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Abstract

Traditional tests of �nancial risk for optimal portfolio choice based on Sharpe ratios

are inherently ensconsed in the normality assumption of the return distribution be-

sides independence. Such tests are not strictly valid for �nancial data that are known

to be leptokurtic, and often show persistence in levels or volatility. We propose a

smooth total moment risk measure with directional components that address the

drawbacks of such procedures for practical implementation and inference. Our illus-

tration of the proposed test on hedge fund indices with other existing measures show

promising future for the new risk measure that has known tabulated distributions.

Keywords: Sharpe Ratio, smooth test, score test, higher-order moments, de-
pendence test, hedge-funds



1 Introduction

Financial risk assessment exercises and inference based on parametric measures like

the Sharpe Ratio and Mean-Variance analysis ignore higher order moments of the

return distribution, and possibly a non-linear structure (Agarwal and Naik, 2004, see

Fama, 1970 or Campbell, Lo and MacKinlay, 1997, for review). Traditional tests for

optimal portfolio choice like those on Sharpe ratios are inherently dependent on the

normality assumption of the return distribution besides independence of the sample

drawn (Sharpe, 1966, 1994, Jobson and Korkie, 1980, Memmel, 2003). Hence, such

tests are not strictly valid for �nancial data that are known to be leptokurtic (heav-

ier tails than the normal distribution), and for time series of data that often show

persistence in volatility (e.g. stocks and mutual funds) or in levels (e.g. hedge funds,

see Getmansky, 2004, Getmansky, Lo and Makarov, 2003). It has been suggested

that bootstrap or resampling based tests on robust measures of (Studentized) Sharpe

ratio can address the problem of leptokurtosis and dependent structure using Het-

eroscedasticity and Autocorrelation Consistent (or HAC) type estimators (Andrews,

1991, Ledoit and Wolf, 2008).

We can identify at least four drawbacks of such procedure for practical implemen-

tation besides the computational complexity. First, �. . . for certain applications the

Sharpe ratio is not the most appropriate performance measure; e.g. when returns are

far from normally distributed or autocorrelated. . . �(Ledoit and Wolf, 2008, p. 851,

see Getmansky, 2004). Second, it is well established that bootstrap-based methods

might not capture the true dependent structure of the return distribution that can

be obtained by a reasonably �close�parametric speci�cation or for certain limited

dependent variable (truncated or censored) distributions (see Hall, P., Horowitz, J.,

L. and Jing, B., Y., 1995). Third, tests based purely on the function of the �rst

two moments like the Sharpe Ratio fail to account for restrictions or di¤erences in

higher order moments (like model selection including the assumption of normality)

jointly. Tests based purely on comparing two Sharpe ratios of competing asset classes

might ignore variations in higher order moments that among other things constitute

the estimation error of the Sharpe ratios. Finally, as a tool for �nancial risk assess-

ment Sharpe ratios are estimated based on past data to forecast future risk adjusted

returns.

A graphical test of Density Forecast Evaluation using probability integral trans-

forms discussed by in Diebold, Gunther and Tay (1998) was formalized analytically

in Ghosh and Bera (2006) as a variant of Neyman�s smooth test for parametric mod-
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els. They explicitly looked at the dependent structure of the model besides the fat

tails to explore model selection issues along with testing. It has been empirically

observed that although �nancial returns data of stocks and mutual funds do rarely

show persistence or autocorrelation in levels, but they do often show persistence in

higher order moments like volatility. On the other hand, hedge funds and private

equity funds tend to show some persistence in levels as well (Lo, 2001, Brooks and

Kat 2002; Agarwal, V., and N.Y. Naik, 2004, Malkiel and Saha 2005; Getmansky,

2004, Getmansky, Lo, and Makarov, 2003, Kalpan and Schoar 2005; Ghosh, 2008).

If we have the return data given by R1; R2; :::; RT then the population Sharpe

ratio is

SR = (�R �Rf ) =�R (1)

where �R; �2R and Rf are the population mean, population variance of the Return

distribution and the existing risk free rate, respectively. The corresponding sample

counterpart or the estimated Sharpe ratio is

cSR = (�̂R �Rf ) =�̂R (2)

where �̂R = 1
T

PT
t=1Rt and �̂

2
R =

1
T�1

PT
t=1 (Rt � �̂R)

2 are the unbiased sample mean

and variance estimates. We observe that if we assume the data to be independent

and identically normally distributed then we can test the hypothesis H0 : �R = Rf

against H1 : �R 6= Rf , the test statistic is

tstat =
(�̂R �Rf )

�̂R=
p
T

=
p
T
(�̂R �Rf )

�̂R
=
p
T cSR

where �̂2R =
1

T�1
PT

t=1 (Rt � �̂R)
2 is an unbiased estimator of the population vari-

ance. Incidentally, the distribution of cSR = (�̂R �Rf ) =�̂R = tstatp
T

is nothing

new, in fact, it was �rst proposed by Student (1908) himself, and only later Fisher

(1925) formulated the test statistic tstat and de�ned the Student�s t distribution

with (T � 1) degrees of freedom. However, this test is crucially dependent on the
parametric assumption that the underlying distribution is normal, and that the data

in independently and identically distributed.

There are several objectives of the current paper. First we explore the incredible

and most de�nitely incomplete list of competing risk adjusted performance (RAP)

measures. We identify their similarities and di¤erences, and if possible, statistical

properties.

Second, as part of this project we would explore the probability distribution of
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a proposed measure of risk adjusted returns when estimated from a return distribu-

tion based on the smooth test methodology. Being a score test such tests could be

modi�ed to be invariant to non-linear transformations of moments like the Sharpe

ratio.

Our third objective in this project is to relax the normality assumption and

propose a test based on the Sharpe ratio that is robust to violations of the iid

assumptions under general weak dependence through mixing conditions, and testing

them jointly (see White, 1984). Our proposed score test that would address the

leptokurtic and time series dependent structure not explicitly addressed in previous

literature (see Leung and Wong, 2007, Ledoit and Wolf, 2008).

Finally, we look at the hedge fund indices proposed in Diez de Los Rios and

Garcia (2008) and test for equity market neutrality and sensitivity to the market

and global hedge fund indeices Patton (2009). We also compare the nature of other

hedge fund strategies based on the proposed smooth moment risk measures (SMR)

incorporating dependence.

The rest of the paper is arranged as follows. In Section 2 we review a list of RAP

measures and compare and contrast them. We setup a time series framework in

Section 3, and apply theorems proposed by Rosenblatt (1952) and Ghosh and Bera

(2005), to propose a series of tests that are themselves test statistics with tabulated

distributions. We explore an empircal example of hedge fund indices with standard

risk measures and evaluate the e¤ectiveness of the Sharpe ratio in Section 4. We

conclude in Section 5 and provide a proof of a theorem proposed in Ghosh and

Bera 2005, and give cases as examples of dependence functions as illustrations in

Appendices 5.0.1, 5.0.2 and 5.0.3.

2 Review of Risk Adjusted PerformanceMeasures

Alternative investments like hedge funds su¤er from severe information assymetry

as they are usually not under the purview of regulatory bodies like the Associa-

tion of Investment Management and Research (AIMR) and compliance with AIMR-

Portfolio Presentation Standards (AIMR-PMS) and more recently instituted Global

Investment Performance Standards (GIPS) that since early 1990�s are aimed to pro-

tect individual investors against predataory practices. Since Alfred Winslow Jones

formed the �rst hedge fund in 1949, he managed to operate in almost complete
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secrecy for 17 years. Nearly 50 years later LTCM (Long Term Capital Manage-

ment) whose specatcular collapse and bailout brought the attention back to Hedge

Fund operational secrecy and risk measures (Lhabitant 2006). However, we are just

more brutally reminded the need for performance standards after Bernie Mado¤�s

hedge fund, Ascot Partners turned out to be a 50 billion dollar Ponnzi scheme in 2008

(http://www.forbes.com/2008/12/12/mado¤-ponzi-hedge-pf-ii-in_rl_1212croesus_inl.html).

Risk as a concept is often individual or target speci�c, application or theory

speci�c, uncertainty or risk aversion speci�c, and measures of risk also re�ects such

dichotomies. This however leads to con�icts in ranking of portfolios by measures

of riskiness, as the measures are often non-a¢ ne or non-linear transformation, or

sometimes not even functions of each other. We provide here a brief description of

the standard measures of risk and risk adjusted returns following Lhabitant (2006)

and others.

In general, return of an individual asset in period t is composed of two parts gains

and losses (Bernardo and Ledoit, 2000). So, in symbols we can write,

Rt = GtI fRt � 0g � LtI fRt < 0g ; (3)

where Gt and Lt are absolute values of gains and losses made by the fund in period

t, respectively, and I fAg is an indicator function that takes a value 1 when A has

occurred. It is also worth noting that we cannot observe Gt in a period of loss and Lt
in a period of gain. The average return �R is the di¤erence of the average of gains Gt
which is left-censored below at zero and average of losses Lt that is right-censored at

zero. One measure to address this is to look the average gains �G in periods of gains

and average losses �L in the periods of losses. The gain-to-loss ratio is average gains

over average losses, �G=�L; is commonly used by fund managers. While it re�ects the

average amount of gains made in good times to the average losses in bad times, it

however hides the number of periods of losses or gains. This is a naive measure of

risk that does not re�ect the overall riskiness of the portfolio. A very high (or low)

value of gains-to-loss ratio does however re�ect whether you expect some very high

gains (or losses) in very few periods and might a¤ect the volatility discussed later.

One common form of measure of risk is the volatility measure Mean Absolute

Deviation (MAD) de�ned as

MAD = E
��Rt � �R

�� = 1

T

TX
t=1

��Rt � �R
�� ; (4)
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that measures the average L1 distance from the mean return. From an optimization

perspective, its better to use the deviation from median return than the mean as a

measure of central tendency as MAD is minimized at the median. This particularly

useful when there the data is skewed (like in many hedge funds) where mean and

median are di¤erent. It is also e¤ective when there extreme observations or returns,

the median is not a¤ected by movements in extreme tails unlike the mean.

A more common measure of volatility is the sample variance de�ned by

�̂2R = E
�
Rt � �R

�2
=

1

T � 1

TX
t=1

�
Rt � �R

�2
; (5)

or it�s positive square root �̂R termed as standard deviation (of the same unit as

return) both of which are taken to be measures of absolute risk or volatility as it

uses all the observations to arrive at the statistics. Variance o¤ers lots of advantages

as a measure of volatility (or volatility square) including in optimization, and in

particular, under the assumption of normality together with the mean its forms a

su¢ cient statistic (contains all possible available information) to characterize the

entire distribution of returns.

This also brings us back to the assumption of normality, a symmeteric bell shaped

distribution, that often is shown not to charecaterize the return distribution of �-

nancial assets in particular alternative assets like hedge funds. We can perform the

celebrated Jarque-Bera (1983) test to verify normality before we embark on mak-

ing inference based on the mean and volatility alone. Higher order moments like

skewness and kurtosis seem to play a much more important role in determination of

riskiness of a portfolio that just mean and variance as Markowitz have promulgated

in his celebrated work (Markowitz, 1952).

The symmetric treatment of positive and negative deviations from a benchmark

be it zero (see Gt and Lt in gain-to-loss ratio) or the mean (or median) return in

standard deviation (or mean absolute deviation) makes more sense in symmetric

distributions where both positive and negative are treated equally. The case for

an asymmetric treatment of positive and negative returns have solid foundations

from the standpoints of economic and statistical theory, empirical evidence besides

behavioral �nance.

First, in particular, hedge funds use dynamic trading strategies that are often

assymetric like stop losses, actively managed leverage and options trading (Lhabi-

tant 2006). Second, individual risk averse investors and institutions aspires to adopt

investment strategies that essentially limit their downside risk be it from a bench-
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mark or an average return. Volatility measures that we have discussed so far fails

to take this into account. Finally, statistically return distribution show evidence of

dispersion in higher order moments like skewness and kurtosis from the Gaussian dis-

tribution, which is completely identi�ed by the �rst two moments. Hence, statistical

inference based on normality will fail to di¤erentiate the risk pro�le of individuals

or institutions who have divergent higher order moments or will have very low or

no power against such divergence. All these reasons lead risk managers delve into

measures of downside risk discussed below.

Generalizing a concept of variance (or standard deviation) let�s de�ne a concept

of semi-variance (or semi-deviation). Suppose we have a prespeci�ed benchmark or

target rate R�;

Downside risk =
1

T

vuut TX
t=1

d2t I fdt < 0g; (6)

where dt = Rt � R� and I fdt < 0g = 1 if dt < 0;= 0 otherwise: When we replace

R� by the mean return we get the semi-deviation or below-mean standard deviation

(Markowitz, 1959). As mentioned before, setting R� = 0; makes dt = Lt discussed in

the context of equation (3). On the other hand if R� is replaced by a moving target

like the treasury bill rate (risk free rate) or the returns to a benchmark like S&P 500,

we get a below-target semi-deviation often of interest to institutional investors.

Other measures inspired by downside risk concerns include:

1. The downside frequency or the frequency of occurence below a target R� (i.e.,PT
t=1 I fdt < 0g);

2. The gain standard deviation or standard deviation conditional of a gain periodq
1

TG�1
PTG

t=1

�
Gt � �G

�2
; where TG =

PT
t=1 I fRt � 0g ; suppose we arrange the

gains to be the �rst TG period and remaining TL = T � TG periods of losses;

3. The loss standard deviation or standard deviation conditional of a loss periodq
1

TL�1
PT

t=TG+1

�
Lt � �L

�2
:

4. An estimated shortfall risk measure, the shortfall probability is de�ned with

the target R� as

[Risk = \P (Rt < R�) =
1

T

TX
t=1

I fdt < 0g =
downside frequncy

T
: (7)
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5. Value-at-Risk is de�ned at the maximum amount of capital that one can lose

over a period of time say one month at a certain con�dence level, say 100(p)%.

In other words, its the 100 (1� p)% percentile of the distribution of pro�t and

loss percentage distribution. In notations, it can be estimated by

\V aRp =Min
R

n
R : \P (Rt � R) � p

o
=Min

R

(
R :

TX
t=1

I f(Rt �R) < 0g � Tp

)
:

The calculations simpli�es substantially if the original return distribution is

normal, then using normal probabilities it is easy to �nd the 100 (1� p)th

quantile, it is simply V aRp = �R + �1�p�R; where P (Z � �1�p) = 1� p:

6. Any period to period drop can be taken as a drawdown statistic during a holding

period, however, a maximal loss in percentage terms over a period (highest

minus the lowest) is called the maximum drawdown. Maximum drawdown is

really the range of percentage returns over a period of time. In notations, we

can derive as

Max:drawdown = maxfmax (Gt) + max (Lt) ; (8)

max(Gt)�min(Gt);max(Lt)�min (Lt)g:

It is clear that the gain standard debiation looks at the conditional volatility of

upside or gain period, while loss standard deviation measures conditional volaitility

of downside. Despite the obvious advantages of adoption downside risk measures

have a slow "penetration rate" among practitioners mainly due to assumptions of

normality (then downside risk is just a constant times the volatility) and the variety

of di¤erent options to choose from. Many of the other risk measures used are directly

or indirectly related to the ones discussed. Even though it is a simple measure of

probability of achieving a target, shortfall probability misses the expected value of

the underperformance (i.e. expected shortfall) or its variation.

Value-at-Risk is one of the most commonly used (and possibly, abused) measure

of risk management in the �nancial and banking industry, its quick interpretation

does betray a sense of oversimpli�cation, and possible pitfalls under conditions of

extremes or rare events, and often non-normality. Besides, Value-at-Risk is not a

"coherent measure of risk," as it is not sub-additive like any other quantiles (Artzner

et al, 1999). That is to say, the value-at-risk associated with a combined portfolio of

two assets might have a higher risk than individual ones. So an investor can reduce
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value-at-risk of a portfolio by simply holding several smaller portfolios.

Another example of a downside measure statistic is one of "disappointment aver-

sion" from not selling high or known as drawdown statistics de�ned as the drop from

the historical maximal points. The duration of drawdown or recovery time is the

time taken to recover from a drawdown to come back to original level. Though it is

not usually required some hedge fund managers voluntarily disclose their maximum

drawdowns, it is a tangible and intuitive measure of regret felt by investors. There

are two major concerns. First, because of smoothing longer the duration or mea-

surement period there will be less severe "spikes" hence lower maximum drawdown.

Second, if there is a longer series there will be more observations hence range i.e. the

maximum drawdown will be larger. Hence care should be exercized before comparing

such measures.

There are various statistics that are related to benchmarks chosen by investors

listed below. They are related to performance capture (capture indicator is the aver-

age ratio of funds returns and benchmark�s returns; up capture indicator is the ratio

of funds average return and benchmark�s returns in up periods; down capture indi-

cator is the ratio of funds average return and benchmark�s returns in down periods),

conditional probabilities (up number ratio is the conditional probability that fund

was up when benchmark was up; down number ratio is the conditional probability

that fund was down when benchmark was down; up percentage ratio is the condi-

tional probability that fund outperformed when benchmark was up; down percentage

ratio is the conditional probability that fund outperformed when benchmark was

down; ratio of negative months over total months gives the unconditional probabil-

ity of getting a negative month) and odds ratio (percent gain ratio is the ratio of

periods fund was up over benchmark was up).

Finally, a measure of systematic (according to CAPM) risk is the market beta

which re�ects the sensitivity of the fund with respect to the market index. This

provides a measure of systematic risk.

Tracking Error is a commonly used measure of �delity to a benchmark de�ned

by

TEDiff =
1

T

TX
t=1

(Rt �R�t ) or TEMAD =
1

T � 1

TX
t=1

jRt �R�t j ; (9)

where there is a time varying benchmark R�t ; could be just a simple mean di¤erence

or a standard or mean absolute deviation form (Rudolf et al 1999).

Two funds with same mean return and di¤erent risk characterestics are easy to

compare, less risk is better. Similarly, for two funds with the same risk but di¤erent
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mean return, more return is better. However, the problem comes in when an investor

has to decide between two funds, one with a lower value of both risk and return

than the other. Risk adjusted performance measures (RAPM) helps an investor

to incorporate the risk return tradeo¤ in the decision making process. However,

alternate investment vehicles like hedge funds does share some common features and

some peculiarities that help us choose some RAPMs more often than others (Sharma,

2004). While on one hand there is no "one measure �ts all" RAPM for investment

and risk pro�les, there is usually a measure that addresses speci�c risk apetite and

direction. The indispensability of the "entire" risk distribution is gradually sinking

in.

Sharpe (1966) introduced the ratio, "excess return per unit of volatility" that has

stood the test of time, de�ned by

SRP =
�P �Rf
�P

;

and is still one of the most commonly used RAPM. The attractiveness of the Sharpe

ratio stems from the "leverage" invariant measure, all funds with di¤erent portfolio

weights would have the same Sharpe ratio but that possibly could be taken as a

criticism as well. However, the Sharpe Ratio depends on the total risk and is not

related to the market index (and hence the systematic risk related to the market)

which might not be be well de�ned (Roll, 1977). Graphically, in the mean-volatility

space, Sharpe ratio is the slope of the line joining teh risk free rate and the point

representing the fund. However, there is a possibility there might not be any risk

free rate, hence Sharpe (1994) generalized the de�nition to a benchmark portfolio

return RB; and de�ned the generalized version

Information RatioP =
�P �RB
TEP

=
�P �RB

� (RP �RB)
;

where TEP =
q

1
T�1

PT
t=1 (RPt �RBt)

2 is the tracking error that gives the original

Sharpe ratio when RB;t = Rf : It can be interpreted as a portfolio that takes a long

position on the fund and a short position on the benchmark portfolio. Statistically, as

seen before in (2), Sharpe Ratio can be interpreted as tstat=
p
T for testing equality

of the average return with the risk free rate, H0 : �P = Rf vs. H1 : �P 6= Rf :

Sharpe ratio has been used to test between two portfolio using the method sug-

gested by Jobson and Korkie (1981) who tested H0 : SR1 = SR2 vs H1 : SR1 6= SR2
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and used

Z =
�1�2 � �2�1p

�

d! N (0; 1) ;

where the asympotic variance of the numerator is

� =
1

T

�
2�21�

2
1 � 2�1�2�12 +

1

2
(�1�2)

2 +
1

2
(�2�1)

2 � �1�2
�1�2

�212

�
:

This however gives an asymptotic distribution that has low power for small samples,

as Jorion (1985) noted at 5% level the power could be as low as 15%. One of the

main problems in the test proposed by Jobson and Korkie (1981) is the assumption

of normality that is often not entirely justi�ed in �nancial asset returns in particular

hedge funds.

Gibbons et. al. (1989) suggested a test for ex-ante portfolio e¢ ciency using

maximum Sharpe ratio as an estimator of risk adjusted returns. It has been used

in the literature to test for the e¤ect of additional assets to the universe. The test

statistic is given

W =

"p
1 + SR22p
1 + SR21

#2
� 1 �  2 � 1;

where SR2 is the ex-post price of risk or maximum Sharpe ratio and SR1 is the

Sharpe ratio of the portfolio. This would have a Wishart distribution (genealization

of �2 under the null) and has been widely used in the literature. A more tractable

statistic is given by

F =
T (T +N � 1))
N(T � 2) W � FN;T�N�1;

under the null hypothesis where T is the number of returns observed and N is the

number of assets originally present (Morrison, 1976).

Lo (2002) �nds that tests based on the Sharpe ratio crucially depend on the

normality, and assumptions of independence and identically distributed.

The other measures of risk adjusted returns are based on the CAPM model

E (RP ) = Rf + � [E (RM)�Rf ] =) E (RP )�Rf = �P [E (RM)�Rf ] ;

gives the securities market line (SML) where RP and RM are respectively the per-

centage returns on the portfolio P and on the market portfolio M; Rf denotes the

riskfree rate, �P is the beta of the portfolio P with respect to market portfolio M;

and E (:) denotes the expectation operator. The time-series market model that as-

10



signs ex-post excess return for individual asset i in time t is given in terms of risk

premium as

Rit = �i +Rf + �i (RMt �Rf ) + "it;

where Rit; RMt and "it are the returns of individual asset and the market model in

period t. For indivudual i, and �i; �i are individual �rm speci�c e¤ects and risk free

rate Rf .

According to the Sharpe-Lintner one factor CAPM model, while the standard

deviation or volatility �P gives a measure of the total or absolute risk, the systematic

risk is given by the regression slope coe¤cient in the market model or �P : Hence, while

the Sharpe ratio discussed before gives a measure of the return with respect to unit

volatility, a measure of the return for unit systematic risk (�P 6= 0) is (Treynor, 1965;
Treynor and Black, 1973)

Treynor ratioP=
�P
�P

=
(RP �Rf )

�P
:

Treynor ratio is directly related to the CAPM slope �P and is appropriate for a

well diversi�ed portfolio, hence will be a¤ected by the critique that the market index

might not be well de�ned (Roll, 1977). Srivastava and Essayyad (1994) proposed an

extension of the Treynor ratio that combines beta�s of di¤erent portfolio and as a

combination of the CAPM model and the mean-lower partial moment CAPM as a

combined index might be more e¢ cient.

Another problem of the Sharpe ratio is that the volatility measure used is random,

hence there is estimation error involved in it (Lo, 2002). The Double Sharpe Ratio

was proposed to accomodate for the estimation error, and was de�ned as

DSRP =
SRP

� (SRP )
;

where � (SRP ) is the estimated standard error of the Sharpe Ratio using bootstrap

methods.

There are some alternate measures of volatility and downside risk that has been

used to replace the denominator like V aR of a particular con�dence level expressed

as a percentage. Generalized Sharpe Ratio based on incremental VaR (Dowd, 2000)

and similar method with the benchmark VaR (or BVaR) (Dembo 1997) has been

proposed. It was notice that both Sharpe and Information Ratio may lead to spurious

ranking of mutual funds when excess returns are negative. Israelson (2005) proposed
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the modi�ed Sharpe ratio

SRmodP =
�P �Rf

�
(�P�Rf )=j�P�Rf j
P

that coincides with the Sharpe ratio when the excess return is positive. Similarly the

information ratio can also be modi�ed.

Jensen�s alpha for a portfolio P is de�ned as the abnormal return of the portfolio

over and above the expected return under the CAPM model

Jensen�s �P = RP � E (RP ) = (RP �Rf )� �P (RM �Rf ) ;

gives the di¤erence between the observed and predicted risk premia (Jensen, 1968).

We can perform statistical tests on Jensen�s � using the standard t-tests assuming

normality of the errors in the market model. Unlike the Sharpe and the Treynor

ratio�s Jensen�s � can be expressed as an excess return and expressed in basis points,

it also su¤ers from Roll�s (1977) criticism as it depends on the market index. It

has also been brought to the attention that form money managers who practised

market timing, Jensen�s � might not be a good measure as it can turn negative

and fails to address the manager�s performance. It has been modi�ed to accomo-

date for varying beta as well as for higher moments of returns minus risk-free rate

(Treynor and Mazuy, 1966, Merton, 1981; Henriksson and Merton, 1981; Henriksson,

1984). This model was particularly useful to check market timing ability incorpo-

rating non-linearities in the CAPM framework (Jensen, 1972, Bhattacharya and

P�eiderer, 1983).

There were other extensions of Jensen�s � like Black�s zero-beta model where

there is no risk-free rate (Black, 1972), adjusting for the impact of taxes liabilities

(Brennan, 1970), considering total risk �P as opposed to just market risk �M (El-

ton and Gruber, 1995). However, the total risk measure called Total Risk Alpha

along with Jensen�s alpha can be manupulated using leverage, as opposed to Sharpe

and Treynor ratios Jensen�s � is not leverage invariant (Scholtz and Wilkens, 2005,

Gressis, Philippatos and Vlahos, 1986).

One of the issues of all these three Sharpe Ratio, Jensen�s alpha and Treynor Ratio

is whether they will generate the same ranking of riskiness across funds or portfolios.

For portfolios which are dominated by systematic risk compared to diversi�able non-

systematic tisk it is expected that the ranks of funds in terms of riskiness will give you

similar rankings. However, in funds like hedge funds they are expected to generate
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very di¤erent rankings when the measure of risk is changed and the rankings will be

similar only under very restrictive conditions (Lhabitatnt 2006, p. 467).

CAPM is a single factor model where the only systematic risk is assumed to

come from the market, this has been generalized to multi-factor models like the

APT model. There are some generalizations to the standard measures like extension

of the Treynor ratio to a case of multifactor model by using orthonormal basis in

the directions of risk (Hubner 2005). However, as discussed before, hedge funds are

uniquely placed which focusses more on non-systematic or total risk, hence, Sharpe

Ratios and generalizations discussed are more commonly used.

The main drawback of the Sharpe ratio for an average investor was that although

it gives the excess return from risk free rate, it gives per unit of volatility �P that is

not well understood. M2 measure was proposed to put all returns in excess of the risk

free rate in terms of the same volatility, say the market or benchmark volatility �M
(Modigliani and Modigliani, 1997; Modigliani, 1997). They suggested de-leveraging

(or leveraging) using the risk free rate forming a portfolio P � of the portfolio and

treasury bills (with Rf and no volatility) to equate the Sharpe ratios, i:e:;

RP �Rf
�P

=
RP � �Rf

�M
=)M2 = RP � =

�M
�P

(RP �Rf )�Rf ;

hence for this risk-adjusted performance (RAP) measure similar to Sharpe ratio the

fund with the highest M2 will have the highest resturn for any level of risk. The

resulting ranking would be similar as Sharpe ratio of a portfolio on whichM2 is based

is not a¤ected by leverage with the risk free asset. Here the term �M=�P is called

the leverage factor. This measure is based on the total risk hence suitable for any

investors including those holding undiversi�ed portfolio. Scholtz and Wilkens (2005)

suggests a measure that is amarket risk adjusted performance measure (MRAP) that

accounts for the market risk rather than total risk, similar to the Treynor Ratio.

Muralidharan (2000) suggested theM3 measure that corrects for the unaccounted

for correlation in M2: Lobosco (1999) developed the Style RAP (SRAP) and Mu-

ralidhar (2001) also developed the SHARAD measure is an extension of the M3

measure that is adjusted for style speci�c investment benchmark (Sharpe, 1992).

There were two further measures that were proposed GH1 and GH2 that also uses

the leveraging-deleveraging approach ofM2 (Graham and Harvey, 1997). First mea-

sure (GH1) matches the volatility of the fund using the market and the T-bills, then

take the di¤erence between the fund�s return and the return on the matched market

portfolio to evaluate whether the fund underperforms (or outperforms) the market if

13



it�s negative (or positive). The second measure, GH2, takes an alternate route and

uses the fund and uses leverage or deleverage of the risk-free rate to replicate the

volatility of the market. Hence GH2 is given by the di¤erence of return on the the

portfolio that matches the market�s volatility and the retrun on the market, hence

positive means outperformance. In essense, the Graham-Harvey measures GH1 and

GH2 (that refuses to take volatility of risk free asset to be zero) are similar to Jensen�s

alpha and M2 respectively. Similar in essense to the GH measures Cantaluppi and

Hug (2000) proposed a measure of risk that is called the e¢ ciency ratio that gives the

best possible performance by a certain portfolio with respect to the e¢ cient frontier.

There are several measures that are based on downside risk listed below.

1. De�ne MAR as the minimum acceptable return and DDP is the downward

deviation below MAR, (Sortino and van der Meer, 1991)

Sortino RatioP =
RP �MAR

DDP

=
E (RP )�MARr

1
T

PT
t=0

RPt<MAR

(RPt �MAR)2
;

which can be compared if the value of MAR is the same for the funds. Sortino

and Price (1994) proposed the Fouse Index =�P � B�2 based on Expected

Utility Theory where B is the degree of Risk Aversion and � is downside risk

with MAR:

2. Another variant of the Sortino ratio is to replace the denominator by the "up-

side potential ratio" that is the ratio of the upside potential and the downside

risk (Sortino, van der Meer, Plantinga, 1999).

3. Sharpe ratio has strong foundation in the underlying theory of normality in

mean-variance analysis, in particular, on the assumption of independent and

identically distributed returns (Lo, 2002). Ziemba (2005) calculates the Sharpe

Ratio with downside variance de�ned before as loss deviation �x�(divided by

T-1);

SR�P =
�P �Rfp
2�x�

;

which is similar and converges to Sortino ratio under normality or symmetry.

4. When portfolios are non-normal standard mean-variance analysis do it su¢ ce

to capture the risk distribution of the portfolio, and higher order moments like

skewness and kurtosis need to be considered. If a three moment CAPM is
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assumed with a quadratic return process Hwang and Satchell (1998) proposed

a new performance measure is proposed based on higher order moments.

5. Omega measure is closely associated with downside risk, lower partial moments,

gain-loss functions, breakdown of normality assumptions and need for higher

order moments (Keating and Shadwick, 2002). It is simple to de�ne as for

certain MAR


 (MAR) =

R b
MAR

(1� F (x)) dxRMAR

a
F (x) dx

;

de�ned on (a; b) of possible returns and cumulative distribution function F (:) :

The ranking based on the omega measure is expected to be di¤erent from

Sharpe ratio, alphas and VaR. The Kappa measure generalizes Sortino ratio

and Omega measures (Kaplan and Knowles, 2004).

6. Sterling ratio also considers drawdowns to measure risk de�ned as

SterlingP =
RP �Rf

drawdown

�
or =

RP �Rf
max :drawdown

; alternative

�
;

where drawdown is the average of the "high" drawdowns during the period.

7. Burke ratio looks at the average L2-distance de�ned as the square root sum

of squares of the drawdowns instead of the average or the maximum (Burke ,

1994)

BurkeP =
RP �RFqPN

i=1 (drawdowni)
2
:

3 Testing moments of time series and Sharpe Ra-

tio

We can look at the two sample version of comparison of Sharpe Ratio to discuss

the bene�ts of the proposed methodology. Following Ledoit andWolf (2008), consider

the following problem with the returns from two investment strategies say, R1t and

R2t, t = 1; 2; :::; T . First we consider a strictly stationary distribution, hence, the

covariance (and higher order moments) structure remain a bivariate distribution that

is Ergodic with

� =

 
�1

�2

!
and

X
=

 
�21 �12

�12 �22

!
:
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To test H0 : SR1 � SR2 � �1
�1
� �2

�2
= 0 against H1 : SR1 � SR2 � �1

�1
�

�2
�2
6= 0, we can use function of the parameter vector of the form g (�1; �2; �

2
1; �

2
2)

= f (�1; �2; �12; �22) = f (�), where �ij is the jth raw moment of the ith asset return

distribution. For ease of exposition we will simply write �i1 = �i; i = 1; 2. The

hypotheses becomes H0 : f (�1; �2; �12; �22) = 0 vs. H0 : f (�1; �2; �12; �22) 6= 0

where f (�1; �2; �12; �22) =
�1p
�12��21

� �2p
�22��22

: Under the assumptions of stationar-

ity with the appropriate mixing conditions, existence of at least the fourth moment

and normality, and a consistent estimator of the parameter vector we can use the

delta method to
p
T
�
f
�
�̂
�
� f (�)

�
! N (0;r0f (�) 
rf (�))where

p
T
�
�̂ � �

�
!

N (0;
) where 
 is an unknown symmetric positive semi de�nite matrix.

Further, we can estimate 
 by a heteroscedasticity and autocorrelation consistent

(HAC) estimator with an appropriate kernel like Bartlett kernel (Andrews, 1991,

Andrews and Monahan, 1992, Newey and West, 1994). As with other tests using the

HAC estimator, for small or moderately big samples the inference the test have high

size distortion, hence the true null hypothesis would be rejected too often (Andrews,

1991, Andrews and Monahan, 1992).

We would propose a score based test that will give at several advantages over

Wald-type test that is commonly used. First, unlike the Wald test it will be invari-

ant to the speci�cation of the di¤erent functional form (see functions g(.) and f(.)

above, or several other equivalent forms). Second, it will adjust for size distortion

by appropriately controlling the same sizes and parameter estimation error in seri-

ally dependent structure like GARCH type disturbance (see Ghosh and Bera, 2006).

Third, we will jointly test normality like the Jarque-Bera statistic which is also a

ratio of excess skewness and kurtosis terms. Finally, the test will be an Locally Most

Powerful Unbiased test and in general optimal test as it will be function of sample

score statistics (Bera and Bilias, 2001). We would compare the test with the ex-

isting tests of comparing multiple Sharpe ratios and other measures of risk like the

Omega ratio commonly used used for evaluating risk of hedge funds accounting for

dependence.

Sharpe ratio and other measures if risk adjusted performance crucially depend on

the assumptions made on the return process particularly the assumptions of normal-

ity and hence, linearity and symmetry, and independence (Lo, 2002, Getmansky, Lo

and Makarov, 2003). Further more, the existence variation of higher order moments,

nonlinearity and signi�cant probability of extreme or "iceberg" risk further compli-

cates the simplifying assumptions for testing with Sharpe ratio alone (Bernardo and

Ledoit, 2000, Brooks and Kat, 2002, Agarwal and Naik, 2004, Sharma, 2004, Malkiel
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and Saha, 2005, Diez de los Rios and Garcia, 2009). The need for a more robust test

using measures like the Sharpe ratio has been highlighted in several papers (Ledoit

and Wolf, 2008, Zakamouline and Koekebakker, 2009). It has also been noted that

tests based on speci�c moments like the Sharpe ratio is prone to manipulation (Le-

land, 1999, Spurgin, 2001). Goetzmann, Ingersoll, Spiegel, Welch (2002) observes

that "...the best static manipulated strategy has a truncated right tail and a fat left

tail."

All these accumulated evidence and a plethora of new risk adjusted performance

measures addressing some shortcomings of previous ones (partially discussed in Sec-

tion 2) brings to our attention the need for a few important developments. First,

a statistical inference framework that identi�es the distributional di¤erences among

returns of funds, particularly in the directions of several moments. Second, a joint

test that identi�es the nature of dependence structure of the return series that aids

the testing, and hence estimation of moment based measures with minimal computa-

tional complexity. Third, an inference framework that is robust to existence of higher

moments on the return distribution ("iceberg risk" as de�ned by Osband, 2002). Fi-

nally, a test that limits the vagaries of simulation based inference due to issues with

unspeci�ed dependence structure and block length selection. In the literature we

are aware of, GMM based method has been used to address most of these concerns

except that it still su¤ers from the estimation of the variance covariance matrix (Lo,

2002, Getmansky, Lo and Makarov, 2003). Ledoit and Wolf�s (2008) �rst procedure

uses asymptotic inference with a HAC type robust covariance estimator (Andrews,

1991, Andrews and Manohan, 1992). Their second procedure address �nite sample

issues using a simulation based "studentized time series bootstrap." We propose a

smooth test framework that addresses at least three of theses concerns and partially

address the fourth one. One main advantage of the procedure is the orthogonal-

ity of moment and dependence directions and the score test framework reduces the

estimation complexity of the covariance matrix under the null.

Let (X1; X2; :::; Xn) has a joint probability density function (PDF) g (x1; x2; :::; xn) :

De�ne ~X1 = fX1g ; ~X2 = fX2jX1 = x1g ; ~X3 = fX3jX2 = x2; X1 = x1g ; :::; ~Xn =

fXnjXn�1 = xn�1; Xn�2 = xn�2 :::; X1 = x1g : Then we have

g (x1; x2; :::; xn) = fX1 (x1) fX2jX1 (x2jx1) :::fXnjXn�1Xn�2:::X1 (xnjxn�1; xn�2; :::; x1) :

The above result can immediately be seen using the Change of Variable theorem
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that gives

P (Yi � yi; i = 1; 2; :::; n) =

Z y1

0

Z y2

0

:::

Z yn

0

f (x1) dx1f (x2jx1) dx2:::f (xnjx1; :::; xn�1) dxn

=

Z y1

0

Z y2

0

:::

Z yn

0

dt1dt2:::dtn (10)

= y1y2:::yn:

Hence, Y1; Y2; :::; Yn are IID U (0; 1) random variables. Let�s recall the following

theorem from Rosenblatt(1952).

Theorem 1 Let (X1; X2; :::; Xn) be a random vector with absolutely continuous den-

sity function f (x1; x2; :::; xn) : Then, if Fi (:) denotes the distribution function of the

ith variable Xi, the n random variables de�ned by

Y1 = F1 (X1) ; Y2 = F2 (X2jX1 = x1) ;

:::; Yn = Fn (XnjX1 = x1; X2 = x2; :::; Xn�1 = xn�1)

are IID U (0; 1) :

Furthermore, using Theorem 1 if we de�ne (Y1; Y2; :::; Yn) as conditional cumu-

lative distribution functions (CDF) of (X1; X2; :::; Xn) or the probability integral

transforms (PIT) evaluated at (x1; x2; :::; xn) ;

Y1 = FX1 (x1) ; Y2 = FX2jX1 (x2jx1) ; :::; Yn = FXnjXn�1Xn�2:::X1 (xnjxn�1; xn�2; :::; x1)

are then distributed as IID U (0; 1) : Suppose now, under null hypothesis H0 of the

true speci�cation of the model CDF F (:) or PDF f (:) ; (Y1; Y2; :::; Yn) = (U1; U2; :::; Un)

where Ut � U (0; 1) ; t = 1; 2; :::n; so the joint PDF is

h (y1; y2; :::; ynjH0) = h1 (y1)h2 (y2jy1) :::hn (ynjyn�1; yn�2; :::; y1)
= 1:1::::1 = 1:

Under the alternative H1; Y
0
i s are neither uniformly distributed nor are they IID.

Let us suppose the conditional density function of Yt depends on p lag terms, that
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is to say,

h (ytjyt�1; yt�2; :::; y1) = h (ytjyt�1; yt�2; :::; yt�p)

= c (�; �) exp

"
kX
j=1

�j�j (yt) +

qX
l=1

�l�l (yt; yt�1; :::; yt�p)

#
; (11)

where we have assumed for now k � q:

For simplicity, we start with p = 1; this could be more general than it sounds in

one-step-ahead forecasts as we can test pairwise dependence including models like

AR(1), ARCH(1) etc.

Theorem 2 (Ghosh and Bera, 2005) If the conditional density function under
the alternative hypothesis is given by equation (11) and p = 1, the augmented smooth

test statistic is given by

	̂2k =

"
U 0U + U 0BEB0U � V 0EB0U

�U 0BEV + V 0EV

#
= U 0U + (V �B0U)

0
E (V �B0U)

has a central �2 distribution with k + q degrees of freedom where U is a k�vector
of components uj = 1p

n

Pn
t=1 �j (yt) ; j = 1; :::; k; V is a q�vector of components

vl =
1p
n

Pn
t=1 �l (yt; yt�1) ; l = 1; :::; q; B = E [��], D = E[��] are components of

the information matrix de�ned in equation (44) in Ghosh and Bera (2005) and E =

(D �B0B)�1.

Proof. See Appendix and Ghosh and Bera, 2005.
As an illustration of Theorem 2, let us now consider a very simple example of the

smooth test for autocorrelation for

yt � � = � (yt�1 � �) + �t"t (12)

where E ("t) = 0, V ("t) = 1, �t = � and a1 = 1p
12
: We de�ne, if m1 = E (yt�1),

�1 (yt; yt�1) = (yt � 0:5) (yt�1�m1) =
1p
12
�1 (yt) (yt�1�m1) = a1�1 (yt) (yt�1�m1):

(13)

Then, we can denote v1 = 1p
n

Pn
t=1 �1 (yt; yt�1) =

1p
n

Pn
t=1 (yt � 0:5) (yt�1 � m1):

Given information set 
t = fyt�1; yt�2; :::g ; applying the Law of Iterative Expecta-
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tion,Z 1

0

a1�j (yt) (yt � 0:5) (yt�1 �m1)dyt

= (yt�1 �m1)

Z 1

0

�j (yt)�1 (yt) dyt =

(
a1 (yt�1 �m1) j = 1

0 j 6= 1
;

) E

�
E

�Z 1

0

�j (yt) (yt � 0:5) (yt�1 �m1) dytj
t
��
=

(
a1E [yt�1 �m1] = 0 j = 1

0 j 6= 1
:

(14)

Applying the Law of Iterative Expectation once again, de�ning �2 = E (yt�1 �m1)
2 ;Z 1

0

((yt � 0:5) (yt�1 �m1))
2 dyt

= a21 (yt�1 �m1)
2

Z 1

0

�21 (yt) dyt

= a21 (yt�1 �m1)
2

) E

�
E

�Z 1

0

((yt � 0:5) (yt�1 �m1))
2 dytj
t

��
= a21E [yt�1 �m1]

2 = a21�
2: (15)

Hence, it follows that

E [��] =
�
0 0 0 ::: 0

�0
= B

E [��] = a21E [yt�1 �m1]
2 = D; (16)

which in turn gives the information matrix

I = n

264 1 00k�1 0

0k�1 Ik�1 0k�1

0 00k�1 a21�
2

375 (17)

where Ip is the identity matrix of order p and 0p is a pth order vector of 00s: In order
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to evaluate the inverse of the information matrix in (17) we use the following results:

D �B0B = a21
�
E
�
y2t�1

�
� (E (yt�1))2

�
= a21�

2;

U 0BEB0U = a21u
2
1�
2=
�
a21�

2
�
= 0;

V 0EB0U = v1u1�=
�
a21�

2
�
= 0;

V 0EV = v21=
�
a21�

2
�
: (18)

Hence, using (47) we have a correction term as an LM test for autocorrelation

(Breusch, 1978)

	2k+1 =

kX
j=1

u2i +
1

(a21�
2)

�
v21
�

=
kX
j=1

u2i +
(v1)

2

(a21�
2)
=

kX
j=1

u2i +
12 (v1)

2

�2
a� �2k+1 under H0: (19)

The sample counterpart of the second expression in (19) is

12

0@
q

1
n

Pn
t=2 (yt � 0:5) (yt�1 �m1)q
1
n�1

Pn
t=1 (yt � y)2

1A2

a� �21. (20)

It is evident that this will give us an asymptotic test for autocorrelation of the �rst

order in a global sense. To further illustrate this technique, let us consider a test for

ARCH (1) type alternative with mean equation (12),

�2t = �0 + �1�
2
t�1"

2
t�1 (21)

For testing ARCH(1) dependence, de�ne

�2 (yt; yt�1) =
�
y2t�1 �m2

��
y2t �

1

3

�
=
�
y2t�1 �m2

�
(a1�1 (yt) + a2�2 (yt)) (22)

where a1 = 1p
12
, a2 = 1

6
p
5
, a23 = a21 + a22 =

4
45
and mj = E

�
yjt�1

�
for notational

convenience.

The joint smooth test statistic incorporating an ARCH(1) type e¤ect where vl =
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1p
n

Pn
t=1 �l (yt; yt�1),

	̂2k+1 =

kX
j=1

u2j +
�
a23E

�
y2t�1 �m2

�2��1
[v2]

2

� �2k+1 (0) : (23)

Similarly, we can obtain a joint test incorporating leverage e¤ect (a negative

correlation between past returns and future volatilities) with an appropriate function

like

�3 (yt; yt�1) = (yt�1 �m1)

�
y2t �

1

3

�
= (yt�1 �m1) (a1�1 (yt) + a2�2 (yt))

=) v3 =
1p
n

nX
t=1

�3 (yt; yt�1) ;

that yields the test statistic de�ning m11 = E (yt�1 �m1)
2 ;

	̂2k+1 =
kX
j=1

u2j +
�
a23m11

��1
[v3]

2

� �2k+1 (0) : (24)

The joint test of both leverage e¤ect and ARCH(1) type e¤ects is more involved but

can be derived from the shortcut matrix formula for the correction term given

E =
1

�

"
a23m22 �a23m12

�a23m12 a23m11

#
;

where mij = E
�
yit�1 �mi

� �
yjt�1 �mj

�
and � = a43 (m11m22 �m2

12) ;hence,

a23
�

�
v22m22 + v23m11 � 2v3v2m12

�
� �22: (25)

Similarly, a joint test of AR(1) and ARCH(1) e¤ects can be shown to be function

of the crossed and central moments of yt�1; besides the score functions u0js and v
0
ls

follows a �22.

Unfortunately, the choice of the dependency function �l (yt; yt�1) ; l = 1; 2; :::; q (a

moment condition to capture the dependent structure) involves a trade-o¤. On one

hand, the smaller the number q there are fewer parameters to estimate, however,
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there will be a loss of power owing to the types of dependencies that are ignored;

on the other, if q is large we will su¤er from a curse of dimensionality as there will

be several parameters to be estimated based on the same data. In the following

examples we illustrate how to incorporate more general dependence structures like

ARMA(1,1), GARCH (1,1) and several ARCH parameters, and not to increase the

dimensionality of the problem substantially under certain regularity conditions.

Suppose we want to incorporate an ARMA (1,1) error term of the following form

[Bera and Ra (1994), Andrews and Ploberger (1996)]

yt � (�+ �) yt�1 = "t � �"t�1; (26)

where "t is IID N (0; �2") ; � and (�+ �) 2 (�1; 1) and t = 1; 2; :::; n. Here, to test
for white noise we can test H0 : � = 0 against H1 : � 6= 0: It is worth noting that

underH0; the parameter � becomes unidenti�ed, hence we have a nuisance parameter

under the null which is often termed as the Davies�problem (Davies 1977, 1987). We

will start of assuming that the parameter � is �xed and then relax that assumption

to do the test. De�ne the dependency function for some �xed and �nite r (� t� 1) ;

�1 (yt; yt�1; :::; y1) = (yt � 0:5)
rX
s=1

�s�1 (yt�s �m1) : (27)

Hence, if � is a known constant and for some �nite r, as shown in the Addendum

A subsection 5.0.2, the smooth test statistic incorporates the LM test similar to

Andrews and Ploberger (1996),

	̂2k+1 =
kX
j=1

u2j + v21

�
a21m11

1� �r

1� �

��1
� �2k+1 where v1 =

1p
n

nX
t=1

(yt � 0:5)
rX
s=1

�s�1 (yt�s �m1) : (28)

It is worth noting that putting � = 0 we get back the test using AR(1) terms. In

order to test for dependence alone of ARMA(1,1) form we can simply look at the

second expression in (54) and follow a test procedure like the suggested in Bera and

Ra (1994) or Andrews and Ploberger (1996). See Ghosh and Bera (2005) for details.

We would �nally suggest a procedure inspired by Engle (1982, 1983) where we

considered a weighted ARCH type alternative. The conditional variance function
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suggested by Engle (1982, 1983) was

ht = �0 + �1

rX
s=1

ws
�
u2t�s �m2

�
; where ws =

(r + 1)� s
1
2
r (r + 1)

for some �xed r: (29)

We explicitly derive the RS test for testing H1 : �1 = 0 against H1 : �1 6= 0 which
tests whether there is an ARCH term against a constant variance in Addendum A,

subsection 5.0.3. From our results, if r is a known constant, the smooth test statistic

	̂2k+1 =

kX
j=1

u2j + v22

�
4 (3 + r)

3r (r + 1)
a23m22

��1
� �2k+1;

where v2 = 1p
n

Pn
t=1

�
y2t � 1

3

�Pr
s=1ws

�
y2t�s �m2

�
:

Unfortunately, this formulation also su¤er from the Davies�problem through the

choice of r; though to a lesser degree. We can choose the r through maximization

of some likelihood based information criterion or model selection. For details, see

Ghosh and Bera (2005).

Now suppose we wantto test for moments of the return distribution of hedge

funds (say, a hedge fund global index) and test for independence and identical

distribution. Using the augmented smooth test of density forecast evaluation , we

would be able to individually test all the moments of the distribution, say upto

order k = 4 (Ghosh and Bera, 2005): This can be used for testing both in-sample

(estimation and testing on the same sample) and out-of-sample (split sample and

estimate using one, and test with the other). We would also be able to test jointly

whether moments of the distribution are the same. In particular, as a corrolary to

Theorem 2 we can formulate a test for comparison of the a modi�ed version of Sharpe

Ratio composed of the probability integral transforms and any other moment based

test. The attractive feature of the smooth test is that as individually each of the û2j
are asymptotically distributed as �21; we can construct ratios of variables that will

be distributed as F�distribution. One further note, as the Rao score or LM test

is transformation invariant unlike the Wald test, we would be able to run the test

whether in any equivalent way. We summarize this is the following theorem.

For the one sample version the test is straightforward. Suppose, we assume

the distribution of the index of hedge funds as Ft (:) ; this can be generated using

the Cumulative Distribution Function (CDF) of returns of a relevant index fund

(say, the Hedge Fund Index). First, suppose we want to test H0 : �R = Rf

vs. H1 : �R 6= Rf , we can use k = 2 or k = 4 if you want to hold higher
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moments �xed. For simplicity, in our Theorem 2, we simply replace q = 0: We

however, would be testing in the direction of normalized Legendre polynomials of

the probability integral transform of the original variable Xt; hence the test is

H0 : �1 = 0 vs. H1 : �1 6= 0:Since these are orthonormal polynomials �j (:)�s, we

do not need to recalculate the joint test statistic 	̂2k; with additional directions of

departure, simply adding û2j for extra j would su¢ ce. For completeness, we de-

�ned the probability integral transform yt =
R xt
�1 ft (x) dx; t = 1; :::; T where ft (:)

is the probability density function (PDF) of the relevant index. As the probabil-

ity integral transform is a monotonic transformation, the directional results true in

yt are also true in the original variable xt: Further jth order normalized Legendre

polynomials are �0 (y) = 1; �1 (y) =
p
12
�
y � 1

2

�
; �2 (y) =

p
5
�
6
�
y � 1

2

�2 � 1
2

�
;

�3 (y) =
p
7
�
20
�
y � 1

2

�3 � 3 �y � 1
2

��
; �4 (y) = 210

�
y � 1

2

�4 � 45 �y � 1
2

�2
+ 9

8
; etc.

Hence, the moments we are testing are in orthogonal directions of the normalized

Legendre polynomials of the probability integral transform.

Hence, we can de�ne the smooth test statistic 	̂2F;k for each value of k = 1; 2; 3; 4

that provides the aggregated level of risk from each moment of the distribution upto

that k as the Smooth Total Moment Risk (STMR
(k)
F ) measure with respect to the

benchmark distribution Ft (:) ;

STMR
(k)
F = 	̂2F;k =

kX
j=1

u2F;j � �2k; where uF;j =
1p
n

nX
t=1

�j (yt)

In particular, as we are interested in the amount of risk associated with ith

moment in the presense of higher order moments upto k, we de�ne a new measure

the ith order Smooth Moment Risk
�
SMR

(k)
F;i

�
with respect to F (:) as

SMR
(k)
F;i =

u2F;iPk
j=1
j 6=i

u2F;j= (k � 1)
� F1;k�1

has a central F distribution with 1 degree of freedom in numerator and k� 1 degree
of freedom in denominator asymptotically. For k = 2; this can give the overall risk

associated with the �rst moment direction. For higher values of k; we can identify

the levels of return risk from higher order moments. The main advantage of these

smooth moment risk measures are they are themselves test statistic with tabulated

asymptotic distributions.

These can be generalized to include di¤erent �exible dependent structures like
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AR(1) or ARMA(1,1) as dicussed before, to get the Dependence Smooth Total Mo-

ment Risk (DSTMR
(k+q)
F ) with benchmark distribution Ft (:)

DSTMR
(k)
F = 	̂2F;k = U 0U + (V �B0U)

0
E (V �B0U)

a� �2k+q;

where U ,V;B and E are as de�ned in Theorem 2 and proof.

Similarly, the di¤erent dependence functions can be tested with the ith Depen-

dence Smooth Moment Risk (DSMR
(k+q)
F ) (like the Autocorrelation Smooth Moment

Risk, Leverage Smooth Moment Risk, ARCH smooth moment risk etc.) as

DSMR
(k)
F;i =

CorrectionF;i

DSTMR
(k)
F =k

a� F1;k;

where CorrectionF;i is the correction factor that itself has a �21 distribution asymp-

totically. These can be extended to a variety of tests that are targeted at particular

moment risk premia.

4 Empirical Applications: Checking for Evidence

for Market Neutrality in Equity Market Neutral

Funds

We address the issue of distributional test of neutrality of equity neutral hedge funds

using a equity market neutral index fund provided in Diez de Los Rios and Garcia

(2009). In particular, we want to compare the equity neutral fund index (C4 in their

Table 1) with the global index they created. The data provided is monthly between

Jan 1996 till March 2004 (99 observations). We would compare some standard risk

measures and our smooth moment risk measures across the board. We wish to

address the issue raised in Patton (2008) about whether Equity Neutral Funds are

truly neutral with this index returns.

We �rst estimate the parametric distribution of the global hedge fund database

using the smooth test technique starting with the naive model with the empirical

distribution function (EDF), then gradually increase the level of complexity (reported

in Table 1). We observe that there is substantial di¤erence of all the moments

in particular, the second, third and fourth moments from the market index fund

(here we are using the Value Weighted S&P 500 returns from WRDS database).

We further update the model using an ARMA speci�cation, but it gives the same
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qualitative results, although now only the second and fourth moment are sign�cant

(u21 = 0:42 or u
2
2 = 109). We introduce conditional heteroskcadisticity along with

MA(1) term. We also introduce leverage e¤ect in the model by using a linear GJR-

GARCHmodel. The overall smooth total moment risk (STMR) declines slightly with

higher level of compexity in the model,. and is statistically distinguisble from the

equity market index particularly in the directions of the second and fourth moments.

The �rst smooth moment risk (SMR1) shows that the MA(1) t-GARCH(1,1) gives

very small and statistically insigni�cant measures in presense of 4 moment directions

for all these models F: It appears that the main dispersion is coming from the second

moment risk (SMR2), however, none of them turn out to be statistically signi�cant at

5% level in the presense of higher order moments. This implies that there is signi�cant

in�uence of higher order moment directions like skewness and kurtosis that a¤ects

the returns dispersion. If however we use only moment moment directions there will

be overwhelming evidence that the second moment direction is strongly signi�cant in

determining Equity Neutral Hedge Fund index returns. So based on this evidence we

cannot support the claim that Equity Neutral hedge Fund index seems to be fairly

independent of the market risks both in returns and in volatility. We also calculate

the augmented smooth test jointly for autoregressive and ARCH type errors that

gives the dependent smooth total moment risk (DSTMR(6)), which shoes a very

similar pattern as the STMR(4) and hence dependence across the moments does not

seem to have an a¤ect either:

F(:) STMR(4) û21 û22 û23 û24 SMR
(4)
1 SMR

(4)
2 DSTMR(6)

EDF 201.86
���

4.81
��

104.6
���

22.83
���

69.62
���

0.07 3.23 201.88
���

(0.00) (0.03) (0.00) (0.00) (0.00) (0:81) (0:17) (0.00)

ARMA(1,1) 194.11
���

0.42 109
���

2.09 82.6
���

0.01 3.84 194.88
���

(0.00) (0.52) (0.00) (0.15) (0.00) (0:92) (0:14) (0.00)

MA(1)- 183.64
���

0.36 105.89
���

1.88 75.5
���

0.01 4.09 183.8
���

t� GARCH (1,1) (0.00) (0.55) (0.00) (0.17) (0.00) (0:93) (0:13) (0.00)

MA(1)-t- 172.49
���

0.48 102.18
���

2.45 67.38
���

0.01 4.36 172.62
���

GJRGARCH (1,1) (0.00) (0.09) (0.00) (0.12) (0.00) (0:93) (0:13) (0.00)
���

significant at 1% level:
��
significant at 5% level:

Table 1.Smooth Moment Risk and components (p-values are in parenthesis).

We use the MA(1)-t-GARCH(1,1) as a benchmark distribution of the market
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index (Value weighted returns), and evaluate all the 10 hedge fund indices. We

wanted to evaluate how the market index a¤ects Hedge Funds in our sample, in

particular with respect to the Equity Market Neutral Index (Patton, 2008). We

observe strong overall statistically signi�cant di¤erence or signi�cant STMR(k) al-

most all hedge funds indices except Emerging Markets and marginally for Dedicaed

Short Bias funds. This is expected, as Emerging Market funds often include all asset

classes, hence it is very much like a mutual fund in that respect. We �nd Equity

Market Neutral Funds to be quite strongest in signi�cance in smooth moment risk

coming from all moment directions (STMR = 183). This does con�rm the doubt

about overall market neutrality of such funds (Patton 2009). If we lookly closely

enough, none of the signi�cance is coming in teh direction of the return level (û21)

but mostly, from the second moment dispersion (û22) except emerging market funds.

Convertible Arbitrage and Fixed income arbitrage from the index, particularly in

the direction of the second moment. This does assure us that hedge funds indeed

does "hedge" or change teh variability of the return distribution compared tto an

equity fund. There is however a very strong in�uence on higher moment directions

that causes the F-statistics in the form of both �rst and second Smooth moment risk

(SMR) measures. They show that comparatively there is insigni�cant e¤ect in the

direction of the �rst risk moment (SMR1) for all funds. Further, only Long-Short

Equity that thrives on volatility, and Managed Future funds have a higher contribu-

tion of volatility compared to other moments (SMR2). We also looked at the level

of dependence in terms of autoregressive smooth moment risk (DSMR(4)) and found

no residual dependence in that direction.

We also report the Sharpe-Lintner CAPM based measures like the Beta (�) and

Jensen�s alpha (�). As expected the Market Neutral Hedge Fund does show close to

"Beta neutrality," as it is close to zero, but so is Global Macro and Fixed Income

Arbitrage. The highest beta is for the Emrrging Market fund that is really an

international mutual fund, and the lowest one is on Dedicated Short Bias that thrives

on betting against the market. From the smooth total moment risk standpoint

(STMR), Beta does not replicate the same ordering. This is expected as beta is

based on inherent normality assumption of CAPM that assumes away dispersion

risk in higher order moments. In fact, systematic risk from beta can be take to

be the risk associated with market, hence those funds which play the market like

emerging market and dedicated short are most sensitive, while equity neutral strategy

is not. Higher Jensen�s alpha also do not price higher order moments hence are not

dependent on STMR. Using Spearman�s rank correlation and Pearson�s product
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moment correlation (not reported here) we see that STMR is negatively correlated

with Beta, moderately correlated with alpha and quite strongly correlated with the

Sharpe Ratio.

STMR
(4)

û21 SMR
(4)

1 û22 SMR
(4)

2 AR
(4)

DSMR
(4)

Beta alpha

Under H0 � �24 �21 F1;3 �21 F1;3 �21 F1;4 t97 t97

C1 Cnvrt. Arb 156.12
+

0.05 0.00 93.91
+

4.53 0.32 0.01 0.34 4.63

C2 Fxd. Inc. Arb. 176.42
+

0.49 0.01 98.76
+

3.82 0.89 0.02 0.06 2.68

C3 Evnt Driven 115.52
+

0.00 0.00 77.5
+

6.12 0.12 0 0.49 2.39

C4 Eqt. Neutral 183.64
+

0.36 0.01 105.89
+

4.09 0.06 0 0.05 3.34

C5 Lng-Shrt Eqt. 28.6
+

0.16 0.02 27.4
+

68.5
+

1.09 0.15 0.98 1.72

C6 Global Macro 83.75
+

0.79 0.03 59.71
+

7.45 0.72 0.03 0.07 2.05

C7 Emrgng Mkts. 5.04 0.91 0.66 1.4 1.15 3.07 2.44 1.69 -3.44

C8 Ded Shrt Bias 11.77
�

3.48 1.26 5.78
�

2.89 0.14 0.05 -1.77 7.83

C9 Mngd Fut. 32.36
+

1.00 0.1 28.56
+

22.55
�
1.03 0.13 -0.11 2.8

C10 Fnd of Fnd 94.26
+

0.61 0.02 67.17
+

7.44 0.01 0.00 0.53 -0.57

Global Index 74.13
+

0.11 0.11 58.4
+

11.14
�
0.01 0.00 0.67 0.32

Table 2: Hedge Fund Styles and Smooth Risk Moments with Rf=3.775% (
+

signif:at 5%;
�
signif:at 1%)

From tests with the market index we would like to explore the relationship with

the Global Hedge Fund Index (Diez de los Rios and Garcia, 2009). Table 3 also

provides the Sharpe ratio for all the hedge fund indices (using Rf = 3:775; given

in Table 1 of Diez de los Rios and Garcia 2009). Both the Arbitrage Funds (C1

and C2) shows a substantial risk exposure measured by STMR compared to the

Global Hedge Fund Index. Both these are in the speci�c direction of volatility

as shown in û22; however due to the presense of signi�cant higher order moments

their contribution measured by Smooth Moment Risk of �rst and second order are

not statistically signi�cant at 5%. This implies that the arbitrage funds probably

strategize on oppurtunities that possibly assymetric , and in the tails of the return

distribution. Further, we �nd that event driven fund, long short equity and global

macro shows very little dispersion in moment risk from the global index as they form

a majority of the funds out there at that period. However, equity market neutral

funds have has a strong deviation in the direction of the �rst moment though overall

it is similar to the global index. Short bias and Managed Futures funds shows a¤ects

of overall dependence and variation in volatility risk from global hedge fund. Fund of
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Funds is very similar and indistuishable from the Global index. Sharpe ratio gives an

indication of the level of risk assuming underlying normality. Hence funds that have

higher order moment exposure like Arbitrage funds and dependence like Managed

Futures and volatility dynamics like dedicated short are not adequately treated by

the Sharpe Ratio.

STMR
(4)

DSTMR
(6)

û21 SMR
(4)

1 û22 SMR
(4)

2 AR
(4)

DSMR
(4)

SR

Under H0 � �24 �26 �21 F1;3 �21 F1;3 �21 F1;4 T�
1
2 tT�1

C1 Cnvrt. Arb 13.6
���

17.63
���

1.14 0.27 10.38
���

9.67 3.77 1.11 1.63

C2 Fxd. Inc. Arb. 33.3
���

34.76
���

0.38 0.03 11.98
���

1.69 0.59 0.07 0.73

C3 Evnt Driven 4.61 7.99 0.07 0.05 2.69 4.2 0.74 0.64 1.02

C4 Eqt. Neutral 6.33 7.15 5.1
��

12.44
��

0.26 0.13 0.00 0.00 1.29

C5 Lng-Shrt Eqt. 4.65 6.09 1.07 0.9 1.08 0.91 0.39 0.34 0.78

C6 Global Macro 5.89 8.32 2.32 1.95 3.43 4.18 1.06 0.72 0.4

C7 Emrgng Mkts. 5.55 6.89 2.22 2 0.18 0.1 0.58 0.42 0.45

C8 Ded Shrt Bias 8.78 12.9
���

2.24 1.03 4.21
��

2.76 2.47 1.13 -0.18

C9 Mngd Fut. 7.96 17.61
���

0.81 0.34 5.61
���

7.16 8.24
���

4.14 0.23

C10 Fnd of Fnd 2.81 4.57 1.01 1.68 0.03 0.03 0.05 0.07 0.47

Global Index 0.69

Table 3: Hedge Fund Styles and Smooth Risk Moments with Rf=3.75% (
���
signif:at 5%;

��
signif:at 1%)

5 Conclusion

Financial risk evaluation had attracted substantial attention of late both in the acad-

emic community and outside with the growing �nancial crisis that might have had its

genesis in faulty methodology. Rampant use measures like Value-at-Risk as expressed

by practitioners, consultants and �eld experts described in the New York Times as

RiskMismanagement (http://www.nytimes.com/2009/01/04/magazine/04risk-t.html?em),

fails to prevent the e¤ect of �black swans�or very rare events like market crashes

or meltdown. Our objective in this paper is to look at the instruments of risk as-

sessment like the Sharpe Ratio that are commonly used and make it more robust in

cases of extreme uncertainty or misinformation that leads to noisy data (see Garcia,

Renault and Tsafack, 2005). One way of achieving that would be to account for the

higher order moments of adjusted return distributions.
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We would like evaluate the e¤ectiveness of the forecast models for risk man-

agement using out-of sample performance (see Santos, 2008). Hence, out-of-sample

forecast evaluation of Sharpe ratio or risk adjusted return distributions using �in-

sample� bootstrapped con�dence intervals might not be optimal in case there are

structural breaks. Further more, the commonly used risk measures like the Sharpe

ratio or Value-at-Risk might not be �a coherent measure of risk� (Artzner et. al,

1999, Garcia, Renault and Tsafack, 2005). Under certain weak parametric speci-

�cations the entire distributions of the Sharpe ratios can be compared themselves

using smooth type tests. Distributional tests of Sharpe Ratio is still in its infancy

particualrly accomdating for higher order moments and dependence. An exploration

of comparisions of various measures proposed particularly in an inference context is

an object of ongoing and future research.

Finally, another possible aspect of returns data is selection biases like survivor-

ship and other non-linearities particularly for Private Equity and Hedge Fund data

(Agarwal, and Naik, 2004,. Diez de los Rios, A. and R. Garcia, 2005). Ideally, a

model selection and testing procedure should be robust against such problems of

truncation or censoring (See Ghosh, 2008). We would explore the robustness proper-

ties of the proposed test procedure in the presence of survivorship and other selection

biases (Cakici and Chatterjee, 2008, Carlson and Steinman, 2008).

Appendix A1 (Proof of Theorem 2)

5.0.1 Proof of Theorem 2

Proof. In order to test for uniformity and as well as for dependence, one would test
H0 : �1 = �2 = ::: = �k = 0; �1 = �2 = ::: = �q = 0 against the alternative H1 :

�j 6= 0 for at least one j or �l 6= 0 for at least one l: However, we have not speci�ed
the forms of the functions �j (:) and �l (:) : The log-likelihood function is

nX
t=1

ln (h (ytjy1; y2; :::; yt�1)) =
nX
t=1

ln f (yt; yt�1)

=
nX
t=1

ln c (�; �) +

nX
t=1

kX
j=1

�j�j (yt) +

nX
t=1

qX
l=1

�l�l (yt; yt�1)

= n ln c (�; �) +
kX
j=1

�j

nX
t=1

�j (yt) +

qX
l=1

�l

nX
t=1

�l (yt; yt�1)

= lnL = l; say: (30)

31



So, if we use � = (�1; �2; :::; �k)
0 and � = (�1; �2; :::; �q)

0 then under the null hypothesis

H0

@l

@�j

����
�=0;�=0

= n
@ ln c (�; �)

@�j

����
�=0;�=0

+

nX
t=1

�j (yt)

) 1p
n

@l

@�j

����
�=0;�=0

=
p
n
@ ln c (�; �)

@�j

����
�=0;�=0

+
1p
n

nX
t=1

�j (yt) : (31)

Similarly, we have

@l

@�l

����
�=0;�=0

= n
@ ln c (�; �)

@�l

����
�=0;�=0

+
nX
t=1

�l (yt; yt�1)

) 1p
n

@l

@�l

����
�=0;�=0

=
p
n
@ ln c (�; �)

@�l

����
�=0;�=0

+
1p
n

nX
t=1

�l (yt; yt�1) :

(32)

Further, if we take derivative twice and evaluate at H0 : � = 0; � = 0; from (30)

@2l

@�i@�j

����
�=0;�=0

= n
@2c (�; �)

@�i@�j

����
�=0;�=0

; (33)

@2l

@�l@�j

����
�=0;�=0

= n
@2c (�; �)

@�l@�j

����
�=0;�=0

; (34)

@2l

@�i@�l

����
�=0;�=0

= n
@2c (�; �)

@�i@�l

����
�=0;�=0

: (35)

Since (11) is a density function under H1; we have for each value of yt�1

c (�; �)

Z 1

0

exp

"
kX
j=1

�j�j (yt) +

qX
l=1

�l�l (yt; yt�1)

#
dyt = 1: (36)

Evaluating the identity in (36) at �j = 0; j = 1; :::; k and �l = 0; l = 1; :::; q;

c (0; 0) = 1: Also, if we di¤erentiate (36) and evaluate at � = 0, � = 0 the following
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results are obtained:1

(i)
@c (�; �)

@�j

����
�=0;�=0

+ c (0; 0)

Z 1

0

�j (yt) dyt = 0

) @c (�; �)

@�j

����
�=0;�=0

= 0; since
Z 1

0

�j (yt) dyt = 0; j 6= 0: (37)

(ii)
@c (�; �)

@�l

����
�=0;�=0

+ c (0; 0)

Z 1

0

�l (yt; yt�1) dyt = 0

) @c (�; �)

@�l

����
�=0;�=0

= �
Z 1

0

�l (yt; yt�1) dyt = 0. (38)

(iii)
@2c (�; �)

@�i@�j
+
@c (�; �)

@�j

Z 1

0

�i (yt) dyt+

@c (�; �)

@�i

Z 1

0

�j (yt) dyt + c (�; �)

Z 1

0

�i (yt)�j (yt) dyt = 0

) c�i�j + c�j :0 + c�i :0 +

Z 1

0

�i (yt)�j (yt) dyt = 0

) c�i�j = ��ij; (39)

where �ij = 1 if i = j; �ij = 0 if i 6= j; c�i�j �
@2c(�;�)
@�i@�j

���
�=0;�=0

and c�j =
@c(�;�)
@�j

���
�=0;�=0

:

Similarly, it can be shown that

(iv)
@2c (�; �)

@�l@�j
+
@c (�; �)

@�j

Z 1

0

�l (yt; yt�1) dyt+

@c (�; �)

@�l

Z 1

0

�j (yt) dyt + c (�; �)

Z 1

0

�j (yt) �l (yt; yt�1) dyt = 0

) c�l�j = �
Z 1

0

�j (yt) �l (yt; yt�1) dyt; where c�l�j =
@2c (�; �)

@�l@�j

����
�=0;�=0

: (40)

Finally, using the same procedure we can obtain

(v) c�i�l =
@2c (�; �)

@�i@�l

����
�=0;�=0

= �
Z 1

0

�i (yt; yt�1) �l (yt; yt�1) dyt: (41)

1For (ii) we can choose �l appropriately to make
R 1
0
�l (yt; yt�1) dyt = 0; this can be achieved by

using ~�l (yt; yt�1) = �l (yt; yt�1)�
R 1
0
�l (yt; yt�1) dyt if indeed

R 1
0
�l (yt; yt�1) dyt 6= 0:
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Using (i)� (v) ; the score functions under the null are given by

@l

@�j
=

nX
t=1

�j (yt) ; j = 1; :::; k;

@l

@�l
=

nX
t=1

�l (yt; yt�1) ; l = 1; :::; q: (42)

The information matrix under H0; I is given by

I = �

24 E
h
@2l
@�@�0

i
E
h

@2l
@�l@�

0
j

i
E
h

@2l
@�l@�

0
j

i0
E
h

@2l
@�i@�l

i 35
������
�=0;�=0

; (43)

where given Ik is the k � k identity matrix

E

�
� @2l

@�@�0

�
= nIk;

E

�
� @2l

@�l@�0j

�
= n

�
E

�Z 1

0

�j (yt) �l (yt; yt�1) dyt

��
j=1;:::;k; l=1;:::;q

= E [��] ;

E

�
� @2l

@�i@�l

�
= n

�
E

�Z 1

0

�i (yt; yt�1) �l (yt; yt�1) dyt

��
j=1;:::;k; l=1;:::;q

= E [��] : (44)

So, using the well-known results of the Rao score test, de�ning uj = 1p
n

Pn
t=1 �j (yt) ;

j = 1; :::; k and vl = 1p
n

Pn
t=1 �l (yt; yt�1) ; l = 1; :::; q;" p

nU
p
nV

#0 "
nIk nE [��]

nE [��]0 nE [��]

#�1 " p
nU

p
nV

#
� �2k+q (0)

)
"
U

V

#0 "
Ik E [��]

E [��]0 E [��]

#�1 "
U

V

#
� �2k+q (0) ; (45)

where U = (u1; u2; :::; uk)
0, V = (v1; v2; :::; vq)

0 and �2d (0) means a central �
2 dis-

tribution with d degrees of freedom. Simplifying the notation further, and de�ning

B = E [��], D = E [��] ;from results on block matrices we have"
Ik B

B0 D

#�1
=

"
Ik +BEB0 �BE
�EB0 E

#
(46)
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where E = (D �B0B)�1 : From (45) and (46),"
U

V

#0 "
Ik E [��]

E [��]0 E [��]

#�1 "
U

V

#

=

"
U 0U + U 0BEB0U � V 0EB0U

�U 0BEV + V 0EV

#
a� �2k+l: (47)

As E is non-singular there exists a non-singular matrix L; such that E = LL0:

Substituting this in equation (47), we can rewrite as

U 0BEB0U � V 0EB0U � U 0BEV + V 0EV

= U 0BLL0B0U � V 0LL0B0U � U 0BLL0V + V 0LL0V

= (L0V )
0
L0V � (L0V )0 L0B0U

� (L0B0U)
0
L0V + (L0B0U)

0
L0B0U

= (L0V � L0B0U)
0
(L0V � L0B0U)

= (L0 (V �B0U))
0
(L0 (V �B0U))

= (V �B0U)
0
LL0 (V �B0U)

= (V �B0U)
0
E (V �B0U) (48)

From (47) this gives

U 0U + (V �B0U)
0
E (V �B0U)

a� �2k+l: (49)

5.0.2 Case 1: (Fixed �) Test for Weighted Autoregressive Terms

In our usual formulation with q = 1; �1 (yt; yt�1; :::; y1) = (yt � 0:5)
Pr

s=1 �
s�1 (yt�s �m1) ;

we can obtain

v1 =
1p
n

nX
t=1

(yt � 0:5)
rX
s=1

�s�1 (yt�s �m1) (50)
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as the score function related to �1: Furthermore, given the model in (26), E (yt) =

� = 0;

E

�Z 1

0

�j (yt) �1 (yt; yt�1; :::; y1) dyt

�
= E

"Z 1

0

�j (yt) a1�1 (yt)

rX
s=1

�s�1 (yt�s �m1) dyt

#

=

(
a1E

�Pt�1
s=1 �

s�1 (yt�s �m1)
�
if j = 1

0 otherwise.

=

(
a1

1��r�1
1�� E (yt�s �m1) = 0 if j = 1

0 otherwise.

(51)

since under H0, E (yt�s �m1) = 0; for all s: Similarly,

E

�Z 1

0

[�1 (yt; yt�1; :::; y1)]
2 dyt

�
= E

24a21 Z 1

0

�21 (yt)

 
rX
s=1

�s�1 (yt�s �m1)

!2
dyt

35
= a21E

"
rX
s=1

�s�1 (yt�s �m1)

#2
= a21

1� �2(r)

1� �2
E (yt�s �m1)

2 = a21
1� �2(r)

1� �2
m11;

(52)

since under H0 all y0ts are independent, and E (yt�s �m1)
2 = �2" = m11. Hence, the

asymptotic information matrix is given by

I =

264 1 00 0

0 Ik�1 0

0 00 a21
1��2(r)
1��2 m11

375 = " Ik B

B0 D

#
: (53)

Using the same notations as before we obtain the following results:

(i)D �B0B = a21
(1��2r)m11

1��2 �
�

0
1��

�2
) E = (D �B0B)�1 =

�
a21
(1��2r)m11

1��2

��1
:

(ii)U 0BEB0U = 0:

(iii)U 0BEV = 0:

(iv)V 0EV = v21E = v21

�
a21
(1��2r)m11

1��2

��1
:
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Hence, if � is a known constant,

kX
j=1

u2j + v21E

=
kX
j=1

u2j + v21

�
a21
(1� �2r)m11

1� �2

��1
� �2k+1: (54)

5.0.3 Case 3: Weighted ARCH Model

The log-likelihood function is

L = Const� 1
2

nX
t=1

lnht �
1

2

nX
t=1

u2t
ht

= Const� 1
2

nX
t=1

ln

"
�0 + �1

rX
s=1

wsu
2
t�s

#
� 1
2

nX
t=1

u2t
�0 + �1

Pr
s=1wsu

2
t�s

: (55)

Di¤erentiating (55) with respect to �1,

@L

@�1
= �1

2

nX
t=1

�Pr
s=1wsu

2
t�s
�

[�0 + �1
Pr

s=1wsu
2
t�s]

+
1

2

nX
t=1

u2t
�Pr

s=1wsu
2
t�s
�

[�0 + �1
Pr

s=1wsu
2
t�s]

2

) @L

@�1

����
H0

=
1

2�20

nX
t=1

~u2t

rX
s=1

wsu
2
t�s; where ~u

2
t = u2t � �0: (56)

From (56) di¤erentiating again

@2L

@�21
=
1

2

nX
t=1

�Pr
s=1wsu

2
t�s
�2

[�0 + �1
Pr

s=1wsu
2
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2 �
2

2

nX
t=1

u2t
�Pr

s=1wsu
2
t�s
�2

[�0 + �1
Pr

s=1wsu
2
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3

) � @2L

@�21

����
H0

=
1

2�30

nX
t=1

�
2u2t � �0

� " rX
s=1

wsu
2
t�s

#2
: (57)
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Now taking expectation of (57) as n!1 the asymptotic information matrix is

lim
n!1

1

n
E

"
� @2L

@�21

����
H0

#
= lim

n!1

1

n

�0
2�30

nX
t=1

E

"
rX
s=1

wsu
2
t�s

#2

=
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1

n
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rX
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u4t�s

�
; IID under H0
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1
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E
�
u4t
� rX
s=1

[(r + 1)� s]2�
1
2
r (r + 1)

�2
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1

2�20
E
�
u4t
� 1
6
r (r + 1) (2r + 1)�

1
2
r (r + 1)
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1

2�20
E
�
u4t
� 2
3

(2r + 1)

r (r + 1)

=
(2r + 1)

r (r + 1)
putting E

�
u4t
�
= 3�20: (58)

Hence, the Rao Score Statistic is

RS = n�1

"
1

2�̂20

nX
t=1

~u2t

rX
s=1

wsu
2
t�s

#2
r (r + 1)

(2r + 1)
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r (r + 1)

(2r + 1)

�Pn
t=1 ~u

2
t

Pr
s=1wsu

2
t�s
�2

4 [
Pn

t=1 u
4
t ]
2

(59)

which for testing for ARCH(1) becomes

RS =
n

12

�Pn
t=1 ~u

2
tu
2
t�1
�2

[
Pn

t=1 u
4
t ]
2 : (60)

Now let us setup the augmented Neyman Smooth test for incorporating several

ARCH e¤ects using a linear weighting scheme suggested by Engle (1982, 1983).

We choose

�2 (yt; yt�1; :::; y1) =

�
y2t �

1

3

� rX
s=1

ws
�
y2t�s �m2

�
; where ws =

(r + 1)� s
1
2
r (r + 1)

) v2 =
1p
n

nX
t=1

(a1�1 (yt) + a2�2 (yt))
rX
s=1

ws
�
y2t�s �m2

�
is the score function.

(61)
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Furthermore,

E
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�j (yt) �2 (yt; yt�1; :::; y1) dyt

�
= E

" R 1
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0 otherwise.
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=
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�
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0 otherwise.

(62)

since under H0, E
�
y2t�s �m2

�
= 0; for all s: Further,

E
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2 dyt
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�
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since under H0 all yts are independent and E
�
y2t�s �m2

�2
= m22; for all s. Hence,

the asymptotic information matrix is given by

I =

266664
1 0 00 0

0 1 0 0

0 0 Ik�1 0

0 0 00 4(3+r)
3r(r+1)

a23m22

377775 =
"
Ik B

B0 D

#
: (64)

Using the same notations as before we obtain the following results:

(i)D �B0B = 4(3+r)
3r(r+1)

a23m22 ) E = (D �B0B)�1 :
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(ii)U 0BEB0U = 0:

(iii)U 0BEV = 0:

(iv)V 0EV = v21

h
4(3+r)
3r(r+1)

a23m22

i�1
:

Hence, if r is a known constant,

kX
j=1

u2j + v22E

=
kX
j=1

u2j + v22

�
4 (3 + r)

3r (r + 1)
a23m22

��1
� �2k+1: (65)
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