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Abstract

Sequential multiagent decision making poses several chal-
lenges, such as scalability with multiple decision-makers,
partial observability, and uncertainty. Although multiagent
reinforcement learning (MARL) approaches have increased
the scalability, addressing combinatorial domains is still chal-
lenging as random exploration by agents is unlikely to gen-
erate useful reward signals. We address cooperative multia-
gent pathfinding under uncertainty and partial observability
where agents move from their respective sources to desti-
nations while also satisfying constraints (e.g., visiting land-
marks). Our main contributions include: (1) compiling do-
main knowledge such as underlying graph connectivity and
domain constraints using propositional logic based decision
diagrams, (2) developing modular techniques to integrate
such knowledge with deep MARL algorithms, and (3) devel-
oping fast algorithms to query the compiled knowledge for
accelerated episode simulation in RL. Empirically, our ap-
proach can tractably represent various types of domain con-
straints, and outperforms previous MARL approaches signif-
icantly both in terms of sample complexity and solution qual-
ity on a number of instances.

1 Introduction
In cooperative sequential multiagent decision making,
agents acting in a partially observable and uncertain envi-
ronment are required to take coordinated decisions towards
a long term goal (Durfee and Zilberstein 2013). Decentral-
ized partially observable MDPs (Dec-POMDPs) provide a
rich framework for multiagent planning (Bernstein et al.
2002; Oliehoek and Amato 2016), and are applicable in do-
mains such as vehicle fleet optimization (Nguyen, Kumar,
and Lau 2017), cooperative robotics (Amato et al. 2019),
and multiplayer video games (Rashid et al. 2018). How-
ever, scalability remains a key challenge with even a 2-
agent Dec-POMDP NEXP-Hard to solve optimally (Bern-
stein et al. 2002). To address the challenge of scalability, sev-
eral frameworks have been introduced that model restricted
class of interactions among agents such as transition inde-
pendence (Becker et al. 2004; Nair et al. 2005), event driven
and population-based interactions (Becker, Zilberstein, and
Lesser 2004; Varakantham et al. 2012). Recently, several
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multiagent reinforcement learning (MARL) approaches are
developed that push the scalability envelop (Lowe et al.
2017; Foerster et al. 2018; Rashid et al. 2018) by using
simulation-driven optimization of agent policies.

Key limitations of MARL approaches include sample
inefficiency, and difficulty in learning when rewards are
sparse, which is often the case in combinatorial problems.
We address such a combinatorial problem of multiagent path
finding (MAPF) under uncertainty and partial observabil-
ity where agents also need to satisfy domain constraints
(noted later) before reaching their destinations. Even the
deterministic MAPF setting where multiple agents need to
find collision-free paths to their destinations in a shared en-
vironment is NP-Hard (Yu and LaValle 2013). The MAPF
problem has important applications in several domains such
as warehouse logistics (Wurman, D’Andrea, and Mountz
2008; Li et al. 2020), robotics (Sartoretti et al. 2019), ve-
hicle fleet optimization (Ling, Gupta, and Kumar 2020), and
train rescheduling (Nygren and Mohanty 2020).

Deep MARL approaches have been applied to MAPF un-
der uncertainty and partial observability (Sartoretti et al.
2019; Ling, Gupta, and Kumar 2020). A key challenge is
that it takes several simulations to find even a single route
to destination as model-free RL does not explicitly exploit
the underlying graph connectivity. Furthermore, agents can
move in cycles, specially during initial training episodes,
which makes such approaches highly sample inefficient. The
problem becomes harder if agents also need to satisfy con-
straints such as visiting some landmark nodes before reach-
ing the destination, or coverage constraints such as visiting
some locations at least once every k time steps. Recent ap-
proaches combine underlying graph structure with deep neu-
ral nets for combinatorial problems such as minimum vertex
cover and traveling salesman problem (Dai et al. 2017; Bello
et al. 2019). However, the knowledge compilation frame-
work that we present provides much more explicit domain
knowledge to RL approaches for MAPF.

To address the challenges of delayed and sparse re-
wards when learning and planning with routes, we compile
the underlying graph-connectivity and other domain con-
straints using propositional logic based sentential decision
diagrams (sdd) (Darwiche 2011). An sdd is a succinct and
tractable representation of a Boolean formula. They gener-
alize ordered binary decision diagrams (OBDDs) (Bryant
1986). Here succinctness pertains to the size of the com-



piled knowledge representation, and tractability refers to the
set of polytime operators for the representation. We use sdds
over OBDDs as in sdd we can choose over multiple de-
cisions as compared to binary decisions in OBDDs. As a
result, sdds tend to be more succinct in practice than OB-
DDs (Bova 2016). Furthermore, specially for representing
routes in a graph, several tractable representations exist for
sdds, which we also exploit in our work for scaling to large
graphs (Choi, Shen, and Darwiche 2017; Shen et al. 2019).

Our main contributions are:
– We represent the underlying graph connectivity and do-

main constraints using sdd for the MAPF problem. A key
benefit is that any satisfiable instantiation or a model of
the sdd is a valid simple path (without loops) between
the given source and destination while satisfying all the
domain constraints, which also significantly prunes the
search space, and generates high quality training samples
for the learning algorithm.

– We show how to integrate the compiled knowledge in a
variety of MARL algorithms based on policy gradient and
Q-learning.

– Querying the sdd for sampling RL episodes is too slow
using the standard inference methods. Therefore, we also
develop efficient inference methods to enable fast sam-
pling of training episodes. Our approaches are general
purpose (i.e., can perform query in any sdd, and not just
the sdd representing routes), and have linear worst case
complexity in the size of the sdd representation.

– We show how to compile a variety of complex constraints
on routes in a simple and modular fashion by using oper-
ations such as sdd multiplication. This makes our frame-
work flexible and general purpose for modeling real world
applications.
As number of paths increase exponentially with the graph

size, we also use hierarchical decomposition of the graph
to enable a tractable sdd representation (Choi, Shen, and
Darwiche 2017). We integrate our framework with previous
MARL approaches (Sartoretti et al. 2019; Ling, Gupta, and
Kumar 2020), and show that the resulting algorithms signif-
icantly outperform the original algorithms both in terms of
sample complexity and solution quality on a number of in-
stances. We also compare environment simulation speed us-
ing our inference algorithm, and previous approaches based
on model counting and specialized graph heuristics. Our in-
ference approach is significantly faster in several settings.

2 The Dec-POMDP Model and MAPF
A Dec-POMDP is defined using the tuple
〈S,A, T,O, Z, r, n, γ〉. There are n agents in environ-
ment (indexed using i = 1 : n). The environment can be in
one of the states s ∈ S. At each time step, agent i chooses
an action ai ∈ A, resulting in the joint action a ∈ A ≡ An.
As a result of the joint action, the environment transitions to
a new state s′ with probability T (s,a, s′). The joint-reward
to the agent team is given as r(s,a). The reward discount
factor is γ < 1.

We assume a partially observable setting in which agent
i’s observation zi ∈ Z is generated using the observation

function O(a, s′, zi) = P (zi|a, s′) where the last joint ac-
tion taken was a, and the resulting state was s′ (for simplic-
ity, we have assumed the observation function is the same
for all agents). As a result, different agents can receive dif-
ferent observations from the environment.

An agent’s policy is a mapping from its action-
observation history τ i ∈ (Z×A)∗ to actions or πi(ai|τ i; θi),
where θi parameterizes the policy. Let the discounted future
return be denoted by Rt =

∑∞
k=0 γ

krk+t. The joint-value
function induced by the joint-policy of all the agents is de-
noted as V π(st)=Est+1:∞,at:∞

[
Rt|st,at

]
, and joint action-

value function as Qπ(st,at) = Est+1:∞,at+1:∞

[
Rt|st,at

]
.

The goal is to find the best joint-policy π to maximize the
value for the starting belief b0: V (π) =

∑
s b0(s)V π(s).

Learning from simulation: In the RL setting, we do not
have access to transition and observation functions T , O.
Instead, multiagent RL approaches (MARL) learn via inter-
acting with the environment simulator. The simulator, given
the joint-action input at at time t, provides the next environ-
ment state st+1, generates observation zit+1 for each agent,
and provides the reward signal rt. Similar to several previous
MARL approaches, we assume a centralized learning and
decentralized policy execution (Foerster et al. 2018; Lowe
et al. 2017). During centralized training, we assume access
to extra information (such as environment state, actions of
different agents) that help in learning value functions V π ,
Qπ . However, during policy execution, agents rely on their
local action-observation history. An agent’s policy πi is typ-
ically implemented using recurrent neural nets to condition
on action-observation history (Hausknecht and Stone 2015).
However, our developed results are not affected by a partic-
ular implementation of agent policies.
MARL for MAPF: MAPF can be mapped to a Dec-
POMDP instance in multiple ways to address different vari-
ants (Ma, Kumar, and Koenig 2017; Sartoretti et al. 2019;
Ling, Gupta, and Kumar 2020). We present the MAPF prob-
lem under uncertainty and partial observability using min-
imal assumptions to ensure the generality of our knowl-
edge compilation framework. Given an undirected graph
G = (V,E), the set V denotes the locations where agents
can move, and edges connect different locations. An agent
i has a start vertex si and final goal vertex gi. At any time
step, an agent can be located at a vertex v ∈ V , or in-transit
on an edge (u, v) (i.e., moving from vertex u to v).

An agent’s action set is denoted by A = Amov ∪ Aoa.
Intuitively, Amov denotes actions that intend to change the
location of agent from the current vertex to a neighboring
directly connected vertex in the graph (e.g., move up, right,
down, left in a grid graph). The set Aoa denotes other ac-
tions that do not intend to change the location of the agent
(e.g., noop that intends to make agent stay at the current ver-
tex). We do not make any assumptions regarding the actual
transition after taking the action (i.e., move/stay actions may
succeed or fail as per the specific MAPF instance).

Depending on the states of all the agents, an agent i re-
ceives observation zi. We assume that an agent is able to
fully observe its current location (i.e., the vertex it is cur-
rently located at). Other information can also be part of the
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Figure 1: (a) Path with a loop; (b) Path to a deadend; (c) Path with
landmarks; Dark nodes are blocked. Landmark nodes are flagged.

observation (e.g., location of agents in the local neighbor-
hood of the agent). We make no specific assumptions about
the joint-reward r, other than assuming that an agent prefers
to reach its destination as fast as possible if the agent’s move-
ment do not conflict with other agents’ movements. Simi-
larly, the agent may receive higher reward if it satisfies dif-
ferent types of domain constraints, e.g., reaching the desti-
nation after visiting a set of landmark nodes in any order
via a simple path, or satisfying coverage constraints, such as
visiting some landmark nodes every k time steps. Section 4
contains more details on the constraints types.

3 Incorporating Compiled Knowledge in RL
A key challenge for RL algorithms for MAPF is that often
finding feasible paths to destinations requires a large number
of samples. E.g., figure 1(a) shows the case when an agent
loops back to one of its earlier vertex. Figure 1(b) shows an-
other scenario where an agent moves towards a dead end.
Such scenarios increase the training episode length in RL.
In figure 1(c), the agent is required to visit some landmark
nodes before reaching the destination. In this case, the agent
might not be able to visit all the landmarks in each episode
of RL which would decrease the quality of the samples fed
to the learning algorithm. Our goal is to develop techniques
that ensure that RL approaches only sample paths that are
(i) simple, (ii) satisfy other constraints (like visiting land-
marks), and (iii) always originate at the source vertex si and
end at the goal vertex gi for any agent i.

Let pit denote the path taken by an agent i until time
t (or the sequence of vertices visited by an agent start-
ing from source si). We also assume that it does not con-
tain any cycle. This information can be extracted from
agent’s history τ it . Let a ∈ Amov be a movement action
towards vertex av . We assume the existence of a function
feasibleActions(pt; si, di) that takes as input an agent’s
current path pt and returns the set nextActions = {a ∈
Amov s.t. [pt, av] di}. The condition [pt, av] di implies
there exists at least one simple path from source si to des-
tination di that includes the path segment [pt, av], and sat-
isfies all domain constraints. Thus, starting with p0 = [si],
the RL approach would only sample simple paths that are
guaranteed to satisfy the constraints and reach the agent’s
destination, thereby significantly pruning the search space,
and resulting in high reward trajectories. The information
required for implementing feasibleActions can be compiled
offline even before training and execution of policy starts
(explained in next section, using decision diagrams), and
does not include any communication overhead during pol-
icy execution. Using this abstraction, we next present sim-

ple and easy-to-implement modifications to a variety of deep
multiagent RL algorithms.
Policy gradient based MARL: We first provide a brief
background of policy gradient approaches for single agent
case (Sutton et al. 2000). An agent’s policy πθ is parameter-
ized using θ. The policy is optimized using gradient ascent
on the total expected reward V (θ) = Eπθ [R0]. The gradient
is given as:

∇θV (θ) = Es0:∞,a0:∞

[ ∞∑
t=0

Rt∇θ log πθ(at|st)
]

(1)

Above gradient expression is also extendible to the multia-
gent case in an analogous manner (Peshkin et al. 2000; Foer-
ster et al. 2018). The input to policy are some features of the
agent’s observation history or φ(τ i). The function φ can be
either hard-coded (e.g., only last two observations), or can
be learned using recurrent neural networks.

For using compiled knowledge using the function
feasibleActions, the only change we require is in the struc-
ture of an agent’s policy π (we omit superscript i for
brevity). The main challenge is addressing the variable sized
output of the policy in a differentiable fashion. Assuming
a deep neural net based policy π, given the discrete action
space A, the last layer of the policy has |A| outputs using
the softmax (to normalize action probabilities π(a|·)). How-
ever, when using feasibleActions, the probability of actions
not in feasibleActions needs to be zero. However, the set
feasibleActions changes as the observation history τ of the
agent is updated. Therefore, a fixed sized output layer ap-
pears to create difficulties. However, we propose an easy fix.
We use π̃ to denote the standard way policy π is constructed
with last layer having fixed |A| outputs. However, we do not
require the last layer to be a softmax layer. Instead, we re-
define the policy π as:

π(a|τ)=


0 if a /∈ feasibleActions(p(τ); s, d)

else
exp
(
π̃(a|φ(τ))

)
∑
a′∈feasibleActions(p(τ);s,d) exp

(
π̃(a′|φ(τ))

)
where p(τ) denotes the path taken by the agent so far, and
s, d are its source and destination. Sampling from π guar-
antees that invalid actions are not sampled. Furthermore, π
is differentiable even when feasibleActions gives different
length outputs at different time steps. The above operation
can be easily implemented in autodiff libraries without re-
quiring a major change in the policy structure π.
Q-learning based MARL: Deep Q-learning for the sin-
gle agent case (Volodymyr et al. 2015) has been extended
to the multiagent setting also (Rashid et al. 2018). In
the QMIX approach (Rashid et al. 2018), the joint action-
value function Qtot(τ ,a;ψ) is factorized as (non-linear)
combination of action-value functions Qi(τ i, ai; θi) of each
agent i. A key operation when training different param-
eters θi and ψ involves maximizing maxaQtot(τ ,a;φ)
(for details we refer to Rashid et al.). This operation
is intractable in general, however, under certain condi-
tions, it can be approximated by maximizing individual
Q functions maxa∈AQi(τ

i, ai) in QMIX. We require two
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Figure 2: (a) An undirected graph; A,B,C,D,E represent the
edge variables. A simple path from s = n1 to d = n5 is highlighted
in red and can be written as a propositional sentence A ∧C ∧E ∧
¬B∧¬D; (b) An sdd for the graph in (a) where the encircled node
represents a decision node (p1, s1), (p2, s2) (c) a vtree for the sdd

simple changes to incorporate our knowledge compila-
tion scheme in QMIX. First, instead of maximizing over
all the actions, we maximize only over feasible actions
of an agent as maxa∈feasibleActions(p(τ i);si,di)Qi(τ

i, a).
Second, in Q-learning, typically a replay buffer is also
used which stores samples from the environment as
(τ ,a, τ ′, r). In our case, we also store additionally the
set of feasible actions for the next observation history τ ′i

for each agent i as feasibleActions(p(τ ′i); si, di) along
with the tuple (τ ,a, τ ′, r). The reason is when this tu-
ple is replayed, we have to maximize Qi(τ ′i, a) over
a ∈ feasibleActions(p(τ ′i); si, di), and storing the set
feasibleActions(p(τ ′i); si, di) would reduce computation.

We have integrated our knowledge compilation frame-
work with two policy gradient approaches proposed in (Sar-
toretti et al. 2019; Ling, Gupta, and Kumar 2020) (one using
feedforward neural net, another using recurrent neural net-
work based policy), and a QMIX-variant (Fu et al. 2019)
for MAPF, demonstrating the generalization power of the
framework for a range of MARL solution methods.

4 Compiling and Querying Decision
Diagrams for MAPF

We now present our decision diagram based approach to im-
plement the feasibleActions function. Let upper case letters
(X) denote variables and lowercase letters (x) denote their
instantiations. Bold upper case letter (X) denotes a set of
variables and their lower case counterparts (x) denote the
instantiations.
Paths as a Boolean formula: A path p in the underly-
ing undirected graph G = (V,E) can be represented as a
Boolean formula as follows. Consider Boolean random vari-
ables Xi,j for each edge (i, j) ∈ E. If an edge (i, j) occurs
in p, then Xi,j is set to true, otherwise set to false. Hence,
conjunction of these literals denotes path p, and the Boolean
formula representing all paths is obtained by disjoining for-
mulas for all such paths (Choi, Tavabi, and Darwiche 2016).
An example path in a graph is given in figure 2(a).
Sentential decision diagrams: Since the number of paths
between two nodes can be exponential, we need a compact
representation of the Boolean formula representing paths. To

this end, we use sentential decision diagram or sdd (Dar-
wiche 2011). It is a Boolean function f(X,Y) on some non-
overlapping variable sets X,Y and is written as a decom-
position in terms of functions on X and Y. In particular,
f = (p1(X) ∧ s1(Y)) ∨ ... ∨ (pk(X) ∧ sk(Y)), with each
element (pi, si), i = 1 . . . k of the decomposition composed
of a prime pi and a sub si. An sdd represented as a decision
diagram describes members of a combinatorial space (e.g.,
paths in a graph) using propositional logic in a tractable
manner. It has two kinds of nodes:
- terminal node, which can be a literal (X or ¬X), always

true (>) or always false (⊥), and
- decision node, which is represented as (p1 ∧ s1) ∨ ... ∨

(pk∧sk) where all (pi, si) pairs are recursively sdds. The
primes are always consistent, mutually exclusive and ex-
haustive.
Figure 2(b) represents an sdd for the graph in figure 2(a)

encoding all paths from n1 to n5. The encircled node is a
decision node with two elements (D,E) and (¬D,⊥). The
primes are D and ¬D and subs are E and ⊥. The Boolean
formula representing this sdd node is (D ∧E) ∨ (¬D ∧⊥)
which is equivalent toD∧E. The Boolean formula encoded
by the whole sdd is given by the root node r of the sdd.

An sdd is characterized by a full binary tree, called a
vtree, which induces a total order on the variables from a
left-right traversal of the vtree. E.g., for the vtree in fig-
ure 2(c), the variable order is (A,B,C,D,E). Given a fixed
vtree, the sdd is unique. An sdd node n is normalized (or
associated with) for a vtree node v as follows:
- If n is a terminal node, then v is a leaf vtree node which

contains the variable of n (if any).
- If n is a decision node, then n’s primes (subs) are normal-

ized for the left (right) child of v.
- If n is the root node, then v is the root vtree node.
Intuitively, a decision node n being normalized for vtree
node v implies that the Boolean formula encoded by n con-
tains only those variables contained in the sub-tree rooted
at v. The Boolean formula encoding the domain knowledge
can be compiled into a decision diagram using the sdd com-
piler (Oztok and Darwiche 2015). The resulting sdd may
not be exponential in size even though it is representing an
exponential number of objects.
Satisfiability for feasibleActions: Given an sdd r and
evidence e (an instantiation of some variables), we will use
fn to denote a mapping from an sdd node n to the Boolean
function it represents. We also assume n is normalized for a
vtree node v. We use ev to denote the subset of evidence e
that pertains to the variables of the subtree rooted at v. We
will use fn|ev to denote the conditioning of fn on ev , i.e.,
fn|ev is a subfunction resulting from setting variables of fn
to their values in ev . We define a function SAT(fn|ev) as:

SAT(fn|ev) =

{
True if fn|ev is satisfiable,
False otherwise

(2)

We note that SAT(fn|ev) only answers whether the formula
is satisfiable or not; it does not provide an instantiation for
which formula evaluates to true or false.



n SAT(fn|X) SAT(fn|¬X) SAT(fn|∅)
> True True True
⊥ False False False
X True False True
¬X False True True

Table 1: SAT(fn|ev) for a terminal node given evidence

We assume that the current sampled path by the agent is
p. In the context of sdd, we assume that p is a set of edges
in graph G traversed from source s by the agent, and Xp

denotes variables for edges in p. Let vp denote the current
vertex of the agent in G (and assume vp is not the destina-
tion). Let Nb(vp) denote all direct neighbors of vp inG. The
feasibleActions set is given as:

feasibleActions(p) = {v′ | v′ ∈ Nb(vp), (vp, v
′) /∈ p,

SAT(fr|ep′) = True} (3)

where ep′ is the set of variables for the current partial path
and the next action in consideration: ep′ = Xp ∪ {Xvp,v′}
(Xvp,v′ is set to true when added to the evidence).

Let fr denote the formula for the sdd root. If SAT(fr|ep′)
is False, then v′ can be pruned from the action set as it im-
plies there is no simple path to destination d that takes the
edge (vp, v

′) after taking the partial path p and also satisfies
domain constraints.

The above query, as such, can be easily performed for a
sdd; we do not require a general purpose Boolean satisfia-
bility solver. The sdd package 1 is equipped with a model
counting routine that can also take into account the evidence
set. This routine has polytime complexity in the sdd size
(number of sdd nodes and edges). If model count is zero,
then we can prune v′, otherwise it is feasible. However, this
method was still slow with RL, as a query is made to the
sdd at each step of episode sampling. To address this, we
present a fast algorithm that performs inference in the sdd
in a top down search fashion, and empirically, is much faster
than the standard model counting approach. We also high-
light that the inference method we present is general purpose
and is not limited to sdds that represent paths or any specific
constraint type.
Algorithms to check sdd satisfiability: Algorithm 1 de-
scribes a way to compute SAT(fr|e) (fr is the formula for
sdd root), and is motivated by the sdd model counting ap-
proach1. Table 1 shows SAT(fn|ev) for a terminal sdd node
n that is normalized for vtree node v (assume v has the vari-
able X). In this case, ev is either a literal (X or ¬X) or an
empty instantiation ∅ (which means the variable X is not in
the evidence e). Entries in this table can be justified using
standard Boolean logic. If X is not in e, then we can set X
to either true or false.

When n is a decision node with k elements, SAT(fn|ev)
is computed as

∨k
i=1

(
SAT(fpi |el) ∧ SAT(fsi |er)

)
where

el and er denote the subsets of evidence e that pertain to the
variables of the left and right subtree of v respectively. We
prove the correctness of Algorithm 1 by induction.

1https://github.com/wannesm/PySDD

Algorithm 1: BU-SAT: bottom-up method for satisfia-
bility

1 Input: SDD r and evidence e
2 // visit children before parents
3 for node n in the SDD do
4 if n is a terminal node then
5 n.value← SAT(fn|ev)
6 else
7 n.value←

∨k
i=1 pi.value ∧ si.value

8 // (pi, si) is the ith element of node n

9 return r.value

Proof. Base Case: n is a terminal node. If n is a terminal
node, then SAT(.|.) is given by Table 1.
Inductive Step: n is a decision node. Assume it has k ele-
ments, and is denoted as (p1 ∧ s1) ∨ ... ∨ (pk ∧ sk). Let
X and Y denote variables in the left and the right subtree
of v respectively. Notation ∨x|=e implies disjunction over all
instantiations x that are consistent with evidence e.

SAT(fn|ev)=
∨

x|=el

∨
y|=er

SAT(fn|xy) (4)

=

k∨
i=1

( ∨
x|=el

∨
y|=er

(
SAT(fpi |x)

∧
SAT(fsi |y)

))
(5)

=

k∨
i=1

( ∨
x|=el

SAT(fpi |x)
)∧( ∨

y|=er

SAT(fsi |y)
)

(6)

=

k∨
i=1

(
SAT(fpi |el) ∧ SAT(fsi |er)

)
(7)

Eq (5) holds because of the decomposability property of
sdd, i.e., variables in prime pi and sub si are disjoint.

The time complexity of Algorithm 1 is linear in the size of
sdd as every node n is visited only once. However, in RL, the
inference for feasibleActions needs to be done at each time
step for each training episode. We observed empirically that
this method was slow, and difficult to scale. We next develop
our inference method that implements the same logic as in
algorithm 1, but in a top down fashion. Our approach does
not need to visit each sdd node, which makes it faster.

In Algorithm 2, for a decision node n (which has elements
(pi, si)), we recursively check if SAT(fpi |el) = True and if
SAT(fsi |er) = True for all i. As we only need to answer
whether the formula fn|ev is satisfiable or not, we can ter-
minate the procedure once we have found that both the con-
ditions are True. We note that we check whether fsi |y is
satisfiable only if fpi |x is satisfiable. We also store values
of terminal and decision nodes that we have already visited
and reuse them during the recursion. Each edge in sdd will
be visited at most once. Hence, Algorithm 2 has linear com-
plexity in the worst case. This simple approach gives us sig-
nificant improvement in inference speed as compared to Al-
gorithm 1. We also optimize this approach over an episode.
That is, assume that the edge (vp, v

′) is selected at time step



Algorithm 2: TD-SAT: Top down search for satisfiability

1 Input: sdd node n and evidence ev
2 if n.visited is False then
3 if n is a terminal node then
4 n.value← SAT(fn|ev)
5 else
6 n.value← False
7 for element(pi,si) of node n do
8 if TD-SAT(pi, el) is True then
9 if TD-SAT(si, er) is True then

10 n.value← True
11 Break

12 n.visited← True

13 return n.value

t, we can reuse the values of visited nodes during comput-
ing SAT(fr|ep′) for checking feasibleActions at time step
t + 1 (details omitted). These optimizations are not easily
integrable in the bottom up or model counting approach.
Hierarchical clustering for large graphs: For increas-
ing the scalability of our framework, we take motivation
from (Choi, Shen, and Darwiche 2017; Shen et al. 2019).
These previous results show that by suitably partitioning the
graph G among clusters in a hierarchical way, we can keep
the size of the sdd tractable even for very large graphs. Such
partitioning does result in the loss of expressiveness as the
sdd for the partitioned graph may omit some simple paths,
but empirically, we found that this partitioning scheme still
improved efficiency of the underlying RL algorithms signif-
icantly. This partitioning method is described in the supple-
mentary material.

5 Domain Constraint Modeling
We next show some examples of modeling different kinds of
constraints using sdd and operations over sdd.
Simple paths from a source to destination: We have al-
ready shown this modeling in section 4. We also note that,
as such, a simple graph heuristic based on shortest path al-
gorithm is also able to find out whether selecting the next
node can result in a simple path to destination. However,
using sdds, we can model much richer constraints in a
tractable manner, and for these constraints, there may not
be a straightforward graph heuristic such as shortest path.
Visiting Landmarks Constraint: As noted in figure 1(c),
consider a problem where an agent moves along a sim-
ple path from a source to a destination, and also visiting
some landmarks along the way. Assume there are N land-
mark nodes numbered 1, ..., N . Let inc(k) be the set of
variables corresponding to the edges incident on landmark
k or inc(k) = {Xi,k | (i, k) ∈ E}. For each landmark
k, we can make sure that the agent visits k by making
sure at least one variable is true in inc(k). The constraint
specifying to specify it is visit(k) = ∨X∈inc(k)X . We can
take conjunction of all such constraints over all landmarks:
visit=∧Nk=1 visit(k).

Next, we construct an sdd1 for visit formula. However,
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Figure 3: (a) A graph; (b) Time-indexed graph

this sdd has no information about routes. Therefore, we cre-
ate another sdd2 that encodes only simple path constraints
from source to destination. We can combine (or multiply)
these two sdds so that the resulting sdd has models (satisfi-
able instantiations) from both the sdds. This can be achieved
by the conjoin operation on sdds, and it also has polytime
complexity in the size of component sdds (Shen, Choi, and
Darwiche 2016). This problem has applications in settings
such as taxi pick-up and drop off (Dietterich 2000) and lo-
gistics (Li et al. 2020).

For this problem, it is non-trivial to design an efficient
graph heuristic. We implemented one such heuristic from
the literature (Vardhan et al. 2009). Empirically, it was much
slower than our inference procedure in the compiled sdd.
This highlights that for rich constraints, our method provides
a generic and fast technique which can be integrated in RL.
Coverage constraint: Consider a simple graph as shown in
Figure 3(a) Here the agent’s task is to visit node 3 at least
once every K time steps over horizon H . To model such
a problem, we construct a time-indexed graph as shown in
figure 3(b). In this graph, the agent selects one edge at every
time step t. E.g., let the agent take an edge (i, j) between
time t and t + 1. If i 6= j, then it moves from node i to j. If
i = j, then it stays at node i. In this graph, since time flows
from left to right, the agent can only move in this direction.
To represent this constraint, focus on the edges between time
t and t+1. The variables representing these edges are denoted
by the setE(t, t+1). Each of these edges can be taken exactly
once so that the agent does not go backward in time. For
each variable Xi ∈ E(t, t+1), we make sure that only one
of them is True using only(Xi) = Xi ∧j 6=i ¬Xj .

The time constraint between time steps t and t+1 is given
by: tc(t, t+1) = ∨X∈E(t,t+1) only(X). The time constraint
over all the time steps is given as ∧H−1t=0 tc(t, t+1)

To model constraints for visiting node 3 every K time
steps, we can follow a strategy similar to landmarks con-
straint visit between time steps t to t+K. Conjunction of
all such constraints over the time horizon H gives the fi-
nal Boolean formula for visiting node 3 every K time steps.
This problem can also be easily generalized to visitN nodes
at least once every K time step. In literature, this is com-
monly referred as the coverage problem (Yehoshua and Ag-
mon 2016; Galceran and Carreras 2013) and can be lever-
aged for applications like patrolling over a city infrastruc-
ture (Gupta, Kumar, and Paruchuri 2018).

We can compile separate sdds for all such constraints in-
cluding the sdd for the simple path constraints, and conjoin
them (as in the landmark constraint) to get one sdd that rep-



resents all the constraints. In this fashion, we can represent
complex constraints in a simple and modular fashion.

6 Empirical Evaluation
We present results to show the succinctness, efficiency and
modularity of our framework. We also present some results
to show how the integration of our framework with previ-
ous multiagent deep-RL approaches based on policy gradi-
ent and Q-learning (Sartoretti et al. 2019; Ling, Gupta, and
Kumar 2020) performs better in MAPF problems in terms
of both sample efficiency and solution quality on a number
different maps and with different number of agents.
Number of paths encoded: Table 2 shows that an sdd can
encode an exponential number of paths demonstrating its
succinctness. For large maps (e.g., 10x10, 20x20), we use hi-
erarchical clustering as noted in section 4. The table shows
the number of paths encoded in maps of sizes 10x10 and
20x20 and with landmark constraints. The largest sdd con-
tained 127K nodes (for 20x20, open grid). We were able to
compile sdd with very large number of landmarks (80 land-
marks in 20x20 grid), the resulting sdd has ∼ 22K nodes,
and is thus tractable to represent and reason with.

Size Open grid 5 Landmarks
10x10 1.08E+13 2.25E+12
20x20 4.59E+51 1.21E+50

Table 2: Number of path encoded

Simulation Speed: We compare the sampling speeds of
TD-SAT, BU-SAT and graph-heuristics based inference ap-
proaches on open grid maps (5x5, 10x10, and 20x20) and
maps with five landmarks. For grid maps, the graph heuris-
tic GH1 uses Dijkstra’s algorithm to determine whether the
agent can take the edge next (vp, v

′) by checking if there
exists a path between v′ and the destination d. For maps
with landmark constraints, we use an approximation algo-
rithm (GH2) (Vardhan et al. 2009) to check if there exists a
simple path from the next possible node v′ to destination d
while going through unvisited landmark(s).

We randomly generated 10K paths given the source (top
right node) and destination (bottom left node) using each ap-
proach for both open grid maps and maps with 5 landmarks.
We run the simulation for each approach on all instances 5
times. As the standard deviation for the runs is small, we
report the average simulation speed. Table 3 shows that our
inference approach is faster by an order of magnitude than
the model counting based approach. The graph heuristics
on open grid maps perform well as checking whether the
edge (vp, v

′) can be taken by Dijkstra’s algorithm runs in
time Θ((|V | + |E|) log |V |). However, we can use hierar-
chical clustering technique to make more clusters on 10x10
and 20x20 so that the simulation speed of our approach is
comparable to the graph heuristics. Table 4 shows that our
approach is the fastest among all approaches. GH2 runs ex-
tremely slow on large maps (even with 5 landmarks), and
cannot be scaled up to the high density setting.

Approach 5x5 10x10 20x20
BU-SAT 979.7 38873.6 730031.1
TD-SAT 153.1 1313.0 26915.3

GH1 6.9 42.9 473.4

Table 3: Avg. simulation speed on open grid maps (in seconds)

Approach 5x5 10x10 20x20
BU-SAT 4513.6 49135.6 1282995.0
TD-SAT 201.9 2061.9 43619.2

GH2 1461.0 85142.9 494469.9

Table 4: Avg. simulation speed on maps with 5 landmarks (in sec)

Approach H = 30 H = 60 H = 90
BU-SAT 25764.9 54841.6 80584.0
TD-SAT 2636.6 5483.8 8272.3

Table 5: Avg. simulation speed for coverage problem (in sec)

In Table 5, we show the simulation speeds of BU-SAT
and TD-SAT for the coverage problem on a straight line
graph with 7 nodes with number of landmarks to visit as
N = 3. The agent needs to visit all the landmarks ev-
ery K = 15 time steps. The simulations are done for time
horizons H = 30, 60, 90. We run each simulation 10,000
times and report the average time. Clearly, TU-SAT per-
forms much faster than BU-SAT in all the instances.
Simple path constraint: We next evaluate the integration
of our knowledge-compiled framework (KCO) with policy
gradient based approaches DCRL (Ling, Gupta, and Kumar
2020) and PRIMAL (Sartoretti et al. 2019), and with Q-
learning based approach MAPQN (Fu et al. 2019) on several
open grid maps with varying number of agents. For these ex-
periments, we use the simple path constraints using an sdd.
We follow the same MAPF model and experimental settings
as (Ling, Gupta, and Kumar 2020). More details on the ex-
periments, the neural network structure and the hyperparam-
eters are noted in the supplementary material. We generated
10 instances for each setting. For each instance, we run three
times and choose the run with the best performance. The to-
tal objective is to minimize sum of costs (SOC) of all agents
combined with penalties for congestion. We report the aver-
age total objective over all agents vs the average cumulative
sample count over all instances on each map.
- Open grid: We evaluate KCO, GH1 with DCRL and
MAPQN on open grid maps respectively. Figure 4 clearly
show that both KCO and GH1 can fast the training process
and make it more sample efficient. We note that the differ-
ence of the solution quality between KCO and GH1 is not
distinct. Moreover, the solution quality is not affected by hi-
erarchical clustering (10x10 case). Based on this observa-
tion, we do not show results on the integration of GH1 with
RL approaches on maps with obstacles. As noted in (Ling,
Gupta, and Kumar 2020), MAPQN cannot work well on
large maps with a large number of agents due to the huge
state space. Therefore, we do not run MAPQN on grid with
size greater than 5x5.
- Obstacles: We evaluate KCO with DCRL, MAPQN and
PRIMAL on a 10x10 map with randomly generated ob-
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Figure 4: Sample efficiency results on open grids (N# denotes number of agents)
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Figure 5: Sample efficiency results on maps with landmarks (L# denotes number of landmarks)
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Figure 6: Sample efficiency results on 10x10 grid with obstacles
(DCRL and MAPQN)
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Figure 7: Sample efficiency results on 10x10 grid with obstacles
(PRIMAL)

stacles (density 0.35). Figure 6 clearly shows that DCRL
and MAPQN can converge much faster with the integra-
tion of KCO. Specifically for MAPQN, several agents did
not reach their destinations (8.8 agents on average, for N10
case), whereas in MAPQN+KCO, all agents reached des-
tination, which explains much better solution quality by
MAPQN+KCO. As noted in (Sartoretti et al. 2019), high ob-
stacle density is particularly problematic for PRIMAL. Our
results in Figure 7 show that PRIMAL+KCO clearly outper-
forms PRIMAL in terms of sample efficiency. We note that
the average SOC is quite high in both PRIMAL and PRI-
MAL+KCO during the initial episodes (N4 case) as agents
take noop actions to avoid congestion due to the high den-
sity.
Simple path + landmark constraints: We evaluate KCO

and GH2 based inference approaches with DCRL and
MAPQN algorithms on maps with randomly generated land-
marks. We do not integrate them with PRIMAL as changing
the state space in the PRIMAL network is not easy. GH2
with RL on large maps runs extremely slow on large maps
so we omit those results as well. Figure 5 shows that DCRL
and MAPQN converge using much less samples when in-
tegrated with KCO and GH2. The results also confirm that
an agent needs a lot of exploration to find a path that goes
through all the landmarks when there is no integration of
compiled knowledge. We also show the results of the setting
where there is a large number of agents. This setting is very
challenging as all the agents need to visit the same set of
landmarks while also avoiding congestion.
Conclusion We addressed the problem of cooperative mul-
tiagent pathfinding under uncertainty and partial observabil-
ity. Our work compiled static domain information such as
underlying graph connectivity and constraints over paths us-
ing propositional logic based decision making diagrams. We
developed techniques to integrate such diagrams with deep
RL algorithms. Furthermore, to make simulation faster for
RL, we developed an inference procedure. We also demon-
strate the modeling of different kinds of constraints using
propositional logic. We showed that the simulation speed of
our inference procedure is faster than other approaches. We
demonstrated the effectiveness of our approach both in terms
of sample efficiency and solution quality on a number of in-
stances.
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