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Abstract

Computing maximum a posteriori (MAP) es-
timation in graphical models is an important
inference problem with many applications.
We present message-passing algorithms for
quadratic programming (QP) formulations of
MAP estimation for pairwise Markov random
fields. In particular, we use the concave-
convex procedure (CCCP) to obtain a lo-
cally optimal algorithm for the non-convex
QP formulation. A similar technique is used
to derive a globally convergent algorithm for
the convex QP relaxation of MAP. We also
show that a recently developed expectation-
maximization (EM) algorithm for the QP for-
mulation of MAP can be derived from the
CCCP perspective. Experiments on syn-
thetic and real-world problems confirm that
our new approach is competitive with max-
product and its variations. Compared with
CPLEX, we achieve more than an order-of-
magnitude speedup in solving optimally the
convex QP relaxation.

1 INTRODUCTION

Probabilistic graphical models provide an effective
framework for compactly representing probability dis-
tributions over high dimensional spaces and perform-
ing complex inference using simple local update proce-
dures. In this work, we focus on the class of undirected
models called Markov random fields (MRFs) [Wain-
wright and Jordan, 2008]. A common inference prob-
lem in this model is to compute the most probable as-
signment to variables, also called the maximum a pos-
teriori (MAP) assignment. MAP estimation is crucial
for many practical applications in computer vision and
bioinformatics such as protein design [Yanover et al.,
2006; Sontag et al., 2008] among others. Computing

MAP exactly is NP-hard for general graphs. Thus ap-
proximate inference techniques are often used [Wain-
wright and Jordan, 2008; Sontag et al., 2010].

Recently, several convergent algorithms have been de-
veloped for MAP estimation such as tree-reweighted
max-product [Wainwright et al., 2002; Kolmogorov,
2006] and max-product LP [Globerson and Jaakkola,
2007; Sontag et al., 2008]. Many of these algorithms
are based on the linear programming (LP) relaxation
of the MAP problem [Wainwright and Jordan, 2008].
A different formulation of MAP is based on quadratic
programming (QP) [Ravikumar and Lafferty, 2006;
Kumar et al., 2009]. The QP formulation is an attrac-
tive alternative because it provides a more compact
representation of MAP: In a MRF with n variables, k
values per variable, and |E| edges, the QP has O(nk)
variables whereas the LP has O(|E|k2) variables. The
large size of the LP makes off-the-shelf LP solvers
impractical for several real-world problems [Yanover
et al., 2006]. Another significant advantage of the QP
formulation is that it is exact. However, the QP formu-
lation is non-convex, making global optimization hard.
To remedy this, Ravikumar and Lafferty [2006] devel-
oped a convex QP relaxation of the MAP problem.

Our main contribution is the analysis of the QP for-
mulations of MAP as a difference of convex functions
(D.C.) problem, which yields efficient, graph-based
message-passing algorithms for both the non-convex
and convex QP formulations. We use the concave-
convex procedure (CCCP) to develop the message pass-
ing algorithms [Yuille and Rangarajan, 2003]. Moti-
vated by geometric programming [Boyd et al., 2007],
we present another QP-based formulation of MAP
and solve it using the CCCP technique. The result-
ing algorithm is shown to be equivalent to a recently
developed expectation-maximization (EM) algorithm
that provides good performance for large MAP prob-
lems [Kumar and Zilberstein, 2010]. The CCCP ap-
proach, however, is more flexible than EM and makes
it easy to incorporate additional constraints that can



tighten the convex QP [Kumar et al., 2009]. All the de-
veloped CCCP algorithms are guaranteed to converge
to a local optimum for non-convex QPs, and to the
global optimum for convex QPs. All the algorithms
also provide monotonic improvement in the objective.

We experiment on synthetic benchmarks and real-
world protein-design problems [Yanover et al., 2006].
Against max-product [Pearl, 1988], CCCP provides
significantly better solution quality, sometimes more
than 45% for large Ising graphs. On the real-world
protein design problems, CCCP achieves near-optimal
solution quality for most instances, and is significantly
faster than the max-product LP method [Sontag et al.,
2008]. Ravikumar and Lafferty [2006] proposed to
solve the convex QP relaxation using standard QP
solvers. Our message-passing algorithm for this case
provides more than an order-of-magnitude speedup
against the state-of-the-art QP solver CPLEX.

2 QP FORMULATION OF MAP

A pairwise Markov random field (MRF) is described
using an undirected graph G = (V,E). A discrete
random variable xi with a finite domain is associated
with each node i ∈ V of the graph. Associated with
each edge (i, j) ∈ E is a potential function θij(xi, xj).
The complete assignment x has the probability:

p(x; θ) ∝ exp
( ∑

ij∈E

θij(xi, xj)
)

The MAP problem consists of finding the most proba-
ble assignment to all the variables under p(x; θ). This
is equivalent to finding the assignment x that max-
imizes the function f(x; θ) =

∑
ij∈E θij(xi, xj). We

assume w.l.o.g. that each θij is nonnegative, otherwise
a constant can be added to each θij without changing
the optimal solution. Let pi be the marginal probabil-
ity associated with each MRF node i ∈ V . The MAP
quadratic programming (QP) formulation [Ravikumar
and Lafferty, 2006] is given by:

max
p

∑
ij∈E

∑
xi,xj

pi(xi)pj(xj)θij(xi, xj) (1)

subject to
∑
xi

pi(xi) = 1, pi(xi) ≥ 0 ∀i ∈ V

The above QP is compact even for large graphical
models and has simple linear constraints: O(nk) vari-
ables and n normalization constraints where n = |V |
and k is the domain size. Ravikumar and Lafferty
[2006] also show that this formulation is exact. That
is, the global optimum of the above QP will maxi-
mize the function f(x; θ) and an integral MAP assign-
ment can be extracted from it. However this formula-
tion is non-convex, making global optimization hard.

Nonetheless, for several problems, a local optimum of
this QP provides a good solution as we will show em-
pirically. This was also observed by Kumar and Zil-
berstein [2010].

2.1 The Concave Convex Procedure

The concave-convex procedure (CCCP) [Yuille and
Rangarajan, 2003] is a popular approach to optimize a
general non-convex function expressed as a difference
of two convex functions. We use this method to ob-
tain message-passing algorithms for QP formulations
of MAP. We describe it here briefly.
Consider the optimization problem:

min{g(x) : x ∈ Ω} (2)

where g(x) = u(x)−v(x) is an arbitrary function with
u , v being real-valued convex functions and Ω being a
convex set. The CCCP method provides an iterative
procedure that generates a sequence of points xl by
solving the following convex program:

xl+1 = arg min{u(x)− xT∇v(xl) : x ∈ Ω} (3)

Each iteration of CCCP decreases the objective
g(x) and is guaranteed to converge to a local opti-
mum [Sriperumbudur and Lanckriet, 2009].

2.2 Solving MAP QP Using CCCP

We first show how the CCCP framework can be used
to solve the QP in Eq. (1). We adopt the convention
that a MAP QP always refers to the QP in Eq. (1);
the convex variant of this QP shall be explicitly differ-
entiated when addressed later. Consider the following
functions u, v:

u(p) =
∑
ij

∑
xixj

θij(xi, xj)
2

(
p2

i (xi) + p2
j (xj)

)
(4)

v(p) =
∑
ij

∑
xixj

θij(xi, xj)
2

(
pi(xi) + pj(xj)

)2 (5)

The above functions are convex because the quadratic
functions f(z) = z2 and f(y, z) = (y + z)2 are convex,
and the nonnegative weighted sum of convex functions
is also convex [Boyd and Vandenberghe, 2004, Ch. 3].
It can be easily verified that the QP in Eq. (1) can be
written as minp{u(p) − v(p)} with normalization and
nonnegativity constraints defining the constraint set
Ω. Intuitively, we used the simple identity −2xy =
(x2 + y2) − (x + y)2. We also negated the objective
function to convert maximization to minimization. For
simplicity, we denote the gradient ∂v/∂p(xi) by ∇xiv.

∇xiv=pi(xi)
∑

j∈Ne(i)

∑
xj

θij(xi, xj)+
∑

j∈Ne(i)

∑
xj

θij(xi, xj)pj(xj)



The first part of the above equation involves a local
computation associated with an MRF node and the
second part defines the messages δj from neighbors
j ∈ Ne(i) of node i. It can be made explicit as follows:

θ̂(xi)=
∑

j∈Ne(i)

∑
xj

θij(xi, xj); δj(xi)=
∑
xj

θij(xi, xj)pj(xj)

∇xi
v= pi(xi)θ̂(xi) +

∑
j∈Ne(i)

δj(xi) (6)

CCCP iterations: Each iteration of CCCP involves
solving the convex program of Eq. (3). First we write
the Lagrangian function involving only the normaliza-
tion constraints, later we address the nonnegativity
inequality constraints. ∇lv denotes the gradient from
the previous iteration l.

L(p, λ) =
∑
ij

∑
xixj

θij(xi, xj)
2

{
p2

i (xi) + p2
j (xj)

}
−

∑
i

∑
xi

pi(xi)∇l
xi

v +
∑

i

λi(
∑
xi

pi(xi)− 1) (7)

Solving for the first order optimality conditions
∇pL(x?, λ?) and ∇λL(x?, λ?), we get the solution:

pl+1
i (xi) =

∇l
xi

v − λi

θ̂(xi)
(8)

λi =
1∑

xi

1
θ̂(xi)

( ∑
xi

∇l
xi

v

θ̂(xi)
− 1

)
(9)

Nonnegativity constraints: Nonnegativity con-
straints in the MAP QP are inequality constraints
which are harder to handle as the Karush-Kuhn-
Tucker (KKT) conditions include the nonlinear com-
plementary slackness condition µ?

jp
?
j (xj) = 0 [Boyd

and Vandenberghe, 2004]. We can use interior-point
methods, but they lose the efficiency of graph based
message passing. Fortunately, we show that for MAP
QP, the KKT conditions are easily satisfied by incor-
porating an inner-loop in the CCCP iterations.

Alg. 1 shows the complete message-passing procedure
to solve MAP QPs. Each outer loop corresponds to
solving the CCCP iteration of Eq. (3) and is run un-
til the desired number of iterations is reached. The
messages δ are used for computing the gradient ∇v as
in Eq. (6). The inner loop corresponds to satisfying
the KKT conditions including the nonnegativity in-
equality constraints. Intuitively, the strategy to handle
inequality constraints is as highlighted in [Bertsekas,
1999, Sec. 3.3.1] – considering all possible combina-
tions of inequality constraints being active (pi(xi)=0)
or inactive (pi(xi) > 0) and solving the resulting KKT
conditions, which is easier as they become linear equa-
tions. If the resulting solution satisfies the KKT condi-
tions of the original problem, then we have a valid solu-
tion for the original optimization problem. Of course,

1: Graph-based message passing for MAP estimation
input: Graph G = (V, E) and potentials θij per edge
//outer loop starts
repeat

foreach node i ∈ V do
δi→j(xj)←

P
xi

pi(xi)θij(xi, xj)

Send message δi→j to each neighbor j ∈ Ne(i)

foreach node i ∈ V do
zeros ← φ
//inner loop starts
repeat

Set pi(xi)← 0 ∀xi ∈ zeros
Calculate pi(xi) using Eq. (8) ∀ xi /∈ zeros
zeros← zeros ∪ {xi : pi(xi) < 0}

until all beliefs pi(xi) ≥ 0

until stopping criterion is satisfied
return: The decoded complete integral assignment

this is highly inefficient for the general case. But fortu-
nately for the MAP QP, we show that the inner loop of
Alg. 1 recovers the correct solution and the Lagrange
multipliers are computed efficiently for the convex pro-
gram of Eq. (3). We describe it below.

The inner loop includes local computation to each
MRF node i and does not require message passing.
Intuitively, the set zeros tracks all the settings x′i of
the variable xi for which pi(x′i) was negative in any
previous inner loop iteration. It then clamps all such
beliefs to 0 for all future iterations. Then the beliefs
for the rest of the settings of xi are computed using
Eq. (8). The new Lagrange multiplier λi (which corre-
sponds to the condition ∇λL(x?, λ?) = 0) is calculated
using the equation

∑
xi\x′

i
pi(xi) = 1.

Lemma 1. The inner loop of Alg. 1 terminates with
worst case complexity O(k2), and yields a feasible point
for the convex program of Eq. (3).

Proof. The size of the set zeros increases with each
iteration, therefore the inner loop must terminate as
each variable’s domain is finite. With the domain size
of a variable being k, the inner loop can run for at
most k iterations. Computing new beliefs within each
inner loop iteration also requires O(k) time. Thus the
worst case total complexity is O(k2).

The inner loop can terminate only in two ways – be-
fore iteration k or at iteration k. If it terminates before
iteration k, then it implies that all the beliefs pi(xi)
must be nonnegative. The normalization constraints
are always enforced by the Lagrange multipliers λi’s.
If it terminates during iteration k, then it implies that
k−1 settings of the variable xi are clamped to zero as
the size of the set zeros will be exactly k−1. The size
cannot be k because that would make all the beliefs
equal to zero, making it impossible to satisfy the nor-
malization constraint; λi will not allow this. The size



cannot be smaller than k − 1 because the set zeros
grows by at least one element during each previous it-
eration. Therefore the only solution during iteration
k is to set the single remaining setting of the variable
xi to 1 to satisfy the normalization and nonnegativity
constraints simultaneously. Therefore the inner loop
always yields a feasible point upon termination.

Empirically, we observed that even for large protein
design problems with k = 150, the number of required
inner loop iterations is below 20 – far below the worst
case complexity. For a fixed outer loop l, let the inner
loop iterations be indexed by r.

Lemma 2. The Lagrange multiplier corresponding to
the normalization constraint for a MRF variable xi

always increases with each inner loop iteration.

Proof. Each inner loop iteration r computes a new La-
grange multiplier λr

i for the constraint
∑

i pi(xi) = 1
using Eq. (8). We show that λr+1

i > λr
i . For the inner

loop iteration r, some of the computed beliefs must be
negative, otherwise the inner loop must have termi-
nated. Let x′i denote those settings of variable xi for
which pi(x′i) < 0 in iteration r. From the normaliza-
tion constraint for iteration r, we get:∑

xi

∇l
xi

v − λr
i

θ̂(xi)
= 1 (10)

We used the explicit representation of pi(xi) from
Eq. (8). Since pi(x′i) are negative, we get:∑

xi\x′
i

∇l
xi

v − λr
i

θ̂(xi)
> 1 (11)

The belief for all such x′i will become zero for the next
inner loop iteration r + 1. From the normalization
constraint for iteration r + 1, we get:∑

xi\x′
i

∇l
xi

v − λr+1
i

θ̂(xi)
= 1 (12)

We used a slight simplification in the above equations
as we ignored the effect of previous iterations, before
iteration r. However, it will not change the conclu-
sion as all the beliefs that were clamped to zero earlier
(before iteration r) shall remain so for all future itera-
tions. Note that ∇xi

and θ̂ do not depend on the inner
loop iterations. Subtracting Eq. 12 from Eq. 11:

(λr+1
i − λr

i )
∑

xi\x′
i

1

θ̂(xi)
> 0 (13)

Since we assumed that all potential functions θij are
nonnegative, we must have (λr+1

i − λr
i ) > 0. Hence

λr+1
i > λr

i and the lemma is proved.

Theorem 3. The inner loop of Alg. 1 correctly recov-
ers all the Lagrange multipliers for the equality and in-
equality constraints for the convex program of Eq. (3),
thus solving it exactly.

Proof. Lemma 1 shows that the inner loop provides a
feasible point of the convex program. We now show
that this point also satisfies the KKT conditions, thus
is the optimal solution. The KKT conditions for the
normalization constraints are always satisfied during
the belief updates (see. Eq. (8)). The main task is to
show that for the inequality constraint −pi(xi) ≤ 0,
the KKT conditions hold. That is, if pi(xi) = 0, then
the Lagrange multiplier µi(xi) ≥ 0, and if −pi(xi) < 0,
then µi(xi) = 0.

By using the KKT condition ∇pi(xi)L(p?, λ?, µ?) = 0,
we get:∑
j∈Ne(i)

∑
xj

θij(xi, xj)pi(xi)−∇l
xi

v + λi − µi(xi) = 0

(14)

The main focus of the proof is on the beliefs for ele-
ments in the set zeros. Let us focus on the end of an
inner loop iteration r, when a new element x′i is added
to zeros because its computed belief pi(x′i) < 0. Us-

ing Eq. (8), we know that pi(x′i) =
∇l

x′
i
v−λr

i

θ̂(x′
i)

. Because

pi(x′i) < 0 we get:

λr
i > ∇l

x′
i
v (15)

For all future iterations of the inner loop, pi(x′i) will be
set to zero. Therefore the KKT condition for iteration
r + 1 mandates that µr+1

i (x′i) ≥ 0. Setting pi(x′i) = 0
in Eq. (14), we get:

µr+1
i (x′i) = λr+1

i −∇l
x′

i
v (16)

We know from Lemma 2 that λr+1
i > λr

i . Combining
this fact with Eq. (15), we get µr+1

i (x′i) > 0, thereby
satisfying the KKT condition. Note that the only com-
ponent depending on the inner loop in the above con-
dition is λr

i ; ∇x′
i

is fixed during each inner loop. Fur-
thermore, for all future inner loop iterations, the KKT
conditions for all elements x′i’s in the set zeros will be
met due to the increasing nature of the multiplier λi.

Therefore, when the inner loop terminates, we shall
have correct Lagrange multipliers µ satisfying µ ≥ 0
for all the elements of the set zeros. For the rest of
the elements, the multiplier µ = 0, satisfying all the
KKT conditions. As the first order KKT conditions
are both necessary and sufficient for optimality in con-
vex programs [Bertsekas, 1999, Sec. 3.3.4], the inner
loop solves exactly the convex program in Eq. (3).



2.3 Solving Convex MAP QP Using CCCP

Because the previous QP formulation of MAP is
nonconvex, global optimization is hard. To remedy
this, Ravikumar and Lafferty [2006] developed a con-
vex QP relaxation for MAP, which performed well
on their benchmarks. Recently, Kumar et al. [2009]
showed that the convex QP relaxation is also equiv-
alent to the second order cone programming (SOCP)
relaxation. Ravikumar and Lafferty [2006] proposed
to solve such QP using standard QP solvers. We show
using CCCP that this QP relaxation can be solved ef-
ficiently using graph-based message passing, and the
resulting algorithm converges to the global optimum of
the relaxed QP. Experimentally, we found the resulting
message-passing algorithm to be highly efficient even
for large graphs, outperforming CPLEX by more than
an order-of-magnitude. The relaxed QP is described
as follows:

max
p

∑
i

∑
xi

pi(xi)di(xi)+
∑
ij

∑
xi,xj

pi(xi)pj(xj)θij(xi, xj)

−
∑

i

∑
xi

p2
i (xi)di(xi) (17)

The relaxation is based on adding a diagonal term,
di(xi), for each variable xi. Note that under the inte-
grality assumption pi(xi) = p2

i (xi), thus the first and
last terms cancel out, resulting in the original MAP
QP. The diagonal term is given by:

di(xi) =
∑

j∈Ne(i)

∑
xj

|θij(xi, xj)|
2

Consider the convex function u(p) represented as:∑
ij

∑
xixj

θij(xi, xj)
2

(
p2

i (xi) + p2
j (xj)

)
+

∑
i,xi

p2
i (xi)di(xi)

and the convex function v(p) represented as:∑
ij

∑
xixj

θij(xi, xj)
2

(
pi(xi)+pj(xj)

)2 +
∑
i,xi

pi(xi)di(xi)

The above two functions are the same as the original
QP formulation, except for the added diagonal terms
di(xi). It can be easily verified that the relaxed QP
objective can be written as minp{u(p)− v(p)} subject
to normalization and nonnegativity constraints. Note
that the maximization of the relaxed QP is converted
to minimization by negating the objective. The gradi-
ent required by CCCP is given by:

∇xiv = pi(xi)θ̂(xi) +
∑

j∈Ne(i)

∑
xj

θij(xi, xj)pj(xj) + di(xi)

Notice the close similarity with the MAP QP case
in Eq. (6). The only additional term is di(xi), which

needs to be computed only once before message pass-
ing begins. The messages for the relaxed QP case are
exactly the same as the δ messages for the MAP QP.
The Lagrangian corresponding to the convex program
of Eq. (3) is similar to the MAP QP case (see Eq. (7))
with an additional term

∑
i,xi

p2
i (xi)di(xi). The con-

straint set Ω includes the normalization and nonnega-
tivity constraints as for the MAP QP case.

Solving for the optimality conditions ∇pL(p?, λ?) and
∇λL(p?, λ?), we get the new beliefs as follows:

pl+1
i (xi) =

∇l
xi

v − λi

2di(xi) + θ̂(xi)
(18)

The Lagrange multiplier λi for the normalization
constraint can be calculated by using the equation∑

xi
pi(xi) = 1. The only difference from the corre-

sponding Eq. (8) for the MAP QP is the additional
term di(xi) in the denominator.

Thanks to these strong similarities, we can show that
Alg. 1 also works for the convex MAP QP with mi-
nor modifications. First, we calculate the diagonal
terms di(xi) once for each variable xi of the MRF.
The message-passing procedure for each outer loop it-
eration remains the same. The second difference lies
in the inner loop that enforces the nonnegativity con-
straints. The inner loop now uses Eq. (18) instead
of Eq. (8) to estimate new beliefs pi(xi). The proof
is omitted being very similar to the MAP QP case.
Theorem 4. The CCCP message-passing algorithm
converges to a global optimum of the convex MAP QP.

The result is based on the fact that CCCP converges to
a stationary point of the given constrained optimiza-
tion problem that satisfies the KKT conditions [Sripe-
rumbudur and Lanckriet, 2009]. Because the KKT
conditions are both necessary and sufficient for convex
optimization problems with linear constraints [Bert-
sekas, 1999], the result follows. We also highlight that
a global optimum of the convex QP may not solve the
MAP problem exactly, as the convex QP is a varia-
tional approximation to MAP that may not be tight.
Nonetheless, it has shown to perform well in prac-
tice [Ravikumar and Lafferty, 2006].

2.4 GP Based Reformulation of MAP QP

We now present another formulation of the MAP QP
problem based on geometric programming (GP). A GP
is a type of mathematical program characterized by
objectives and constraints that have a special form.
For details, we refer to [Boyd et al., 2007]. While the
QP formulation of MAP in Eq. (1) is not exactly a GP,
it bears a close resemblance. This allows us to transfer
some ideas from GP, which we shall describe. We start
with some basic concepts of GP.



Definition 1. Let x1, . . . , xn denote real positive vari-
ables. A real valued monomial function has the form
f(x) = cxa1

1 xa2
2 · · ·xan

n , where c > 0 and ai ∈ <. A
posynomial function is a sum of one or more mono-
mials: f(x) =

∑K
k=1 ckxa1k

1 xa2k
2 · · ·xank

n

In a GP, the objective function and all inequality
constraints are posynomial functions. The MAP QP
(see Eq. (1)) satisfies this requirement – the poten-
tial function θij corresponds to ck and is positive (the
θij = 0 case can be excluded for convenience); node
marginals pi(xi) are real positive variables. Since we
already assumed marginals pi to be positive, nonneg-
ativity inequality constraints are not required. In a
GP, the equality constraints can only be monomial
functions. This is not satisfied in MAP QP as nor-
malization constraints are posynomials. Nonetheless,
we proceed as in GP by converting the original prob-
lem using certain optimality-preserving transforma-
tions. The first change is to let pi(xi) = eyi(xi), where
yi(xi) is an unconstrained variable. This is allowed as
all marginals must be positive. The second change is
to take the log of the objective function; because log is
a monotonic function, this will not change the optimal
solution. The reformulated MAP QP is shown below:

min:− log
{∑

ij

∑
xi,xj

exp
(
yi(xi)+yj(xj)+log θij(xi, xj)

)}
subject to:

∑
xi

eyi(xi) = 1 ∀i ∈ V

This nonlinear program has the same optimal solutions
as the original MAP QP. As log-sum-exp is convex, the
objective function of the above problem is concave.
Note that we are minimizing a concave function that
can have multiple local optima. We again solve it using
CCCP. Consider the function u(y) = 0 and v(y) as
the objective of the above program, but without the
negative sign. The gradient required by CCCP is:

∇l
yi

v=

∑
j∈Ne(i)

∑
xj

θij(xi, xj) exp
(
yi(xi)+yj(xj)

)∑
ij

∑
xi,xj

θij(xi, xj) exp
(
yi(xi)+yj(xj)

) (19)

The Lagrangian corresponding to Eq. (3) with con-
straint set including only normalization constraints is:

L(y, λ) = −
∑
i,xi

yi(xi)∇l
yi

v +
∑

i

λi(
∑
xi

eyi(xi) − 1)

Using the first order optimality condition, we get:

exp
(
yi(xi)

)
=
∇l

yi
v

λi
(20)

We note that the denominator of Eq. (19) is a constant
for each yi(xi). Therefore we represent it using cl. Re-

substituting pi(xi) = eyi(xi) and ∇l
yi

v in Eq. (20):

p?
i (xi) =

∑
j∈Ne(i)

∑
xj

θij(xi, xj)pi(xi)pj(xj)

clλi

where p?
i (xi) is the new parameter for the current iter-

ation, and parameters without asterisk (on the R.H.S.)
are from the previous iteration. Since clλi is also a con-
stant, we can replace them by a normalization constant
Ci to get the final update equation:

p?
i (xi) = pi(xi)

∑
j∈Ne(i)

∑
xj

θij(xi, xj)pj(xj)

Ci

The message-passing process for this version of CCCP
is exactly the same as that for MAP QP and convex
QP. This version does not require an inner loop as
all the node marginals remain positive using such up-
dates. This update process is also identical to the re-
cently developed message-passing algorithm for MAP
estimation that is based on expectation-maximization
(EM) rather than CCCP [Kumar and Zilberstein,
2010]. However, CCCP provides a more flexible frame-
work in that it handled the nonconvex and convex QP
in a similar way as shown earlier. Furthermore, the
CCCP framework allows for additional constraints to
be added to the convex QP to make it tighter [Sripe-
rumbudur and Lanckriet, 2009].

In sum, we have shown that the concave-convex pro-
cedure provides a unifying framework for the vari-
ous quadratic programming formulations of the MAP
problem. Each iteration of CCCP can be easily imple-
mented using graph-based message passing. Interest-
ingly, the messages exchanged for all the QP formu-
lations we discussed remain exactly the same; the dif-
ferences lie in how new node marginals are computed
using such messages.

3 EXPERIMENTS

We now present an empirical evaluation of the CCCP
algorithms. We first report results on synthetic
graphs generated using the Ising model from statisti-
cal physics [Baxter, 1982]. We compare max-product
(MP) and the CCCP message-passing algorithm for
the QP formulation of MAP. We generated 2D nearest
neighbor grid graphs for a number of grid sizes (rang-
ing between 10 × 10 to 50 × 50) and varying values
of the coupling parameter. All the variables were bi-
nary. The node potentials were generated by sampling
from the uniform distribution U [−0.05, 0.05]. The cou-
pling strength, dcoup, for each edge was sampled from
U [−β, β] following the mixed Ising model. The binary
edge potential θij was defined as follows:

θij(xi, xj) =

{
dcoup xi = xj

−dcoup xi 6= xj
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Figure 1: (a) – (e) show quality comparison between max-product (MP) and CCCP for Ising graphs with varying number
of nodes (100 – 2500). The x-axis denotes the coupling parameter β, y-axis shows solution quality. (f) shows the solution
quality CCCP achieves as a percentage of the optimal value (y-axis) for different protein design instances (x-axis).

For every grid size and each setting of the coupling
strength parameter β, we generated 10 instances by
sampling dcoup per edge. For each instance, we con-
sidered the best solution quality of 10 runs for both
max-product and CCCP. We then report the average
quality of the 10 instances achieved for each parameter
β. Both max-product and CCCP were implemented
in JAVA and ran on a 2.4GHz CPU. Max-product was
allowed 1000 iterations and often did not converge,
whereas CCCP converged within 500 iterations.

Fig. 1(a–e) show solution quality comparisons between
MP and CCCP. For 10 × 10 graphs (Fig. 1(a)), both
CCCP and MP achieve similar solution quality. The
gain in quality provided by CCCP increases with the
size of the grid graph. For 20 × 20 grids, the aver-
age gain in solution quality, ((QCCCP −QMP )/QMP ),
for each coupling strength parameter β is over 20%.
For 30 × 30 (Fig. 1(c)) grids, the gain is above 30%
for each parameter β; for 40 × 40 grids it is 36% and
for 50 × 50 grids it is 43%. Overall, CCCP provides
much better performance than max-product over these
Ising graphs. And unlike max-product, CCCP mono-
tonically increases solution quality and is guaranteed
to converge. A detailed performance evaluation of the
convex QP is provided [Ravikumar and Lafferty, 2006].
As such Ising graphs have relatively small QP rep-
resentation, the CCCP message passing method and
CPLEX had similar runtime for the convex QP.

We also experimented on the protein design bench-
mark (total of 97 instances) [Yanover et al., 2006].
In these problems, the task is to find a sequence of
amino acids that is as stable as possible for a given
backbone structure of protein. This problem can be
modeled using a pairwise Markov random field. These
problems are particularly hard and dense with up to
170 variables, each with a large domain size of up

to 150 values. Fig. 1(f) shows the % of the optimal
value CCCP achieves against the best upper bound
provided by the LP based approach MPLP [Sontag
et al., 2008]. MPLP has been shown to be very ef-
fective in solving exactly the MAP problem for sev-
eral real-world problems. However for these protein
design problems, due to the large variable domains,
its reported mean running time is 9.7 hours [Sontag
et al., 2008]. As Fig. 1(f) shows, CCCP achieves near-
optimal solutions, on average within 97.7% of the op-
timal value. A significant advantage of CCCP is its
speed: it converges within 1200 iterations for all these
problems and requires ≈ 403 seconds for the largest
instance, much faster than MPLP. The mean running
time of CCCP was ≈170 seconds for this dataset. Thus
CCCP can prove to be quite effective when fast, ap-
proximate solutions are desired. The main reason for
this speedup is that CCCP’s messages are easier to
compute than MPLP’s as also highlighted in [Kumar
and Zilberstein, 2010]. Compared to the EM approach
of [Kumar and Zilberstein, 2010], CCCP provides bet-
ter solution quality: EM achieved 95% of the optimal
value on average, while CCCP achieves 97.7%. The
overhead of the inner loop in CCCP is small against
EM which takes ≈ 352 seconds for the largest instance,
while CCCP takes ≈ 403 seconds.

We also tested CCCP on the protein prediction
dataset [Yanover et al., 2006]. The problems in this
dataset are much smaller than those in the protein
design dataset, and both max-product and MPLP
achieve good solution quality. CCCP’s performance
was worse in this case, partly due to the local optima
present in the nonconvex QP formulation of MAP. The
convex QP formulation was not tight in this case.

Fig. 2(a) shows runtime comparison of CCCP against
CPLEX for the convex QP for the 25 largest protein
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Figure 2: (a) Time comparison of CCCP for convex
QP against CPLEX for the largest 25 protein design in-
stances (x-axis). The y-axis denotes TCCCP /TCPLEX as
a percentage. (b) denotes the signed quality difference
QCCCP −QCPLEX , a higher value is better.

design problems w.r.t. the number of graph edges.
After trying different QP solver options available in
CPLEX, we chose the barrier method which provided
the best performance. As CPLEX was quite slow, we
let CPLEX use 8 CPU cores with 8GB RAM, while
CCCP only used a single CPU. As this figure shows,
CCCP is more than an order-of-magnitude faster than
CPLEX even when it uses a single core. The longest
CPLEX took was 3504 seconds, whereas CCCP only
took 99 seconds for the same instance. The mean run-
ning time of CPLEX was 1914 seconds; for CCCP,
it was 96 seconds. Surprisingly, CCCP converges in
only 15 iterations to the optimal solution for all 25
problems. Fig. 2(b) shows the signed quality difference
between CCCP and CPLEX for the convex QP ob-
jective. CPLEX provides the optimal solution within
some non-zero ε (we used the default setting). This
figure shows that even within 15 iterations, CCCP
achieved a slightly better solution. The decoded so-
lution quality provided by the convex QP was decent,
within 80% of the optimal value, but not as high as
the CCCP method for the nonconvex QP.

4 CONCLUSION

We presented new message-passing algorithms for var-
ious quadratic programming formulations of the MAP
problem. We showed that the concave-convex proce-
dure provides a unifying framework for different QP
formulations of the MAP problem represented as a dif-
ference of convex functions. The resulting algorithms
were shown to be convergent – to a local optimum
for the nonconvex QP and to the global optimum of
the convex QP. Empirically, the CCCP algorithm was
shown to work well on Ising graphs and real-world
protein design problems. The CCCP approach pro-
vided much better solution quality than max-product
for Ising graphs and converged significantly faster than
max-product LP for protein design problems, while
providing near optimal solutions. For the convex QP

relaxation, CCCP provided more than an order-of-
magnitude speedup over the state-of-the-art QP solver
CPLEX. These results offer a powerful new way for
solving efficiently large MAP estimation problems.
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