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1 Background and Motivation

It is well documented that return chasing behavior among risk-averse investors might in-

troduce a non-linearity (convexity) in the performance-�ow relationship (see Chevalier and

Ellison, 1997; Sirri and Tufano, 1998). In the absence of a more tangible measure of genuine

stock-picking ability, active mutual fund managers�performance has often been evaluated

by risk adjusted excess returns over passive benchmarks (see Ippolito, 1992). In the short

run there is some evidence that return based performance of skilled mutual fund managers

do persist, however these results could be artifacts of similar (for example, style based

or momentum) trading strategies employed in stock picking (Gruber 1996, Zheng 1999).

More recent literature have suggested in line with standard models in corporate �nance

if there is a perfectly inelastic supply of capital to manage in a company a high ability

manager will allocate it to di¤erent pro�table investment opportunities. So it is rational

to think about mutual fund in�ow as a measure of performance of the fund manager. It

is also rational to assume that rents that are being extracted due to higher stock-picking

ability is not necessarily being passed onto the investor but kept as compensation by the

fund managers. This implies among other things a higher ability fund manager might be

able to extract such rents initially, however, as the fund grows a decreasing returns to scale

sets in, and any such excess return evaporates rapidly. In a competitive market of mutual

funds for individual uninformed investors this implies that the marginal investor has close

to zero return to investment in an e¢ cient capital market (Berk and Green, 2004). While

this suggests a possible path to reconcile the empirical anomaly in the the �nance litera-

ture "...�ows are responsive to performance and performance that is not persistent." (Berk

and Green, 2004 p 1272) with rationality of individual uninformed investors, it however

throws little light on the nature of the non-linearity of the �ow-performance relationship.

It has also been suggested in the literature that higher cash �ow volatility and fund per-
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formance might have a negative relationship (see Edelen, 1999, Rakowski, 2002). These

�ndings among also corroborates a behavioral hypotheses that mutual in�ow distribution

convey sentiments about stocks (Frazenni and Lamont, 2005). However, this monotonic

non-linearity in �ow-performance relationship could be handled in a more parsimonious,

and statistically robust method if we look at the ranks rather than merely risk-adjusted

returns as measures of performance.

Tax liability on both mutual fund income distribution as well as on unrealized (and

realized) capital gains exposure in�uence individual investor�s decision on taxable invest-

ment accounts. Averages of mutual fund �ow distributions are di¤erent before and after

taxes with past year returns as covariate.(Bergstresser and Poterba, 2002). We want to

investigate how these distributions are di¤erent when we control for the fractiles or nor-

malized ranks of returns. Bergstresser and Poterba (2002) also documents that mutual

funds with heavily taxed returns have lower subsequent in�ows compared to ones with

lower tax burdens. Our objective is to see if there is evidence in the in�ow distributions to

show whether higher moments including volatility or other shape parameters of the in�ow

distributions are a¤ected by tax exposure.

We use Fractile Regression techniques (see Bera and Ghosh, 2005 and references therein)

where we condition on the ranks of the covariate to explain changes in mutual fund �ow.

Thereafter, we use smooth tests for both the unadjusted in�ow distribution as well as

distribution after conditioning for risk adjusted returns to illustrate how higher order mo-

ments are changed due to investors�tax exposure. In Section 2 we discuss the model we

use for the paper. In subsections 2.1 and 2.2 we discuss some relevant non-parametric

and semiparametric regression techniques, and the smooth test of comparing distributions,

respectively. In Section 3, we evaluate the components of mutual fund in�ow distributions

for mutual funds with high and low tax exposure. In Section 4, we conclude. In Appendix
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A, we brie�y discuss the sample size selection method we have adopted using Bera, Ghosh

and Xiao (2005).

2 The Model and the Methodology

Our objective in this paper is to look at the age-old problem of the e¤ect of covariates

on distributions. Linear regression has always been the cornerstone of such an analysis

where we investigate at the e¤ects of the x-variables or covariates on the response variable

y. Consider the Sharpe-Lintner CAPM model (following Ippolito, 1992)

Rt �RFt = �+ � (RMt �RFt) + "t (1)

where Rt is the fund�s rate of return in year t; RFt is a risk-free return in year t; RMt is

the return on some broad market portfolio like S&P 500 Composite index in year t; and "t

is an error term with mean zero. We can de�ne the abnormal returns adjusted for market

risk in the fund in some year t as

Pt = (Rt �RFt)� � (RMt �RFt) = �+ "t (2)

as a measure of fund manager�s performance. It has been pointed out that such a measure

of performance will not only have a substantial noise component but will have signi�cant

serial correlation or persistence owing to similar ability (or lack thereof) of fund managers

(Ippolito, 1992). For systematic market risk � = 1; the risk adjusted excess return measure

becomes (Chevalier and Ellison, 1997)

Pt = Rt �RMt = �+ "t: (3)
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For Pt to be valid measure of performance we need to assume that � is �xed condi-

tional on some manager or fund speci�c covariates, with the error term "t (referred to as

"measurement error" in Econometrics). In particular, Pt is stochastic with an unknown

distribution, related to that of "t:

Bergstressor and Poterba (2002) claims new money in�ow is a more interesting measure

of net in�ow into a mutual fund that doesn�t contain the reinvested dividend and capital

gains 90% of which get reinvested, we de�ne mutual fund in�ow as

It =
Assetst
Assetst�1

� NAVt
NAVt�1

(4)

that measures the net growth rate of the assets of the fund over the growth rate of the

intrinsic value of the stock given by the year end net asset value (NAV ).

One possible model to estimate the relationship between �ow and abnormal perfor-

mance would be a partially linear model (similar to Chevalier and Ellison, 1997)

Iit = 0 + 1g (Pit�1) +X
0
it� + Y

0
t � + �it (5)

where Iit is the net new money in�ow for the ith fund in the tth year, g (:) is a function on

the perceived performance measure like risk adjusted excess or abnormal returns, Xit is a

vector of covariates for the ith fund included in the information set 
t at time t; Yt is a

vector of year speci�c variables, 0; 1, � and � are coe¢ cients, and �nally, �it is an error

term with mean (or median) zero. It must be noted that model in (5) is notoriously di¢ cult

to estimate due to two possible problems. First, the error term might be correlated with the

independent variables - problem often times referred to as "endogeneity" in Econometrics;

second, the estimation of the functional form g (:) of the risk adjusted return would su¤er

from a "curse of dimensionality" even when it is identi�ed to some scale.
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One way of dealing with this model is to do a two step procedure. In the �rst step, we

�nd the residual of In�ow that cannot be predicted by fund-year speci�c variables other

than the current and past performance measures like risk adjusted returns. We can use

either parametric (linear regression) or semiparametric (rank or quantile regression) to do

the �rst step. At the second step, we can estimate the following model

AIit = 
0
0 + 

0
1g (Pit�1) + uit (6)

where AIit is the in�ow variable adjusted for the fund-year speci�c covariates, 00; 
0
1 are

slope and intercept coe¢ cients, and uit is an error term with mean (or median) zero.

Although the model in (6) does not solve the endogeneity in the original model but does

reduce the curse of dimensionality that is commonly a icts non-parametric regression

problems.

The problem we are trying to address is not directly related to endogeneity, but the

other aspect of the story missed by simple linear regression. It is very likely that funds

with higher risk-adjusted excess return might have a di¤erent rate of adjusted in�ow as

compared to the one with lower risk adjusted return. Linear regression fails to capture

this "di¤erential" treatment of the covariates or in particular "fractiles or ranks of the

covariates." So instead of looking at regression of AI on P; we should be looking at the

regression of AI; possibly grouped according to the ranks of P , on P . So, we can answer the

question for the bottom 10% of mutual funds what is the e¤ect of one percent increase in

ranks of returns all else remaining the same. We discuss the basic nonparametric regression

methods and smooth test techniques used in this paper in the following subsections.
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2.1 Nonparametric Regression Method

In non-parametric (Kernel-based) regression analysis we consider Yi � N
�
m (xi) ; �

2
�
;

i = 1; 2; :::; n; where conditional mean function m (:) satis�es some regularity or smooth-

ness conditions. Broadly, we can de�ne the Nadaraya-Watson type location or regression

estimator with the smoothing kernel K (:) and bandwidth h as

m̂NW (xo) = arg min
�o2R

nX
i=1

(yi � �o)2K
�
x� xi
h

�
=

nX
i=1

WNW
in (x) yi (7)

We can think of replacing xi by a monotonic rank-score of xi; and use the weighted least

squares type method as well. "Bandwidth" can be de�ned either in terms of actual width

(kernel type) or the number of observations (nearest neighbor type). In nearest neighbor

type regression estimate we replace x by the empirical distribution function Fn (x) in

Equation (7) to get (Altman 1992, Stute 1984)

m̂NN (xo) = arg min
�o2R

nX
i=1

(yi � �o)2K
�
Fn (x)� Fn (xi)

hn

�
=

nX
i=1

WNN
in (x) yi: (8)

The major advantage that k-nearest neighbor type estimator has over the traditional kernel

based estimator is that the former only depends on the ranks of X1; X2; :::; Xn: Hence,

if F (x) is continuous the problem gets transformed to much more tractable problem of

estimating a regression function at F (x0) with the X-sample being uniformly distributed

over [0; 1] : Its convergence properties in mean square has also been studied by Yang (1981).

Stute (1984) showed that k-Nearest Neighbor type estimates are asymptotically normal if

E
�
Y 2
�
< 1; is much weaker than the conditions needed for existence of the Nadaraya-

Watson type regression estimates like existence of the PDF f (:) of X and that E jY j3 <1

(Schuster 1972).

In quantile regression, we look at the regression counterpart of univariate � th quantile
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of the dependent variable y is de�ned as

�̂ (�) = argmin
a2R

nX
i=1

�� (yi � a) , (9)

where �t (u) = (� � I (u < 0))u is often referred to as the check function.

The � th Regression Quantile of Y on X (Koenker and Bassett, 1978)

�̂ (�) = arg min
b2Rp

nX
i=1

��
�
yi � xTi b

�
: (10)

It should be noted that quantile regression controls for the quantiles of the y variable,

and not of the original covariate i.e. the x variable.

To motivate fractile regression let�s think of a linear regression function of Y on X = x

as

m (x) = E [Y jX = x] (11)

Let F (x) is the marginal cumulative distribution function (CDF) of X with a density

function (PDF) f (x) :

We can show that the regression function is invariant under a strictly monotonic trans-

formation of the covariate X to its probability integral transform (PIT), F (x) ;

r (u) = E [Y jF (X) = u]

) r (u) = E
�
Y jX = F�1 (u)

�
= m

�
F�1 (u)

�
: (12)

The partial regression coe¢ cients of r (u) is given by

@r (u)

@u
=
@m

@x
:
@F�1 (u)

@u
= m0 (x)

1

f (x)
; (13)
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where we divide the non-parametric regression coe¢ cients by the density function evaluated

at x: One interpretation of that could be the regression coe¢ cients are weighted less where

the density of the covariate is low. So if we know the density function f (x) ; we can recover

the original partial regression coe¢ cients m0 (x) :

2.2 Smooth Test for Comparing Distributions

For performing this test of comparison of distributions of we use the two sample version

of smooth test procedure as proposed in Bera, Ghosh and Xiao (2004). Neyman�s smooth

test for H0: F = F0. was for the one sample case with completely speci�ed distribution

under null hypothesis H0 : f (x) is the true PDF (for review see Bera and Ghosh, 2001).

This is equivalent to testing H0 : y = F (x) =
xR

�1
f (u) du � U (0; 1) :Neyman considered

the following smooth alternative to the uniform density:

h (y) = C (�) exp

24 kX
j=1

�j�j (y)

35 (14)

�j (:) are orthogonal normalized Legendre polynomials. For H0 : �1 = �2 = � � � = �k = 0

has a test statistic

	2k =

kX
j=1

1

n

"
nX
i=1

�j (yi)

#2
� �2k (0) under H0:

If we take the problem of testing H0 : F = G: We need to modify the original smooth

test since both F and G are unknown. If F (:) were known, we can construct a new random

variable Zj = F (Yj) ; j = 1; 2; :::;m:
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The CDF of Z is given by

H (z) = Pr (Z � z) = Pr (F (Y ) � z)

= G
�
F�1 (z)

�
= G (Q (z))

where Q (z) = F�1 (z) is the quantile function of Z:

The PDF of Z is given by

h (z) =
d

dz
H (z) = g

�
F�1 (z)

� d
dz
F�1 (z)

= g
�
F�1 (z)

� 1

f (F�1 (z))

=
g (Q (z))

f (Q (z))
; 0 < z < 1: (15)

The main problem of comparing two distributions is to �nd a suitable measure of

distance or norm between two distribution functions, i.e. to say, for any x 2 (�1;1),

kG (x)� F (x)k

If a density function exists over the support of F and G; then for any t 2 (0; 1) this

problem to be equivalent to the distance

��G � F�1 (t)� t�� :
Under H0 : G = F; G � F�1 (t) = t: In fact, the h (z) in (15) is the corresponding PDF

for the distribution function G � F�1 de�ned over (0; 1) : The PDF h (z) is a ratio of two

densities; and itself is a valid density function. Therefore, we will call it the Ratio Density

Function (RDF) (Bera, Ghosh and Xiao, 2005).
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When H0 : F = G is true (i.e. f = g) then from (15), h (z) = g(Q(x))
f(Q(x)) = 1; 0 < z < 1.

Z has the Uniform density in (0; 1) :That means irrespective of what F and G are, the

two-sample testing problems can be converted into testing only one kind of hypothesis;

namely, uniformity of a transformed random variable.

For the two sample case with unknown F and G the Smooth test statistic is

	2k =

kX
l=1

u2l ; ul =
1p
m

mX
j=1

�l (zj) ; l = 1; 2; :::; k

zj = F (yj) =

Z yj

�1
f (!) d!; j = 1; 2; :::;m.

Under H0 : F = G;	2k
D! �2k:

The test has k components. Each component provides information regarding speci�c

departures from H0 : F = G:

However, in practice F (:) is unknown. We use the Empirical Distribution Function

(EDF),

Fn (x) =
1

n

nX
i=1

I (Xi � x) ; ẑj = Fn (yj)

	̂2k =

kX
l=1

1

m

24 mX
j=1

�l (ẑj)

352

The following two theorems [for proof and details see Bera, Ghosh and Xiao (2004)] pro-

vide some restrictions on relative sample sizes for consistent asymptotic �2 distribution of

the test statistic, and also to minimize size distortion of the two sample smooth test of

comparing two distributions.

Theorem 2 If m log lognn ! 0 as m;n!1 then 	̂2k �	2k = op (1) :
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Proof. See Bera, Ghosh, Xiao (2005)

Theorem 3 The optimal relative magnitude of m and n for minimum size distortion is

given by m = O (
p
n) :

Proof. See Bera, Ghosh, Xiao (2005)

.

3 Comparing In�ow Distributions

We consider US domestic equity mutual funds data for January Releases from Morningstar

Principia database with some conditions (see Bergstresser and Poterba, 2002 for �lters)

from 1996-2006 where the data corresponds to December 31 the year before (Bergstresser

and Poterba, 2002). The main reason for selecting such a dataset is to reduce problems

with survivorship bias caused by merger or extinction of non-performing mutual funds.

Bergstresser and Poterba (2002) �nd that after-tax returns do indeed have more in�uence

on cash in�ows to mutual funds, however they did not test whether higher order moments

of the in�ow distribution are a¤ected by after-tax returns. Figures 1-4 depict that mutual

fund in�ow distributions over all the years of data 1995-2005 are indeed quite di¤erent

in potential (using potential tax liability, distribution yield and potential capital gains

exposure) and actual tax burden based on the di¤erence between pre-tax and after tax

returns. The striking common feature of all these kernel density estimates is that they show

not just di¤erent means but also volatilities and possibly di¤erent higher order moments

between the �ows.

If we consider the in�ow distributions with high (potential tax liability more than zero)

and low tax liabilities (potential tax liability less than or equal to zero) where potential

tax liability is calculated by adding dividend yield and potential (both realized and unre-
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Figure 1: In�ow distributions with high and low potential tax liabilities.
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Figure 2: In�ow Distributions with high and low tax liabilities using Distribution Yield
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Figure 3: In�ow distribution with high and low Potential Capital Gains Exposure
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Figure 4: In�ow distributions with funds having high and low tax burdens
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alized) capital gains exposure reported by Morningstar Corporation, we �nd that there are

substantial di¤erences in several moments of the distribution (see Table 1)

Variable Obs. Mean Median Std. Dev.

Low Tax 5106 0.3104 -0.0940 17.1107

High Tax 13624 1.0295 0.056 73.1684

Min. 1st Q. 3rd Q. Max. coef. skew excs.kurt

-8.4933 -0.2116 0.0698 1216.114 70.2944 4989.486

-6.1652 -0.0926 0.3004 8510.708 115.5167 13426.642

Table 1. Summary Statistic for Fund In�ows

Test KS CvM

Statistic (T*) 19.3117 171.9613

Critical Upper 0.1% 1.95 1.167

Table 2. Goodness-of-Fit Statistics based on the EDF.

We would to reject H0 : F = G that the in�ow distributions for high and low tax

exposure are the same with the above tests but there is no indication of the nature of

departure from H0 using the traditional tests like Kolmogorov-Smirnov or Cramer-von

Mises type tests (see Table 2).

We use a modi�ed version of fractile graphical analysis method (Mahalanobis, 1960,

also see Bera and Ghosh, 2006) to test the overall distribution of in�ow conditional on the

ranks of the returns with high and low tax exposure. Figures (i),(ii) and (iii) representing
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the fractile graphs with number of fractile groups g = 10; 20 and 50 illustrates the di¤erence

between funds with high and low tax exposures. In the �gures blue solid line (that is more

or less above the red solid line) represents the mutual funds with higher tax exposure. The

shaded area around the line represents the uncertainty that is the bootstrapped standard

error at each fractile group mean. As we observe with higher number of fractile or rank

groups of returns, the separation area between the two graphs is more fragmented. This

also make it increasingly di¢ cult to conclude whether the distributions are di¤erent overall.

Hence we would need some more tangible analytical or simulation based hypothesis testing

methodology to separate the two fractile graphs.

(i)10 Fractile Groups
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(ii) 20 Fractile Groups

(iii)50 Fractile groups

Following the notation of Bera and Ghosh (2006), We divide the data into m groups of
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size g each i.e. n = mg. The group means of the variables ranked with respect to X are

ui =
1

m

imX
r=(i�1)m+1

x(r); i = 1; 2; :::; g (16)

vi =
1

m

imX
r=(i�1)m+1

y[r]; i = 1; 2; :::; g: (17)

Samples
�
x11; y

1
1

�
;
�
x12; y

1
2

�
; :::;

�
x1n; y

1
n

�
and

�
x21; y

2
1

�
;
�
x22; y

2
2

�
; :::;

�
x2n; y

2
n

�
; are inde-

pendently drawn from population P 12:

Let G1,G2 and G12 be the plots of the g group means
�
v11; v

1
2; :::; v

1
g

�
,
�
v21; v

2
2; :::; v

2
g

�
and

�
v121 ; v

12
2 ; :::; v

12
g

�
against the group ranks 1=g through 1: Also de�ne, for population

P 34; G3,G4 and G34 be the plots of the group means
�
v31; v

3
2; :::; v

3
g

�
,
�
v41; v

4
2; :::; v

4
g

�
and�

v341 ; v
34
2 ; :::; v

34
g

�
against the covariate group ranks. De�ne A12 be the error area bounded

by fractile graphs G1 and G2 between the rank points of the covariate x; 1 and g; A34 be

the error area bounded by graphs G3 and G4 between the rank points of the covariate x; 1

and g; and A� be the separation area bounded between the combined graphs G12 and G34:

One way of addressing the problem of the di¤erence between two fractile graphs G1

and G2 is to look at a norm in a g�dimensional Euclidean space. The L2�norm can be

de�ned asone way of addressing the problem of the di¤erence between two fractile graphs

G1 and G2 is to look at a norm in a g�dimensional Euclidean space. The L2�norm can

be de�ned as

412 =
G1 �G2

=
�v11 � v21; v12 � v22; :::; v1g � v2g�

=
q
w21(12) + w

2
2(12) + :::+ w

2
g(12) (18)

Similarly, de�ne �34 =
q
w21(34) + w

2
2(34) + :::+ w

2
g(34) between G

3 and G4; and �nally,
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�� between the combined graphs G12 and G34:

Suppose, B = ((bij)) is a positive de�nite matrix like the covariance matrix, then a

more general class of distance measure is

�212 =

gX
i=1

gX
j=1

wi(12)wj(12)bij =W
T
(12)BW(12): (19)

Now, extending the result of Sethuraman (1961) with m fractile groups m�2in converges to

a mixture of �2 variates where �in is the error area of fractile graph i = 1; 2: If B is the

inverse of the covariance matrix of W , m�2in converges to �
2 with g degrees of freedom.

Furthermore if m�2in,i = 1; 2 and 2m�
2
�n are asymptotically independent,

2�2�n�
�21n +�

2
2n

� ! Ratio of mixture of �2:

Similarly, for a suitable normalization matrix B; like the inverse of the bootstrapped vari-

ance covariance matrix,
2�2�n�

�21n + �
2
2n

� ! Fg;2g:

We report the results of the individual and group F-tests in Table 2A, if we want to

test the conditional fractile means jointly, we observe from the overall F-tests that the

two fractile graphs are statistically di¤erent for di¤erent values of g: The overall F-test for

fractile graphs helps us to compare the conditional means jointly. However, the overall F-

test like the Kolmogorov-Smirnov and Cramer-von Mises tests do not give us any indication

20



of the type of departures.

#Fractile Groups Error Area High Tax Error Area Low Tax Area of Separation Overall F-test

Under H0 : m1 (x) = m2 (x) �212 � �2g �234 � �2g �2� � �2g
2�2�

(�212+�234)
� F2g;g

g = 10 8.28 8.12 134.98��� 16.46���

(0:60) (0:62) (0:0) (0:0)

g = 20 25.31 28.07 167.55��� 6.28���

(0:19) (0:11) (0:0) (0:0)

g = 50 47.77 58.7 187.56��� 3.52���

(0:56) (0:19) (0:0) (0:0)

Table 2A. Asymptotic tests of normalized Error Area and the Area of Separation (Pvalues in parenthesis)

To determine the causes of departure from H0, we apply the smooth test proposed by

Bera, Ghosh and Xiao (2005), the results of the full sample test is given in Table 3.

	24 u21 u22 u23 u24

2095.366��� 1629.2854��� 331.3226��� 0.6124 47.72���

(0.0) (0.0) (0.0) (0.433887629) (0.0)

Table 3. Smooth statistics and p-values (whole sample)

��� signi�cant at 1%, �� signi�cant at 5%, � signi�cant at 10%.

As we discussed in Subsection 2.2 to reduce the e¤ect of the relative sample sizes, we took

a random sample of optimal size (10% of the sample size m = 5106; see APPENDIX A

for details) 500 from the in�ow distribution with lower tax exposure (the smaller sample

size), and recomputed the smooth test statistics in Table 4 with the mutual fund in�ows
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(see Figure 5). In particular we investigated the di¤erences in the in�ow distribution

unadjusted for returns, then used the regression residuals from ols, median regression,

fractile regression and �nally, a median regression on the fractiles of risk adjusted returns.

Since we are only looking at residuals for the purpose of our tests, we exclude the regression

outputs that can be provided on request. We also tried non-linear speci�cations an lagged

values of the risk adjusted returns according to Chevalier and Ellison (1997), Sirri and

Tufano (1998), but the regression did not have any statistically signi�cant higher order or

lagged terms for our dataset.

Residuals with Returns 	2 u21 u22 u23 u24

Unadjusted 145.8494��� 112.7042��� 24.4997��� 1.1872 1.9775

(Entire range, high, low tax) (0:0) (0:0)
�
7:43� 10�7

�
(0:2759) (0:1596)

OLS 6.6872 0.5455 0.7742 1.4052 3.9624��

(Entire range, high, low tax) (0:1533) (0:4602) (0:3789) (0:2359) (0:0465)

Median Regression 107.403��� 96.119��� 9.0687��� 0.3158 1.9

(Entire range, high, low tax) (0:0) (0:0) (0:0026) (0:5742) (0:1682)

Fractile Regression 10.4964�� 1.7897 0.5237 7.9711��� 0.212

(Entire range, high, low tax) (0:0328) (0:181) (0:4693) (0:0048) (0:6452)

Median-Fractile 101.8819��� 92.4467��� 6.8277��� 0.8227 1.7848

(Entire range, high, low tax) (0:0) (0:0) (0:009) (0:3644) (0:1816)

Table 4. Smooth statistic and p-values (sample m = 500).

��� signi�cant at 1%, �� signi�cant at 5%, � signi�cant at 10%

A closer inspection of Table 4 reveals quite a few facets of the distribution of mutual
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fund in�ows once adjusted for the covariate, in this case past years risk-adjusted returns.

We also see that the type of regression we use to adjust for the e¤ect of mutual fund returns

does indeed make a di¤erence in the distribution of in�ows with high and low tax exposure.

From the smooth test technique discussed in Section 2.2 and Bera, Ghosh and Ziao (2004),

we observe that the unadjusted in�ow distribution for mutual funds with high and low

tax exposure di¤ers signi�cantly in the �rst (u21 = 112:7042) and second
�
u22 = 24:4997

�
moment components. This essentially implies that the mutual fund in�ow distribution is

signi�cantly di¤erent for funds with high and low tax exposures
�
	2 = 145:8494

�
: However,

it has been an empirical regularity that in the absence of a comprehensive yet tangible

measure of performance, uninformed taxable investors use past year�s risk adjusted returns

to evaluate performance of mutual funds (Ippolito, 1992, Patel, Zeckhauser and Hendricks,

1994, Chevalier and Ellison 1997, Sirri and Tufano, 1998).Past year�s risk adjusted pretax

returns are the most important factor in determining mutual fund in�ows (regression results

not shown here, please refer to Bergstresser and Poterba, 2002). Hence, to compare the

explanatory power of high and low tax for determining mutual fund in�ows, we need to

adjust the in�ow distribution for the variation in risk adjusted returns.

If we take ordinary least squares (OLS) residuals for the regression of mutual fund new

money in�ows on risk adjusted excess return, the distribution of in�ows conditioned for risk

adjusted returns in the high and low tax exposure groups are statistically identical (Overall

	2 = 6:6872 with p-value=0:1533). On the basis of individual components, only the fourth

moment is slightly signi�cant (u24 = 3:9624): This corroborates the conventional wisdom

of "return chasing" behavior shown by individual uniformed investors. However, this does

not explain how after-tax returns have any more predictive power over pre-tax returns.

One possible justi�cation of this phenomenon could be that US Securities and Exchange

Commisson in 2001 mandated that all mutual funds must disclose their pre-tax as well
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as potential post-tax returns in their advertisements. Since a majority (nearly 12997 out

of 18730) of our mutual funds-years are after 2001. Another possible explanation for this

phenomenon is dependence within each fund-year group that might only show up in higher

order moments (see Rakowski, 2002). We looked at the case k = 6; the overall model was

still not signi�cantly di¤erent between the two groups at 1% level (	2 = 13:3183), owing

largely due to di¤erence in the sixth moment (u26 = 5:99). This result of course can also

indicate the existence of outliers in the model.

One argument against OLS is the di¤erential e¤ect of a covariates like risk adjusted

returns in di¤erent parts or quantiles of the in�ow distribution cannpt be captured by OLS,

and then there is also a signi�cant e¤ect of outliers in the data. In order to reduce the e¤ect

of outliers we can use Median Regression (essentially, 50% Quantile Regression proposed

by Koenker and Bassett, 1978). We observe that the two adjusted distributions now

only di¤er in the direction of the �rst and second moments ( u21 =96.119 and u
2
2 =9.0687),

although the intensity is less than the slightly unadjusted case..The essential features of the

distributional di¤erences between in�ow distributions are preserved even after we condition

or adjust for risk adjusted return. The di¤erence could be due to the di¤erence in the risk

premium (or location) and risk aversion (or scale) between the investors who invest into

mutual funds with high and low tax exposure. This result could also be an artifact of

the possibility that the distributions of returns are distinctly di¤erent between the mutual

funds with low tax exposure and those with high tax exposure.

So, in order to make the two groups (high and low tax exposure) comparable we have

to standardize the covariates. Hence, we look at the residuals using the fractile regression

method without using any kernel type smoothing (Bera and Ghosh, 2005). The overall

excess returns adjusted in�ow distribution di¤ers at 5% level between high and low tax

exposures mainly in the directions of the third moments (u23 =7.9711). This obviously
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points to an asymmetry in the measures of skewness in the two distributions.

If we condition for fractiles of the risk adjusted returns, and then look at the median

regression residuals of in�ow distribution, the results as expected points out in the direction

of the �rst and second moments (u21 =92.4467 and u
2
2 =6.8277), although the departure

in the second moment is quite marginal. This method is obviously trying to reconcile the

"return chasing" behavior of investors that has been well documented in the literature

along with a natural tendency that after-tax returns distribution is truly di¤erent than

that before taxes as Bergtresser and Poterba (2002) point out.

We have established that using smooth test techniques after adjusting for returns using

fractile regression methods does indeed keep the facets of the original distribution un-

changed while conditioning for risk adjusted excess returns. However, it remains to be

tested whether the regulation from SEC that mandates mutual fund companies to report

after-tax returns did indeed change the behavior of the mutual fund �ow with respect to

behavior of taxable investors. To answer that question, we investigate whether the mu-

tual fund in�ow distribution itself has changed before and after 2001 when SEC mandated

mutual fund companies to disclose potential after-tax returns at the highest tax brackets

in their advertisements (Figure 5). In�ow distribution before and after 2001 when

SEC required all mutual funds to disclose potential after tax returns seems to be sub-

stantially di¤erent in almost all the measures of central tendency and standard deviations.

Goodness-of �t like Kolmogorov Smirnocv and Cramer-von Mises tests also indicates that

the two distributions are distinctly di¤erent (Tables 5, 6). Figure 5 also con�rms our belief

that in�ow distributions are di¤erent before and after 2001. However, we need to run a

joint statistical test like the smooth test to objectively determine what are the directions

of departure between unconditional and conditional in�ow distributions before and after
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Figure 5: In�ow distributions before and after 2001
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2001.

Variable Obs. Mean Median Std. Dev.

Before 2001 5733 0.3718 0.1071 3.4161

After 2001 12997 1.0371 -0.0243 75.6425

Min. 1st Q. 3rd Q. Max. coef. skew excs.kurt

-6.1652 -0.0636 0.3629 236.9686 58.8373 4017.677

-8.4932 -0.1529 0.1784 8510.7078 109.9089 12326.272

Table 5. Summary Statistic for Fund In�ows before and after 2001

Test KS CvM

Statistic (T*) 16.4610 106.1507

Critical Upper 0.1% 1.95 1.167

Table 6. Goodness-of-Fit Statistics based on the EDF.
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Residuals with Returns 	2 u21 u22 u23 u24

Unadjusted 103.6286��� 68.4923��� 18.3223��� 13.7541��� 3.0599�

(before and after 2001) (0:0) (0:0)
�
1:86� 10�5

� �
2:08� 10�4

�
(0:0802)

Fractile Regression 489.7059��� 423.0520��� 63.1092��� 3.5445� 0.00006

(before and after 2001) (0:0) (0:0) (0:0) (0:0597) (0:9936)

Median-Fractile 218.4536��� 170.3281��� 17.6892��� 15.0684�� 15.3679��

(before and after 2001) (0:0) (0:0)
�
2:6� 10�5

� �
1� 10�4

� �
8:8� 10�5

�
Unadjusted 17.1575��� 0.1056 15.8711��� 0.3866 0.7942

(After 2001-high, low tax) (0:0018) (0:7453)
�
6� 10�5

�
(0:5341) (0:3728)

Median-Fractile 5.9152 0.8718 4.328�� 0.496 0.2194

(After 2001-high-low tax) (0:2056) (0:3505) (0:0375) (0:4813) (0:6395)

Table 7. Smooth statistic and p-values (sample m = 500).

��� signi�cant at 1%, �� signi�cant at 5%, � signi�cant at 10%

First, we want to test the in�ow distributions before and after 2001. The unadjusted in�ow

distribution changed signi�cantly in the direction of the �rst three moments (u21 = 68:49;

u22 = 18:3223; u23 = 13:7541) and marginally in the direction of the fourth moment�
u24 = 3:08

�
: The results remain essentially the same when we look at median regression

on fractiles, although the departures between the two distributions are now substantially

stronger. One way of reconciling this would be possible dependence in the data, or en-

dogeneity of performance measure like excess return with the error term in our regression

model. Estimating a structural equation non-parametrically or semiparametrically would

be a better solutions. If we take fractile regression residuals our overall test is more strongly
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rejected
�
	2 = 489:7059

�
, however we observe less e¤ect from higher order terms. It seems

overwhelmingly likely there was phenomenal growth in the mutual fund industry as well

changes in volatility and higher moments of the �ow variable (Rakowski, 2002).

Finally, to evaluate the e¤ect of the regulatory regime of disclosure of potential after-

tax returns we restrict ourselves only to data after 2001. We want to investigate the

explanatory power of after tax returns compared to pre-tax returns in explaining mutual

fund in�ow. The overall smooth test for unadjusted �ow variable turns out to be signi�cant�
	2 = 17:1575

�
at 1% level, however, this is almost purely driven by a di¤erence in volatility

measure or the second moment of the �ow distribution
�
u22 = 15:8711

�
: This discrepancy

could be driven by the fact that lower tax funds are probably indexed funds which have

less tax exposure for relatively low turnover. It is also possible, the lower tax mutual funds

are the ones that are now substantially bigger and the fund managers have less time to

spend on individual stock picking exercises that carefully or in other words diminishing

returns have set in, so performance is going down (Berk and Green, 2004).

When we adjust in�ows by conditioning for market risk, keeping the original �ow distri-

bution relatively unchanged by running a median regression on the fractiles of risk adjusted

return, smooth test reveals that the after-tax and pre-tax distributions are statistically

identical. (overall 	2 = 5:9152 or p-value of 0:2056). The only component that is slightly

signi�cantly di¤erent is in the direction of volatility
�
u22 = 4:328

�
; but with much reduced

intensity than the unadjusted case. Hence, we can conclude that ranks of returns do in-

deed provide a parsimonious of conditioning the in�ow distribution without disturbing

the inherent ordering of in�ow based on "rank chasing" behavior of uninformed taxable

investors.

This analysis reveals how we can adjust for a covariate that might not be comparable

across two regimes using the linear rank transformation like the Empirical Distribution
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Function of the covariate, before comparing the distributions of the response variable across

two regimes.

4 Conclusions and Future Research

Conditioning on normalized ranks or fractiles of the return distribution gives a natural way

to control for ranks without losing the essential feature of ordering of the data. This enables

us to compare across di¤erent regimes or years. This rank ordering of risk adjusted returns

also induces an ordering on a concomitant variable, in this case mutual fund �ow (sometimes

also referred to as an induced order statistics, see David 1973, Bhattacharya, 1974, 1984,

Yang, 1977). Moreover, ranking risk adjusted returns might provide a more parsimonious

model than higher order terms to incorporate possible non-linearity or convexity of risk

adjusted return in the �ow-performance relationship (see Chevalier and Ellison, 1997, Sirri

and Tufano, 1998). However, we should also keep in mind that ranking risk adjusted

returns, and to then run standard t-tests for corresponding in�ows might induce data-

snooping biases (Lo and MacKinlay, 1990).

It has been well documented in the literature (Ippolito, 1992, Patel, Zeckhauser and

Hendricks, 1994) for an average taxable uninformed investor in the absence of discerning

ability to recognize fund managers stock-picking ability, past year�s risk adjusted excess

returns are used to evaluate performance (for exception to this rule see Gruber, 1996, Zheng

1990). However, empirically mutual fund �ow and performance seem to have a non-linear,

in particular, convex relationship (Sirri and Tufano, 1998). It has also been shown that

there is some persistence in returns or lagged values of returns have been used to predict

�ow (Chevalier and Ellison, 1997). This non-linearity of the fund-�ow relationship makes

it necessary to search for a more robust measure of performance that can also be used

to compare across di¤erent regimes like after-tax return reporting regulations setup by
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SEC in 2001. Bergstresser and Poterba (2002) found that in that in the absence of such a

regulatory disclosure regime, after-tax risk adjusted returns do indeed predict in�ow better

than pre-tax returns.

Our humble attempt in this paper is to apply a new methodology to compare in�ow dis-

tributions across di¤erent regimes by conditioning on the fractiles of risk adjusted returns.

Fractiles or normalized rank groups also give us a easily implimented non-parametric rank

regression technique, that preserves the inherent ordering and distribution of the �ow vari-

able after conditioned for ranks of the risk adjusted excess returns. Using this technique,

we demonstrated that after adjusting for risk adjusted returns in the in�ow distribution,

the OLS residuals of the two groups becomes overall statistically identically distributed.

Although, when we increased the number of moment directions (from k = 4 to k = 6),

we found somewhat signi�cant deviations in the directions of the fourth and the sixth mo-

ments. This was probably caused by dependence in the data and/or presence of outliers.

We also established that there was a signi�cant change in the in�ow distribution before

and after the establishment of mandatory after-tax returns reporting guidelines for mu-

tual funds instituted by the US Securities and Exchange Commission in 2001. While this

indicates possibly emergence of mutual funds as a dominant portfolio holding of the aver-

age, low net-worth taxable non-institutional investor (Bergstresser and Poterba, 2002), it

might also indicate a sense of security in a transparent regime free of "window-dressing" or

"tax-trading" concerns, besides freedom from potential capital gains overhang problems in-

dicated in the literature. We found that although the unadjusted in�ow distributions were

still marginally di¤erent between high and low tax burdens (owing mainly to di¤erence in

volatility of in�ow distribution), after conditioning for the risk adjusted return using frac-

tile regression technique combined with median regression, the in�ow distributions were

statistically identical upto the �rst few moments.
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As a future direction of work, a full �edged non-parametric (rank based) structural

model should be estimated instead of parametric linear regressions, however the curse of

dimensionality in models like that prvents elaborate modeling. For prediction purpose,

however, parsimony is still the strongest tool at hand.

5 Appendix A (Sample Size Selection Bera, Ghosh and Xiao,

2005)

For �nite sample, for each �xed n2, we may divide the index set N = f1; : : : ; ng into two

mutually exclusive and exhaustive (large) sets N1 and N2 with cardinalities n1 and n2;

where n1 + n2 = n; and de�ne the training set

Z1 = f(Xj); j 2 N1g

and the testing set

Z2 = f(Xj); j 2 N2g:

Then we can estimate F (�) using data Z1 and construct

Fn1 (Xi) =
1

n1

X
j2N1

I (Xj � Xi) , for i 2 N2:

Z1 and Z2 are from the same distribution F , F (Xi) (i 2 N2) are uniformly distributed

and Fn1 (Xi) provides an estimator for the uniform distribution, we may compare it with

the CDF of standard uniform, say, using some criterion function

1

n2

X
i2N2

d(Fn1 (Xi) ; U [0; 1])
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Figure 6: Plot of criterion function to choose �nite sample size

and take average over R replications

1

R

RX
r=1

24 1
n2

X
i2N2

d(F rn1 (Xi) ; U [0; 1])

35
For each value of n2, we can calculate the above criterion function. We may choose n2

that minimizes the above criterion.

Finally, we choose

m =
n2
n1
� n:

The above method may have applications in more general settings. This is a cross-

validation type procedure to select sample size. In the above problem the criterion function

is showed in Figure 6, n2n1 = 12:37%: For convinience we chose 500, about 10% of the smallest
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sample size.
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