizes E [Un (�)] : In fact the
apparent strong assumption of compactness of � can be relaxed if p (:) is
convex. It can also be shown under certain regularity conditions on the
di¤erentiability of p (:) that if the normalized sub-gradient of a mth order
U-statistic, given by Qn (�) �

p
n
�
n
m

��1P
c q (zi1 ; zi2 ; :::; zim ; �), where each

component of the kernel q (:) is a linear combination of left and right partial
derivatives of p (:) ; then

Qn

�
�̂
�
= op (1) (54)

which is an approximate moment condition. The asymptotic normality of
these estimators can also be shown following Huber(1967).The result says
that if we have �0 is an interior point where the kernel q (:; �) is well be-
haved,the unconditional expectation � (�) of q (:; �) vanishes at the true value
and is di¤erentiable at �0 with H0 � @� (�0) =@�

0 is non-singular. The ex-
pected values of both U-statistic and its square is bounded and �nally the
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kernel q (:; �0) is square integrable, then we have

p
n
�
�̂ � �0

�
= �H�1

0

mp
n

nX
i=1

r (zi; �0) + op (1) (55)

and �̂ is asymptotically normal,

p
n
�
�̂ � �0

�
) N

�
0; H�1

0 V0H
�1
0

�
, (56)

where V0 � m2E
�
r (zi; �0) r (zi; �0)

0� : Estimation would require consistent
estimators of the variance covariance matrix, for this we will need consistent
estimators for both H0 as well as V0. Now from the previous results we have
~Hn � @Qn

�
�̂
�
=@�0, so the lth column is

Ĥnl �
�
2ĥ
��1 h

Qn

�
�̂ + ĥel

�
�Qn

�
�̂ � ĥel

�i
(57)

where ĥ is a possibly stochastic sequence of bandwidths and el is the lth basis
vector. Now if we de�ne

r̂ (zi; �) �
�
n� 1
m� 1

��1X
c0

q (zi; zi2 ; :::; zim) (58)

where we consider all observations excepting the ith one. Now we can use
the average 1

n

Pn
i=1 r̂

�
zi; �̂

�
as an estimator of the conditional average of

r (zi; �) :
Hence ,they claim that a consistent estimator of V0 is

V̂n �
m2

n

nX
i=1

r̂
�
zi; �̂

�
r̂
�
zi; �̂

�0
(59)

Now if we focus on the asymptotic properties of the truncated regression
estimator which can be de�ned as

argmin
b

X
i<j

�
t
�
yi; yj; (xi � xj)

0 b
�
� t
�
yi; yj; (xi � xj)

0 �
��

(60)

Let us assume that expectations exists for x; � (y) and x� (y).We also as-
sume that no linear subspace of RK which contains (x1 � x2)

0 with certainty
and last but not the least the error terms "i are iid and independent of xi
and have a continuous distribution function F and a continuous density f
which is bounded from above.
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If the �rst two conditions hold and the added assumption that the errors
" are iid and the logarithm of its density is strictly concave, then the expecta-
tion of the above objective function exists and is uniquely minimized at b = �
Under certain other regularity conditions it can be shown that the estimator
over a compact parameter space is asymptotically normal for interior �

p
n
�
�̂ � �0

�
) N

�
0; H�1

0 V0H
�1
0

�
(61)

As we showed before if

r̂i �
1

n� 1
X
j 6=i

�� (yi � yj � (xi � xj)
0b) I

�
�yj < (xi � xj)

0 �̂ < yi

�
then V̂n � 4

n

Pn
i=1 r̂ir̂

0
i is a consistent estimator for V0.The numerical deriva-

tive estimator has the lth column given by

Ĥnl �
�
2ĥ
��1�n

2

��1X
i<j

0BBBBBB@
�I
�
�yj < (xi � xj)

0 (�̂ + ĥel) < yi

�
��
�
yi � yj � (xi � xj)

0(�̂ + ĥel)
�

+I
�
�yj < (xi � xj)

0 (�̂ � ĥel) < yi

�
�

�
�
yi � yj � (xi � xj)

0(�̂ � ĥel)
�

1CCCCCCA
(62)

� (xi � xj)

4 GeneralizedMinimumDistance and �m-rank�
Regression for Truncated Regression Mod-
els with Heterogeneity in Errors

We suggest two estimators for the semiparametric truncated linear regression
model (Chen, 2005, Khan and Lewbel, 2007)

y�i = x�0i � + "i, (63)

yi = y�i if y
�
i > t�i

where t�i can be a variable but observed point of truncation. We can consider
without loss of generality that the truncation points t�i are 0 if they are
observed as we can look at a transformed latent variable y�i � t�i instead of
just y�i ; we also have to make the same adjustment to yi:
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Firstly one which is related to minimum distance estimation. The frame-
work we discussed above from Koul (1985a, 1985b)�s paper can be easily
extended by using a weight or a projection matrix to transform the distance
measure to the space with limited dependent variable. So, criterion function
is

M (t) :=

Z
V0 (y; t)W�1V (y; t) dH (y) (64)

where H (y) is a non-decreasing right continuous function.
This function reduces to the minimum distance criterion function when

W = In�n,we can construct a suitable weight function when we have a trun-
cated regression model using it as a projection operator onto the space of
errors "i conditional on "i > �x0i�: The weight functions which possibly
could depend on the parameter estimate as in the case of a truncated regres-
sion model discussed earlier could be estimated iteratively using a Hodges-
Lehmann type estimator as the initial value.
Our objective is to obtain a general distance function which can be min-

imized to obtain a set of approximate �rst order conditions which are then
solved to obtain an estimate of regression coe¢ cient in a general semipara-
metric regression framework. This should be equipped enough to cover cases
like a truncated regression model and converge to a standard set of regres-
sion coe¢ cients where is no truncation or censoring. Consider the following
population regression model

Y = [ 1 Xc ]

�
��

�

�
+ e

as described in the previous section where columns of Xc are orthogonal to
the constant term. We are only interested in the estimation of � as it is
not possible to identify the intercept coe¢ cient in the current framework.
Consider the function

D(m) (Z) =
X
c2Cm

a
�
R
�
h(m)

�
Z(c)
���

h(m)
�
Z(c)
�

(65)

where Cm is a set of m from the set f1; 2; :::; Ng ; h(m) (:) is a real valued
function from Rm ! R .This is a valid dispersion function under certain
regularity conditions on the function h(m): It is worth noting here the function
hm (:) might actually include a Lebesgue measure H (:) As a special case we
can see that if we have m = 1 and h(1) (Zi) = Zi then we get back the
traditional rank estimate of dispersion discussed earlier in the report. Also
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if m = 2; the dispersion measure takes the form

D(2) (Z) =
NX
i>j

a (R (Zi � Zj)) (Zi � Zj) (66)

which turns out to be the criterion function of the pairwise di¤erence estima-
tors we have discussed earlier. With a suitable choice of the score function
a (:) satisfying the criterion of symmetry in the sense a (k)+a (N � k + 1) = 0
and it is a non-decreasing non-constant function, we can extend this to a
whole class of criterion functions which could be minimized to obtain robust
R-estimators of the regression coe¢ cients �:
Let us now discuss the case where m = 3: De�ne

h(3)
�
Zfi;j;kg

�
= Zi �

Zj + Zk
2

(67)

;this gives the measure of dispersion as

D(3) (Y �X�) =
NX

i>j>k

a

�
R

�
Yi � x0i��

Yj � x0j��Yk � x0k�
2

��
(68)

�
�
Yi � x0i��

Yj � x0j��Yk � x0k�
2

�
this is a valid measure of dispersion being a non-negative,continuous and
convex function of � .This follows from the proof in Jaeckel(1972,[?]) if you
consider the set of

�
Yi � x0i��

Yj�x0j��Yk�x0k�
2

�
as Z 0is:Hence this should have

a minimum which can be obtained by solved by solving the �rst order con-
ditions.
So as we have the following the following expression as the derivative with
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respect to the jith component �j

@

@�l
D(3) (Y �X�) =

NX
i>j>k

a

�
R

�
Yi � x0i��

Yj � x0j��Yk � x0k�
2

��
(69)

�
�
�x0il�

�x0jl � x0kl
2

�
= �1

2

NX
i>j>k

a

�
R

�
Yi � x0i��

Yj � x0j��Yk � x0k�
2

��
� (2xil � xjl � xkl)

= �1
2

NX
i>j>k

a

�
R

�
Yi � x0i��

Yj � x0j��Yk � x0k�
2

��
� ((2xil � �xi)� (xjl � �xj)� (xkl � �xk))

hence we can claim that the �rst order are(given that D is di¤erentiable
almost everywhere)

�rD (Y �X�) = S (Y �X�) _=0 (70)

This estimator will have the same distribution asymptotic distributions of
multivariate normal under certain regularity conditions. Moreover this can
also be viewed as an extension of the regression coe¢ cient estimator of as
would be de�ned by the mth order Hodges-Lehmann location estimator as
proposed by Chaudhuri(1992).Hence we should be able to �nd a Bahadur
type representation of the coe¢ cient estimates �̂ and hence from the corollary
this should weakly converge to a p-dimensional normal distribution under
certain regularity conditions.
We are proposing an estimator where we use a more robust version of

the rank of the di¤erence of the residuals, we can call it the m � rank is
the following. If we have a possible heteroscedasticity in the error terms this
robust m� rank can substantially reduce it for higher values of m: This also
has a trimming e¤ect on the extreme values of these di¤erences particularly
the ones on the lower end if we have a non-decreasing score function a (:) : It
should also improve the breakdown performance of the suggested estimator.
So it is possible at least theoretically to obtain an estimator for limited de-

pendent variable models like truncated(or censored regression models) using
methods like a modi�ed version of the method of R-estimates which reduces
to the simple problem of a Hodges-Lehmann location estimation when the
X = 1. The asymptotic properties of these estimators could be obtained by
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a slight modi�cation of the existing asymptotics in the case of minimum dis-
tance estimation and more precisely the literature on estimates based on re-
gression rank statistics. The estimators proposed here have criteria functions
as extensions of U-statistics (Ser�ing, 1980, Hettsmanperger, 1985, Sherman,
1994).
Our estimator is similar in essence with the d-delete Jacknife estimator

that has been discussed in Shao and Wu, 1987. Hahn and Newey (2004)
discusses jackknife estimators in the panel data context. Computationally
though the estimator could be challenging but fast interior point algorithms
that have been used to solve the quantile regression problem can be used here
as rankscores are simply a dual of quantile regression methods (Koenker and
Portnoy, 1987, Koenker and Park, 1996, also see Jureckova and Picek, 2006).

5 Summary and Directions

It is a very interesting problem to look deeper into the properties of the pro-
posed estimator and its comparison in with di¤erent methods under varied
conditions on the error distribution and functions h(m) (:) as well as more
general score functions a (:). The asymptotic properties of the estimator are
yet to be proven concretely and also some cases where there will not be
enough regularity conditions like a twice continuously di¤erentiable distrib-
ution function F (:) for the error. Also it might be worthwhile to look into
the geometric interpretation of a mth order Hodges-Lehmann estimator for
regression coe¢ cients particularly as m!1 .
The suggested estimator also has some promise in more general problems

with missing data not truncation as the errors could be modi�ed using the
function h(m) (:) and also the choice of scores. It is my conjecture that general
missing data particularly MCAR and MAR could be relatively easily handled
using the m-rank estimates particularly as these should be higher breakdown
point than traditional R-estimates, although this a topic to investigate.
Another possible �eld where this could be used in the study of treat-

ment e¤ects particularly �xed e¤ects as has been explored by Honoré (1992)
which talks about di¤erences of treatment e¤ects for similar subjects which
removes the group e¤ect and can predict individual e¤ect more accurately.
One possible challenge ahead is to suggest a consistent estimate of the vari-
ance -covariance matrix of the proposed estimator,although the rank estima-
tors gives some good insight into this problem. We also haven�t focussed on
solving the issue on endogeneity in the model and whether rank based model
answers the e¤ect of endogeneity like the case in the censored regression
framework with a two-stage method (Amemiya, 1982, Powell, 1983, Hong
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and Tamer, 2003).
Our objective for this paper was trying to �nd an extension of the tradi-

tional R-estimates for regression coe¢ cients particularly to estimate models
with truncated data. The pairwise di¤erence techniques proposed by Honoré
and Powell (1994) ,which is equivalent to the extension of the Mann-Whitney-
Wilcoxon type method proposed by Bhattacharya,Cherno¤ and Yang(1983)
in case of absolute errors are a special case of the proposed estimator. How-
ever, both theoretical and Monte Carlo comparison with other existing meth-
ods needs to be done to evaluate its merits and shortcomings like asymptotic
e¢ ciency (Robinson, 1987, Andrews, 1994A, B). In particular, to see the af-
fect of rank based methods on dependent data as discussed Mukherjee (1999),
Mukherjee and Bai (2000). A rank-based method might help us get a HAC
estimator in the rank regression context (White, 1980).
We have also looked at a class of minimum distance or minimum chi-

square distance estimators to delve into this matter. It is possible to estimate
at least theoretically the actual ability variable which is a latent variable in
the problem of estimating performance of fund managers as well as e¢ cacy of
drugs or evaluation of social programs with a suitable choice of the function
h(m) (:) and of course m: However we have not discussed any such procedure
or selection criterion of h or m in this paper and that remains a future
direction of research.
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[77] Koul,H.L.(1985b).Minimum distance estimation in multiple linear
regression with unknown error distribution. Statistics and Probability
Letters .3. 1-8.

[78] Lai, T.L., Ying, Z. (1991). Rank regression methods for left trun-
cated and right censored data. Annals of Statistics 19, 531�554.

[79] Lai, T.L., Ying, Z. (1992). Asymptotic Theory of a Bias-corrected
Least-squares estimator in Truncated regression. Statistica Sinica.2
519-539.

[80] Lee, L-F. (1992). Semiparametric Nonlinear Least-Squares Estima-
tion of Truncated Regression Models, Econometric Theory, 8, 52-94.

[81] Lee, L.-F., (1994). Semiparametric two-stage estimation of sample se-
lection models subject to Tobit-type selection rules, Journal of Econo-
metrics 61,305-344.

[82] Lee, M.J.(1993).Windsorized mean estimator for censored regression
model. Econometric Theory 8, 368�382.

29



[83] Lewbel, A. (1998). Semiparametric Latent Variable Model Estima-
tion With Endogenous or Mismeasured Regressors, Econometrica, 66,
105�121.

[84] Lewbel, A. (2000). Semiparametric Qualitative Response Model Es-
timation with Unknown Heteroscedasticity or Instrumental Variables,
Journal of Econometrics, 97, 145�177.

[85] Lewbel, A., Linton, O.B. (2002). Nonparametric censored regres-
sion. Econometrica 70, 765�779.

[86] Li, Q. and Racine, J.S. (2007). Nonparametric Econometrics,
Princeton University Press, Princeton, New Jersey.

[87] Maddala, G. S. (1983). Limited-dependent and qualitative variables
in econometrics, Cambridge University Press.

[88] Maddala, G.S., (1995). Speci�cation tests in limited dependent vari-
able models. In: Maddala, G.S., Phillips, P.C.B., Srinivasan, T.N.
(Eds.), Advances in Econometrics and Quantitative Economics. Black-
well, Oxford, U.K., pp. 1�49.

[89] Manski, C.F.,(1975). Maximum score estimation of the stochastic
utility model of choice. Journal of Econometrics 3, 205�228.

[90] Manski, C.F.,(1985). Semiparametric analysis of discrete response:
asymptotic properties of the maximum score estimator. Journal of
Econometrics 27, 205�228.

[91] Manski, C. F. (1988). Identi�cation of Binary Response Models.
Journal of the American Statistical Association, 83, 729-738.

[92] McKean,J.W. and Hettmansperger,T.P.(1978). A robust
analysis of the general linear model based on one step R-estimates.
Biometrika (1978), 65:3, pp. 571-579.

[93] Mukherjee, K. (1999). Asymptotics of quantiles and rank scores in
nonlinear time series. Journal of Time Series Analysis. 20 173-192.

[94] Mukherjee, K. and Bai, Z.D.(2000). R-estimation in autoregres-
sion with square-integrable score function. Manuscript, National Uni-
versity of Singapore, 2000.

30



[95] Newey, W.K.(1991). E¢ cient estimation of Tobit models under sym-
metry. In: Barnett, W.A., Powell, J.L., Tauchen, G. (Eds.), Nonpara-
metric and Semiparametric Methods in Econometrics and Statistics.
Cambridge, Cambridge University Press.

[96] Newey, W.K.(2001) Conditional Moment Restrictions in censored
and truncated regression models. Econometric Theory, 17, 2001, 863�
888.

[97] Newey, W.K. and McFadden, D., (1994). Estimation and hypoth-
esis testing in large samples. In: Engle, R.F., McFadden, D. (Eds.),
Handbook of Econometrics, Vol. 4. North-Holland, Amsterdam.

[98] Nolan, D. and Pollard, D. (1987).U-processes: Rates of conver-
gence, Annals of Statistics 15,780 799.

[99] Nolan, D. and Pollard, D. (1988). Functional limit theorems for
U-processes, Annals of Probability 16. 1291-1298.

[100] Pakes, A. and Pollard, D. (1989).Simulation and the asymptotics
of optimization estimators. Econometrica 57, 1027-1057.

[101] Ould-Said, E. and Lemdani, M. (2006).Asymptotic properties of a
nonparametric regression function estimator with randomly truncated
data. Institute of Statistical Mathematics, Tokyo 58, 357-378.

[102] Pettitt, A. N. (1982). Inference for the linear model using a like-
lihood based on ranks. Journal of the Royal Statistical Association.
Series B 44, 234-243.

[103] Pettitt, A. N. (1983). Approximate methods using ranks for regres-
sion with censored data. Biometrika 70, 121-132.

[104] Pettitt, A. N. (1987). Estimates for a regression parameter using
ranks. Journal of the Royal Statistical Association. Series B 49, 58-67.

[105] Portnoy, S. (2003). Censored Regression Quantiles, Journal of
American Statistical Association, 98, 1001�1012.

[106] Powell, J.L., (1983). The asymptotic normality of two-stage least
absolute deviations estimators, Econometrica 51,1569-1575.

[107] Powell, J.L.,(1984). Least absolute deviations estimation for the
censored regression model, Journal of Econometrics 25, 303 325.

31



[108] Powell, J.L.,(1986a). Symmetrically trimmed least squares estima-
tion for Tobit models, Econometrtca, 54, 1435m 1460.

[109] Powell, J.L.,(1986b).Censored regression quantiles. Journal of
Econometrics 32, 143~155.

[110] Powell, J.L., (1994). Estimation of semiparametric models. In: En-
gle, R.F, McFadden, D. (Eds.), Handbook of Econometrics, Vol. 4.
North-Holland, Amsterdam.

[111] Powell, J.L., J.H. Stock, & T.M. Stoker (1989). Semiparamet-
ric estimation of index coe¢ cients. Econometrica 57, 1404�1430.

[112] Robinson, P.M., (1982). On the asymptotic properties of estimators
of models containing limited dependent variables, Econometrica 50,27-
41.

[113] Robinson, P. (1987). Asymptotically e¢ cient estimation in the pres-
ence of heteroscedasticity of unknown form. Econometrica 55, 875�891.

[114] Robinson, P.M. (1988). Root-N-consistent semiparametric regres-
sion Econometrica 56, 931�954.

[115] Rosenbaum, Paul(1993).Hodges-Lehmann point estimates of treat-
ment e¤ect in observational studies. Journal of the American Statistical
Association.88:424.1250-1253.

[116] Ruppert, D. and Carroll, R.J.(1980).Trimmed least squares es-
timation in the linear model, Journal of the American Statistical As-
sociation 75, 825-838.

[117] Serfling. R.J.(1980).Approximation theorems in mathematical sta-
tistics, Wiley, New York.

[118] Sherman, R.T.(1993). The limiting distribution of the maximum
rank correlation estimator, Econometrica 61. 123-137.

[119] Sherman, R.T.(1994). U-Processes in the Analysis of a Generalized
Semiparametric Regression Estimator, Econometric Theory, 10, 372�
395.

[120] Shao, J. and Wu, C.F.J (1987). Heteroskedasticity-robustness of
Jacknife variance estimators in linear models. Annals of Statistics 15:4,
1563-1579.

32



[121] Spearman, C., (1904). The proof and measurement of association
between two things. American Journal of Psychololgy 15, 72-101.

[122] Stone, C.J. (1982). Optimal global rates of convergence for nonpara-
metric regression. Annals of Statistics 10, 1040�1053.

[123] Tobin, J.(1958). Estimation of Relationships for Limited Dependent
Variables, Econometrica, 26, 24-36.

[124] Tsui, K. L., N. P. Jewell and C. F. J. Wu (1988). A nonpara-
metric approach to the truncated regression problem, Journal of the
American Statistical Assocation 83, 785-792.

[125] White, H., (1980).A heteroskedasticity-consistent covariance matrix
estimator and a direct test for heteroscedasticity. Econometrica 48,
817-838.

33


