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The basic linear regression model can be expressed conveniently in matrix form. We present
here the main OLS algebraic and finite sample results in matrix form:

Yi = β0 + β1X1,i + β2X2,i + · · ·+ βK−1XK−1,i + εi , i = 1, 2, ..., N.

We can express this relationship for every i by writing


Y1

Y2
...
YN

 =


1 X1,1 X2,1 · · · XK−1,1

1 X1,2 X2,2 · · · XK−1,2
... ... ... . . . ...
1 X1,N X2,N · · · XK−1,N





β0

β1

β2
...

βK−1


+


ε1

ε2
...
εN



or simply
y = Xβ + ε.

We will have to assume that the (N × K) matrix X has full column rank: there is no
(K × 1) vector c such that Xc = 0. That is, no column is perfectly correlated with any linear
combination of other columns; no column is proportional to another column; no column are
all zeros; the first column is the only column of constants. This assumption guarantees that
the inverse of (X′X) exists.

The X matrix can be partitioned into columns, or rows. Emphasizing columns (which
emphasizes variables):

X =


1 X1,1 X2,1 · · · XK−1,1

1 X1,2 X2,2 · · · XK−1,2
... ... ... . . . ...
1 X1,N X2,N · · · XK−1,N

 =
[
i X1 X2 · · · XK−1

]

where i is an (N × 1) column vector of ones, and Xi, i = 1, 2, ..., K − 1 are (N × 1) column
vectors containing observations of each of the variables. To emphasize the rows of X, we can
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write:

X =


1 X1,1 X2,1 · · · XK−1,1

1 X1,2 X2,2 · · · XK−1,2
... ... ... . . . ...
1 X1,N X2,N · · · XK−1,N

 =


x′1
x′2
· · ·
x′N


where x′i =

[
1 Xi,1 Xi,2 · · · Xi,K−1

]
. This format emphasizes each observation in the

regression:
Yi = x′iβ + εi , i = 1, 2, ..., N.

OLS Formula and Algebraic Properties
If β̂ is some estimator for β, then the fitted values are ŷ = Xβ̂ and the residuals are
ε̂ = y− ŷ = y−Xβ̂. The OLS method is to choose β̂ such that the sum of squared residuals
(“SSR”) is minimized. The sum of squared residuals can be calculated as

SSR = ε̂′ε̂ = (y−Xβ̂)′(y−Xβ̂)

= y′y− y′Xβ̂ − β̂′X′y + β̂′X′Xβ̂

= y′y− 2β̂′X′y + β̂′X′Xβ̂

We can simplify in the last step because y′Xβ̂ and β̂′X′y are scalars, and one is the transpose
of the other. The transpose of a scalar is itself, thus y′Xβ̂ = β̂′X′y. The OLS method is:

OLS: β̂OLS = argminβ̂y′y− 2β̂′X′y + β̂′X′Xβ̂

The first-order conditions for this optimization problem is:

∂SSR

∂β̂
= −2X′y + 2X′Xβ̂OLS = 0.

The solution to the FOC solves the minimization problem because

∂2SSR

∂β̂∂β̂′
= 2X′X

which is positive definite: for any (K × 1) vector c 6= 0, we have

c′X′Xc = (Xc)′(Xc) > 0.
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Rewriting the FOC in terms of the residuals, we see that

X′(y−Xβ̂) = X′ε̂ = 0

We describe the condition X′ε̂ = 0 by saying that X and ε̂ are “orthogonal”. If X contains
the constant term, then the FOC can be written as

X′ε̂ =
[
i X1 · · · XK−1

]′
ε̂ =


i′

X′1
...

X′K−1

 ε̂.

which says that that (i) the residuals sum to zero, and (ii) the sample covariance between the
residuals and each of the regressors is zero. In other words, OLS chooses β̂ so that (i) and
(ii) hold. If X does not include a constant term, then the residuals do not necessarily sum to
zero, and the sample covariance between the residuals and the regressors are not zero.

Solving the FOC gives:
β̂OLS = (X′X)−1X′y.

From this point, we will drop the ‘OLS’ subscript, and take for granted that β̂ is the estimator
obtained using the OLS method, not any any other method (non-OLS estimators will be
denoted in other ways).

Because β̂ takes the form of Ay, each estimator in β̂ is a weighted sum of Yi,
i = 1, 2, ..., N . For this reason, the OLS estimator is said to be a ‘linear estimator’. There is
also another way of writing β̂ that is sometimes useful. Writing X as

X =


x′1
x′2
...

x′N


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the OLS estimator β̂ can be expressed as

β̂ = (X′X)−1X′y

=


[
x1 x2 · · · xN

]


x′1
x′2
...

x′N





−1

[
x1 x2 · · · xN

]

Y1

Y2
...
YN


=
( N∑
i=1

xix′i
)−1 N∑

i=1
xiYi

This form of the OLS estimator emphasizes the role that averages play in the estimation of
β, since we can write the estimator as

β̂ =
( 1
N

N∑
i=1

xix′i
)−1( 1

N

N∑
i=1

xiYi
)
.

Fitted Values The OLS fitted values are

ŷ = Xβ̂OLS

= X(X′X)−1X′y.

The matrix X(X′X)−1X′ is called the “hat matrix” because it “puts a hat on y”. It is also
called the projection matrix, and often denoted P. (We won’t discuss the reason for the
‘projection’ terminology here). This matrix has some interesting and useful properties:

1. The hat matrix is symmetric:

P′ = (X(X′X)−1X′)′

= X′′[(X′X)−1]′X′

= X(X′X)−1X′ = P

where we use the fact that the inverse of a symmetric matrix is symmetric.
2. The hat matrix is idempotent:

PP = X (X′X)−1X′X︸ ︷︷ ︸
I

(X′X)−1X′ = X(X′X)−1X′ = P

3. The trace of the hat matrix (the sum of its diagonal elements) is equal to K, the number
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of columns in X.

tr(P) = tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(IK×K)) = K.

4. The matrix (I−P)X = 0:

(I−P)X = X−X(X′X)−1X′X

= X−X

= 0

The matrix I−P is often denoted by M because it eliMinates X.

OLS Residuals The OLS residuals are computed as

ε̂ = y− ŷ = y−Py = (I−P)y = My = M(Xβ + ε) = Mε

which shows nicely the relationship between the residuals and the actual noise terms. The
fact that M is symmetric and idempotent leads to a neat formula for the sum of squared
residuals:

ε̂′ε̂ = (ε′M′)(Mε) = ε′Mε.

The fact that X and ε̂ are orthogonal means that ŷ and ε̂ are orthogonal:

ŷ′ε̂ = β̂′X′ε̂ = 0

This gives a nice relationship between the sum of squares of Yi, Ŷi, and ε̂i:

y = ŷ + ε̂

y′y = (ŷ + ε̂)′(ŷ + ε̂)

y′y = ŷ′ŷ + 2ŷ′ε̂ + ε̂′ε̂

y′y = ŷ′ŷ + ε̂′ε̂

This is often described as “Sum of Squared Total = Sum of Squared Explained + Sum
of Squared Residuals”, or SST = SSE + SSR. (Geometrically, this is nothing more than
Pythagoras’ Theorem, albeit inN -dimensions.) We will use another version of this relationship
(which does require a constant term in the regression) to develop a measure of “goodness-of-fit”.
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Exercise: Show that the matrix M is symmetric and idempotent, with trace equal to N −K.

Exercise: Consider another “M” matrix which we’ll call “M0”:

M0 = I(N×N) − i(i′i)−1i′

where i is an (N × 1) vectors of ones. Show that M0 is symmetric and idempotent. Suppose
we pre-multipy an (N × 1) vector y by M0, i.e., take M0y. How does this transform y? (Ans:
it substracts from each element in y the sample average of the elements of y.)

Goodness-of-Fit When the constant term is included in regression, then the sample mean
of the residuals is zero. Then

y = ŷ + ε̂

M0y = M0ŷ + M0ε̂ subtracting means

(M0y)′(M0y) = (M0ŷ + M0ε̂)′(M0ŷ + M0ε̂) Taking sum of squares

y′M0y = ŷ′M0ŷ + 2ε̂′M0ŷ + ε̂′M0ε̂

y′M0y = ŷ′M0ŷ + ε̂′ε̂.

This says
N∑
i=1

(Yi − Y )2 =
N∑
i=1

(Ŷi − Ŷ )2 +
N∑
i=1

ε̂2
i

This is the “centered” version of SST = SSE + SSE. Dividing throughout by N − 1 (or N),
we see that this is a decomposition of the sample variance of Yi

1
N − 1

N∑
i=1

(Yi − Y )2 = 1
N − 1

N∑
i=1

(Ŷi − Ŷ )2 + 1
N − 1

N∑
i=1

(ε̂i)2

sample var[Yi] = sample var[Ŷi] + sample var[εi]

The centered version of SST = SSE + SSR is often used to define a measure of goodness-of-fit.
Dividing

N∑
i=1

(Yi − Y )2 =
N∑
i=1

(Ŷi − Ŷ )2 +
N∑
i=1

ε̂2
i
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throughout by ∑N
i=1(Yi − Y )2, we get

1 =
∑N
i=1(Ŷi − Ŷ )2∑N
i=1(Yi − Y )2 +

∑N
i=1 ε̂

2
i∑N

i=1(Yi − Y )2

The R2 measure of Goodness-of-fit is defined as

R2 = 1−
∑N
i=1 ε̂

2
i∑N

i=1(Yi − Y )2 = 1− ε̂′ε̂

y′M0y
.

If we have a perfect fit, then ∑N
i=1 ε̂

2
i = 0, and R2 = 1. If Ŷi = Y for all i = 1, 2, ..., N , (which

would be the case if β̂0 = β̂1 = ... = β̂K−1 = 0) then R2 = 0. All intermediate fits will result
in R2 between 0 and 1.

The R2 gets its name from the fact that it is the square of the sample correlation
coefficient between Yi and Ŷi (when the regression includes a constant). This stems from the
fact that

ŷ′M0ŷ = (y− ε̂)′M0ŷ = y′M0ŷ = (M0y)′(M0ŷ)

Since ε̂′M0ŷ = ε̂′ŷ = 0. From this we can see that

R2 = ŷ′M0ŷ
y′M0y

= ŷ′M0ŷ
y′M0y

ŷ′M0ŷ
ŷ′M0ŷ

= ((M0y)′(M0ŷ))2

(y′M0y)(ŷ′M0ŷ)

This says that

R2 =

(∑N
i=1(Yi − Y i)(Ŷi − Ŷ )

)2

∑N
i=1(Yi − Y i)2∑N

i=1(Ŷi − Ŷ )2

=

 1
N−1

∑N
i=1(Yi − Y i)(Ŷi − Ŷ )√

1
N−1

∑N
i=1(Yi − Y i)2

√
1

N−1
∑N
i=1(Ŷi − Ŷ )2


2

i.e., R2 is the square of the sample correlation coefficient between Yi and Ŷi.

We can still use the R2 if a constant is not included in the regression, or if other
methods of estimation are used. It’s just that the R2 can then fall below zero. (All that an
R2 less than zero means is that the fit provided by the estimated model is worse than the fit
obtained via the sample mean of {Yi}Ni=1). Of course, without the constant term the R2 no
longer has the interpretation of a squared sample correlation.
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(Finite Sample) Statistical Properties of the OLS Estimator
If it is the case that, conditional on all every Xk,i, k = 1, 2, ..., K − 1, i = 1, 2, ..., n, that each
error term is zero mean, has variance σ2, and are uncorrelated among themselves, then we
can write

E[ε|X] =


E[ε1|X]
E[ε2|X]

...
E[εN |X]

 =


0
0
...
0

 = 0(n×1)

and

E[εε′|X] =


E[ε2

1|X] E[ε1ε2|X] · · · E[ε1εn|X]
E[ε2ε1|X] E[ε2

2|X] · · · E[ε2εn|X]
... ... . . . ...

E[εNε1|X] E[εNε2|X] · · · E[ε2
N |X]

 =


σ2 0 · · · 0
0 σ2 · · · 0
... ... . . . ...
0 0 · · · σ2

 = σ2I(n×n)

Given these properties, we can make several statements about the OLS estimator β̂. To
prove these properties, we will use

β̂ = (X′X)−1X′y

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

(1) β̂ is unbiased
E[β̂|X] = E[β|X] + E[(X′X)−1X′ε|X]

= β + (X′X)−1X′E[ε|X]

= β

if E[ε|X] = 0. It follows that E[β̂] = β.

Note that E[ε|X] = 0 is the only assumption used. No assumption regarding the
variance-covariance matrix of ε is used, so the unbiasedness result holds even if the
errors are heteroskedastic (have different variances) or are correlated among themselves.
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(2) var[β̂|X] = σ2(X′X)−1.

var[β̂|X] = E[(β̂ − E[β̂])(β̂ − E[β̂])′|X]

= E[(X′X)−1X′εε′X(X′X)−1|X]

= (X′X)−1X′E[εε′|X]X(X′X)−1

= (X′X)−1X′(σ2I)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1.

(3) β̂ has the ‘smallest’ variance among all linear unbiased estimators.

What this means is that given any other unbiased estimator of the form β̃ = Ay, we
have for any (K × 1) vector c 6= 0,

var[c′β̂] ≤ var[c′β̃].

To show this, let B = A− (X′X)−1X′. Then

β̃ = Ay = [(X′X)−1X′ + B]y

= [(X′X)−1X′ + B](Xβ + ε)

= β + BXβ + [(X′X)−1X′ + B]ε

First we restrict our arguments to A such that Ay is unbiased. From the above, we see
that

E[Ay|X] = β + BXβ.

Unbiasedness of Ay requires that we choose A such that BX = 0. Then

var[β̃|X] = E[(β̃ − β)(β̃ − β)′|X]

= E[[(X′X)−1X′ + B]εε′[B′ + X(X′X)−1]|X]

= σ2[(X′X)−1 + BB′]

= var[β̂] + σ2BB′

It follows that for any (K × 1) vector c 6= 0,

var[c′β̃] = var[c′β̂] + σ2c′BB′c = var[c′β̂] + σ2(B′c)′B′c ≥ var[c′β̂].
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We say that β̂ is Best among all Linear Unbiased Estimators, or “BLUE”.

To obtain numerical estimates of var[β̂|X] = σ2(X′X)−1, we require an estimator of σ2.
(4) The expected value of the sum of squared residuals is

E[ε̂′ε̂|X] = (N −K)σ2.

We use the fact that the trace of a scalar is itself, and that the trace is a linear operator,
so the expectation of a trace is the trace of the expectation:

E[ε̂′ε̂|X] = E[tr(ε̂′ε̂)|X]

= E[tr(ε′Mε)|X]

= E[tr[Mεε′|X]

= tr(ME[εε′|X])

= σ2tr(M)

= (N −K)σ2.

An unbiased estimator for σ2 is therefore

σ̂2 = ε̂′ε̂

N −K
.

(5) If the error terms have a multivariate normal distribution, i.e.

ε ∼MN(0, σ2I),

then β̂ is distributed multivariate normal:

β̂ ∼MN(β, σ2(X′X)−1).

(6) Suppose we wish to test a hypothesis of the form

H0 : r′β = r0 vs HA : r′β 6= r0.

For instance, in the regression

Yi = β0 + β1X1,i + β2X2,i + εi , i = 1, 2, ..., 20,
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we might wish to test H0 : β1 + β2 = 1 vs HA : β1 + β2 6= 1. Here

r =


0
1
1

 and r0 = 1.

We can use the fact that

r′β̂ ∼ N(r′β, σ2r′(X′X)−1r),

from which it follows (stated here without further elaboration) that

t = r′β̂ − r′β√
σ̂2r′(X′X)−1r

∼ t(N−K).

To test the hypothesis, we use the rule: reject H0 if∣∣∣∣∣∣ r′β̂ − r0√
σ̂2r′(X′X)−1r

∣∣∣∣∣∣ > cα

where cα is set so that the probability of rejecting a correct null is α (usually set at
0.01, 0.05, or 0.1). For the example presented above, we reject the hypothesis at 0.05
level of significance if

|t| =

∣∣∣∣∣∣ β̂1 + β̂2 − 1√
σ̂2r′(X′X)−1r

∣∣∣∣∣∣
is greater than 2.11, which is the 0.975 percentile of the t-distribution with 17 degrees
of freedom.

(7) Suppose we wish to test several hypotheses simultaneously. For example, in the
regression

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + εi , i = 1, 2, ..., 20,

we might wish to test the hypotheses: H0 : β1 + β2 = 1 and β3 = 0 vs HA : β1 + β2 6= 1
or β3 6= 0 (or both). We can express this as testing

H0 :
0 1 1 0
0 0 0 1



β0

β1

β2

β3

 =
1
0

 vs HA :
0 1 1 0
0 0 0 1



β0

β1

β2

β3

 6=
1
0


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which we will write as Rβ = r vs Rβ 6= r. To test this hypothesis, we use the fact
that imposing the null hypothesis as restrictions on the OLS regression will lead to a
higher sum of squared residuals (OLS minimizes SSR; a restricted minimization cannot
lead to a lower SSR). We then compare the restricted and unrestricted SSRs to see if
imposing the restrictions leads to a substantially larger SSR, which would indicate that
at least one of the hypotheses is false.

Denote the residuals from the restricted OLS estimation by ε̂R. We do not give
the formula for the restricted least squares estimator here, but imposing restrictions on
the fit is usually straghtforward. In our example, we have

Yi = β0 + β1X1,i + (1− β1)X2,i + 0X3,i + εi ,

= β0 + β1(X1,i −X2,i) +X2,i + εi , i = 1, 2, ..., 20.

We would regress Yi −X2,i on a constant and (X1,i −X2,i), and calculate the restricted
residuals as

ε̂i = Yi − β̂R0 − β̂R1 (X1,i −X2,i)−X2,i , i = 1, 2, ..., 20

where the superscript R indicates restricted least squares estimators. In any case, we
do not actually have to carry out the restricted least squares fit, because it can be
shown (proof omitted) that:

ε̂′Rε̂R − ε̂′ε̂ = (Rβ̂ − r)′[R(X′X)−1R′]−1(Rβ̂ − r)

where β̂ is the unrestricted OLS estimator.
It turns out (again proof omitted) that if the null is true, then

F = (ε̂′Rε̂R − ε̂′ε̂)/J
ε̂′ε̂/(N −K) ∼ FJ,N−K

where J is the number of restrictions imposed. We are testing whether ε̂′Rε̂R − ε̂′ε̂ is
“too big”, so we use a one-sided (right-side) test, and reject the null if F is greater than
cα, where cα is the 0.90, 0.95, or 0.99 percentile of the FJ,N−K distribution.

Example We illustrate the concepts presented here with the regression

log(EARNINGSi) = β0+β1Si+β2SFi+β3SMi+β4WEXPi+β5TENUREi+β6MALEi+εi

from the dataset earnings.csv. (Details in the r comments below)
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# The datafile earnings.csv contains data on
# hourly earnings ($), height (inches), male (1, 0),
# s (yrs schooling), sf (yrs father's schooling), sm (yrs mother's schooling),
# tenure (yrs in current job), wexp (yrs work experience)
# from a sample of 540 people in 2002
# Data from US National Longitudinal Survey of Youth 1979, or NLYS79)
# via Dougherty textbook
earnings<-read.csv("earnings.csv")
earnings$MALE <- as.factor(earnings$MALE)
summary(earnings)

## EARNINGS HEIGHT MALE S SF
## Min. : 2.13 Min. :48.00 0:270 Min. : 7.00 Min. : 0.00
## 1st Qu.: 10.76 1st Qu.:64.00 1:270 1st Qu.:12.00 1st Qu.:10.00
## Median : 16.00 Median :67.00 Median :13.00 Median :12.00
## Mean : 19.64 Mean :67.67 Mean :13.67 Mean :11.84
## 3rd Qu.: 23.16 3rd Qu.:71.00 3rd Qu.:16.00 3rd Qu.:14.00
## Max. :120.19 Max. :80.00 Max. :20.00 Max. :20.00
## SM TENURE WEXP
## Min. : 0.00 Min. : 0.01923 Min. : 1.154
## 1st Qu.:11.00 1st Qu.: 1.93750 1st Qu.:14.596
## Median :12.00 Median : 4.69231 Median :17.510
## Mean :11.58 Mean : 7.03397 Mean :16.900
## 3rd Qu.:12.00 3rd Qu.:10.98077 3rd Qu.:20.197
## Max. :20.00 Max. :24.94231 Max. :23.558
We use log(EARNINGS) because EARNINGS is very naturally skewed and non-negative.

par(mfrow=c(1,2))
par(mar=c(5,2,3,0.5))
hist(earnings$EARNINGS, main="Histogram of EARNINGS", xlab="EARNINGS, $",

ylab=NULL, breaks=seq(0,140,20))
hist(log(earnings$EARNINGS), main="Histogram of log(EARNINGS)",

xlab="log(EARNINGS)", ylab=NULL, breaks=seq(0,5,0.5))
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The fit of regressions with dependent variables that exhibit such a high degree of skewness
tends to be somewhat unsatisfactory, and the associated error terms tend to be non-normal –
this is certainly the case here, since EARNINGS is bounded below by zero. Furthermore,
using log(EARNINGS) means that the coefficients now have the interpretation of percent
changes, e.g., we can say that the difference in hourly earnings between males and females is
100β̂6 percent, controlling for work experiences, years of schooling, etc.

earnings.lm <- lm(log(EARNINGS)~S+SF+SM+WEXP+TENURE+MALE, data=earnings)
summary(earnings.lm)

##
## Call:
## lm(formula = log(EARNINGS) ~ S + SF + SM + WEXP + TENURE + MALE,
## data = earnings)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.15330 -0.29451 -0.00227 0.26747 1.85188
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.534188 0.164125 3.255 0.00121 **
## S 0.107327 0.009599 11.181 < 2e-16 ***
## SF 0.016972 0.007671 2.212 0.02736 *
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## SM 0.001066 0.009513 0.112 0.91083
## WEXP 0.021528 0.005235 4.112 4.53e-05 ***
## TENURE 0.011294 0.003443 3.280 0.00111 **
## MALE1 0.267785 0.042368 6.321 5.51e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4789 on 533 degrees of freedom
## Multiple R-squared: 0.3454, Adjusted R-squared: 0.338
## F-statistic: 46.88 on 6 and 533 DF, p-value: < 2.2e-16
The coefficient estimates are obtained from (X′X)−1X′y. The corresponding standard errors
are the square root of the diagonal elements of σ̂2(X′X)−1 where σ̂2 = 1

533 ε̂′ε̂, the square root
of which is reported as the “Residual Standard Error”:

sqrt(sum(earnings.lm$residuals^2)/earnings.lm$df.residual)

## [1] 0.4788524
The entire coefficient variance matrix is available from:

vcov(earnings.lm)

## (Intercept) S SF SM
## (Intercept) 2.693698e-02 -1.058149e-03 1.195743e-06 -3.110010e-04
## S -1.058149e-03 9.214367e-05 -1.650263e-05 -1.540571e-05
## SF 1.195743e-06 -1.650263e-05 5.884838e-05 -4.092152e-05
## SM -3.110010e-04 -1.540571e-05 -4.092152e-05 9.048808e-05
## WEXP -5.287878e-04 1.196352e-05 -9.428842e-08 -2.546471e-06
## TENURE 4.724871e-05 -2.695823e-06 6.251336e-07 5.675369e-07
## MALE1 2.927493e-04 -2.230107e-05 -2.212113e-06 -5.506823e-06
## WEXP TENURE MALE1
## (Intercept) -5.287878e-04 4.724871e-05 2.927493e-04
## S 1.196352e-05 -2.695823e-06 -2.230107e-05
## SF -9.428842e-08 6.251336e-07 -2.212113e-06
## SM -2.546471e-06 5.675369e-07 -5.506823e-06
## WEXP 2.740373e-05 -6.299929e-06 -4.599204e-05
## TENURE -6.299929e-06 1.185620e-05 -2.575173e-06
## MALE1 -4.599204e-05 -2.575173e-06 1.795007e-03
(the coefficient standard errors are the square root of the diagonal elements of this matrix.)
The t-values are for testing (individually) if the true value of the coefficients are zero, so are
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equal to the coefficient estimates divided by the standard errors. There are packages and
tricks for testing other individual linear hypothesis, but it is straightforward to do it directly.
We do so here to illustrate the expressions given in these notes. E.g. to test β5 = β6, we can
do:

get_ttest_pval<-function(r,r0,mdl){
betahat <- matrix(mdl$coefficients, ncol=1)
tstat <- (crossprod(r,betahat) - r0) / sqrt(t(r) %*% vcov(mdl) %*% r)
(1-pt(tstat, mdl$df.residual))*2

}
r <- matrix(c(0,0,0,0,1,-1,0), ncol=1)
r0 <- 0
print(paste("The t-test p-val is ",

round(as.numeric(get_ttest_pval(r,r0,earnings.lm)),4),".", sep=""))

## [1] "The t-test p-val is 0.1559."
We do not reject the hypothesis.

The R2 is calculated as

SST <- sum((log(earnings$EARNINGS)-mean(log(earnings$EARNINGS)))^2)
SSR <- sum(earnings.lm$residuals^2)
Rsqr <- 1-SSR/SST
Rsqr

## [1] 0.3454113
or simply

cor(log(earnings$EARNINGS), earnings.lm$fitted.values)^2

## [1] 0.3454113
Dividing both numerator and denominator of SSR/SST by N − 1 shows that the R2 is

1− smp.var(ε̂i)
smp.var(Yi)

.

The adjusted-R2 is computed using unbiased versions on the variance esimators

Adj -R2 = 1−
1

N−K
∑N
i=1(ε̂i)2

1
N−1

∑N
i=1(Yi − Y )2 .
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SST <- sum((log(earnings$EARNINGS)-mean(log(earnings$EARNINGS)))^2)
SSR <- sum(earnings.lm$residuals^2)
adjRsqr <- 1-(SSR/earnings.lm$df.residual)/

(SST/(earnings.lm$df.residual+length(earnings.lm$coefficients)-1))
adjRsqr

## [1] 0.3380426
The adjusted-R2 has the advantage that unlike the R2, adding new variables to the equation
might possibly reduce its value (or adding restrictions might possibly increase it.) However,
it is not used often anymore as a model selection tool.

The F-statistic reported is for testing H0 : β1 = ... = β6 = 0, i.e.,

F = R2/J

(1−R2)/(N −K)

where J is the number of restrictions (in this case, 6).

# Rsqr computed earlier
F = (Rsqr/(length(earnings.lm$coefficients)-1)) /

((1-Rsqr)/earnings.lm$df.residual)
F

## [1] 46.8753
To test other multiple linear hypothesis, the easiest way is to run the restricted regression,
and then compute the F-statistic using

F = (ε̂′Rε̂R − ε̂′ε̂)/J
ε̂′ε̂/(N −K) ∼ FJ,N−K .

To test that parents’ years of schooling are not significant factors determining earnings, i.e.,
β3 = β4 = 0, we can do the following:

earnings.rlm <- lm(log(EARNINGS)~S+WEXP+TENURE+MALE, data=earnings)
SSRu <- sum(earnings.lm$residuals^2)
SSRr <- sum(earnings.rlm$residuals^2)
F = ((SSRr-SSRu)/2)/(SSRu/earnings.lm$df.residual)
# pf() gives F distribution percentiles
print(paste("The F-statistic is ", round(F,4), " with p-value ",

round(1-pf(F,2,earnings.lm$df.residual),4),".", sep=""))
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## [1] "The F-statistic is 3.7822 with p-value 0.0234."
We reject the hypothesis that both coefficients are zero.

We end with a discussion of visualizations of the OLS fit. It is always a good idea to
plot the residuals (below left) to see if there is anything unusual. Nothing catches the eye,
except one or two residuals that seem a little large in size relative to the others. We may
want to see if that observation is a ‘high-leverage’ observation (not done here).

par(mfrow=c(1,2))
par(mar=c(5,3,3,0.8))
yhat <- earnings.lm$fitted.values
ehat <- earnings.lm$residuals
plot(x=yhat, y=ehat, main="Residuals vs Fitted Values",

xlab="fitted values", ylab="")
title(ylab="residuals", line=2.2)
abline(h=0, lty='dotted')
plot(x=yhat, y=log(earnings$EARNINGS), main="Actual vs Fitted Values",

xlab="fitted values", ylab="", xlim=c(1,5), ylim=c(1,5))
title(ylab="Actual", line=2.2)
abline(c(0,1), lty="dotted")
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It is tempting to plot the actual vs the fitted values, as in the figure on the right. One would
expect, if the fit is good, for the observations to lie on the 45-degree line. This plot, however,
seems to lead the eye towards errors that are right-angles to the 45-degree line, rather than
vertically, leading to a perception of a biased fit.
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Perhaps more importantly, we might want to ask if the errors are actually normally
distributed, which the t- and F-tests require.

par(mar=c(2,2,4,2))
hist(earnings.lm$residuals, xlim=c(-3,3), ylim=c(0,1),

prob=TRUE, main=NULL, ylab=NULL, xlab=NULL)
title(main="Histogram Estimate of Residual Density", line=3)
mtext("with normal density overlaid", side=3, line=1.5)
x <- seq(-2, 2, length=1000)
fx <- dnorm(x, mean=0, sd=sqrt(var(earnings.lm$residuals)))
par(new=TRUE)
plot(x, fx, type="l", lty="dashed", lwd=1, ylim=c(0,1),

ylab="", xlab="", xlim=c(-3,3))
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Histogram Estimate of Residual Density
with normal density overlaid
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The histogram is scaled so the y-axis is probability rather than frequency, and so that the
area of the histogram sums to one (so it is an actual density estimate, and we can compare it
visually to a density). The overlaid normal distribution has mean zero and standard deviation
equal to that of the residuals. We can calculate the skewness and kurtosis coefficients of the
residuals for a better sense of ‘closeness’ to normality:

N = 540
m2 = sum(earnings.lm$residuals^2)/540 # We use the fact that
m3 = sum(earnings.lm$residuals^3)/540 # OLS residuals have zero means
m4 = sum(earnings.lm$residuals^4)/540 # when calculating these moments
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S = m3/(sqrt(m2)^3)
K = m4/(m2^2)
print(paste("Skewness Coefficient: ", round(S,4),

", Kurtosis Coefficient: ", round(K,4), ".", sep=""))

## [1] "Skewness Coefficient: 0.1146, Kurtosis Coefficient: 4.5812."
There appears to be a some excess kurtosis, though not much. This can also be seen from
the “qqplot” of the residuals. The following plots the values of the quantiles of the residuals
against the values of the corresponding quantiles of the normal distribution. If the residuals
come from a normal distribution, we would expect the scatterplot to fall in a straight line:

qqnorm(earnings.lm$residuals)
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As expected, the qqplot shows slightly heavier tails than what one might expect from a
normal distribution. The non-normality seems very mild, nonetheless, and the t- and F-tests
done here are probably reasonably accurate. In any case, it seems somewhat hopeful to
expect finite sample results to hold exactly, which requires the unlikely scenario that the many
assumptions made here hold exactly (e.g. homoskedasticity, normality, correct functional
form, etc.). In later sections, we will loosen some of the assumptions made in this section,
and use methods that are appropriate under those looser conditions.


