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Abstract—Diffusion processes have increasingly been used to
represent flow of ideas, traffic and diseases in networks. Learning
and controlling the diffusion dynamics through management
actions has been studied extensively in the context of independent
cascade models, where diffusion on outgoing edges from a
node are independent of each other. Our work, in contrast,
addresses (a) learning diffusion dynamics parameters and (b)
taking management actions to alter the diffusion dynamics to
achieve a desired outcome in dependent cascade models. A key
characteristic of such dependent cascade models is the flow
preservation at all nodes in the network. For example, traffic and
people flow is preserved at each network node. As a case study, we
address learning visitor mobility pattern at a theme park based on
observed historical wait times at individual attractions, and use
the learned model to plan management actions that reduce wait
time at attractions. We test on real-world data from a theme park
in Singapore and show that our learning approach can achieve an
accuracy close to 80% for popular attractions, and the decision
support algorithm can provide about 10-20% reduction in wait
time.

I. INTRODUCTION

Diffusion processes describe how ideas, influence, and
people spread over an underlying network, which for example
may be a social network [1] or a transportation network [2].
Understanding diffusion dynamics is important as it helps
predict and control the contagion spread in a network. The
independent cascade (IC) model of [1] and its variants have
been quite successful in modeling such a diffusion process
over a network in a variety of domains [3],[4],[5].

In our work, we address several features of cascades in
real-world that are not modeled in the existing IC model. For
example, in many networks, it is not feasible to track the status
of each entity in the cascade (e.g., tracking visitors moving in
a theme park). Therefore, diffusion dynamics must be learned
from the aggregate observed data for the underlying contagion.
Some examples include finding the most probable path of
migratory birds [6], understanding the evolution of traffic in
a transportation network [7],[2], emotional contagion in a
crowd evacuation scenario [8] and mobility pattern of visitors
in a theme park. Therefore, we develop techniques based
on mathematical optimization that can learn the underlying
dynamics of the diffusion process using only aggregate data.

We incorporate realistic features, such as modeling queues
at nodes in the underlying network (e.g., attractions in a
theme park) while learning the diffusion dynamics based on
aggregate data. We further augment the IC model with flow
conservation that is required when modeling the diffusion
process in problems such as traffic flow diffusion or visitor
flow across theme park attractions. Incorporating such features

results in a dependent cascade model, where the diffusion over
the outgoing edges must satisfy flow conservation, and is no
longer independent for each edge.

Given the learned model of the diffusion dynamics, the
next key problem we address is how to take decisions within
a given budget to alter the dynamics of the underlying dif-
fusion process to optimize some performance criterion. We
are motivated by the problem of placing sideshows in an
overcrowded theme park to reduce congestion at different
attractions. Sideshows alter the underlying flow of visitors
by attracting some fraction of visitors to themselves, thereby
reducing congestion at main attractions in the theme park.
When and where to place sideshows using limited resources
is the key decision making problem we address.

We validate our models in the context of a real theme
park in Singapore. First, given historical aggregate information
about the number of people waiting at theme park attractions
provided by the theme park operator, we learn the mobility
pattern of visitors moving across various attractions in the
theme park. Empirically, our learning approach provides an
accuracy of about 80% for popular attractions, providing
good empirical support for our diffusion models. Our decision
making approach for sideshow placement provides a reduction
in wait times by about 10% over baseline approaches, and up
to 20% over the case when no sideshows are present.

Related Work In the social network literature, learning the
parameters of a IC model based diffusion process has become
a flourishing research area [9],[5],[10],[11],[12],[13]. Myers
and Leskovec [9] formulate the problem of parameter learning
using convex optimization. Gomez et al. [5] address a similar
problem using submodularity based optimization. Netrapalli
and Sanghvi [10] address the complementary question of how
many observed cascades are necessary to correctly learn the
structure of a network. There has also been work on learning
the parameters using features of the diffusion process, such
as the language of tweets [11] in a Twitter network and
geographical features to learn an endangered species move-
ment parameters [14]. Daneshmand et al. [12] investigate the
network structure inference problem using an l

1

-regularized
likelihood maximization framework recently. Qu et al. [13] uti-
lized data summarization tools to learn the diffusions over large
and dynamic online social networks. Our work is different in
the sense that the underlying diffusion process has dependent
outgoing flows from a node to maintain flow conservation
unlike the IC model. We also assume that only aggregate
information is available, rather than individual-level tracking
information required in the IC model.



The dependent cascade model we use is closely related to
the collective diffusion model in [2]. Our work addresses an
enriched version of such a collective diffusion model as data
requirements in our approach are much weaker than that of [2].
We concretely show later the differences between our approach
and that of [2]. In addition, a significant contribution of our
work is to formulate and validate diffusion models with real
world data, which was not provided in [2].

Having learned a model of the diffusion process, the natural
next step is decision-making in the context of the learned
model. The goal is typically to find the set of actions that
result in a diffusion process with certain desirable properties
subject to operational constraints [1], [4], [15],[16]. This kind
of decision-making has numerous applications. For example,
in disease control, the decision is which nodes to vaccinate to
curb the spread of disease while in advertising, the question
is which nodes to target to encourage the adoption of a
product. In traffic scenario, the decision is to route cooperate
vehicles such that can ease congestions, the challenge then
becomes how to capture the dynamic and congestion situation
and control the vehicles. Our work proposes and develops an
optimization formulation for similar decision making problem
within the context of dependent cascades and aggregate flow.

II. NETWORK DIFFUSION WITH DEPENDENT CASCADES

We provide an operational model to represent diffusion in
a time indexed graph, G(V,E, T ) with dependent cascades.
Before explicitly explaining our model, we start with the well
known independent cascade model [1],[15] that is used to
represent spread of ideas, influence. Every edge (u, v) 2 E

at time t is associated with a transition probability p

t

u,v

representing the probability that node v will be activated if
node u was previously activated. In the independent cascade
model, probabilities associated with outgoing edges from a
node are independent of each other and hence the cascades in
different parts of the network are independent.

On the other hand, since we primarily consider diffu-
sion of agents (people/vehicles) where flow is preserved, the
probabilities associated with edges going out of a node are
dependent on each other. Specifically, we have the following
flow preservation dependency for every node u and time t:P

w

p

t

u,w

= 1. Namely, every agent coming out of u move
to one of the nodes w according to the diffusion dynamics,
p. This paper focus on the following learning and planning
problems in the context of such dependent cascade models of
network diffusion:
(a) Learning: Compute the transition probabilities, p that max-
imize the likelihood of observing the aggregate observations
n (ex: number of people waiting in queues at attractions in a
theme park over multiple days).
(b) Planning: Given p and budget B, compute the plan
for execution of management actions that achieve a desired
objective.

A. Application to Theme Park Management

In recent years, theme parks have been an important driver
in the growth of this industry. Unfortunately, a vibrant growth
in the theme park industry comes hand-in-hand with worsening
congestion and increased wait times. From field observations
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Fig. 1: Time indexed graph representing diffusion of visitors for 3

time steps.

and our computational experiments, we notice that the wait
times on weekends and holidays at popular attractions, particu-
larly in Asian theme parks reaches 2-3 hrs. The key motivation
for research in this paper is to improve visitor experience by
reducing overall wait times.

Time indexed graph in figure 1 represents diffusion of
people at theme park. Each node represents an attraction. An
attraction being active at a time step t indicates that there
are people who are coming out of the attraction after getting
serviced at that time step. pt

u,v

associated with an edge between
attractions u and v indicates the probability that a visitor
coming out of attraction u would move to the attraction v at
time t. Since visitors stay within the theme park, summation
of transition probability over all outgoing attractions v from u

is 1, i.e.,
P

v

p

t

u,v

= 1.

At a theme park, it is impractical to track every visitor
transitioning between attractions (referred to as x henceforth).
Instead, there are both people and sensors to guide and track
people at individual attractions. We use this information from
multiple days, represented as n

t,d

u

(number of people waiting
at attraction u at time t in day d). The learning problem can
be formally defined as:

max

p
L(p|n) (1)

where L(p|n) represents the likelihood of parameters p given
the observed n.

Theme parks typically conduct moving road shows and/or
photoshoots with cartoon characters near attractions that have
high wait times to ensure people spend lesser time waiting at
attractions. However, current practice of placement of such side
shows is adhoc and does not consider the diffusion dynamics
over time steps. To address this, our planning approach will
compute a placement of sideshows, l, on edges to minimize
wait times while respecting a budget available for side shows.
Thus, the planning problem can be formally defined as:

min

l

X

d,t,u

!

t

u

(l, p) s.t.
X

u,v,k,t

f(l

t,k

u,v

)  B

where !

t

u

(l, p) is the wait time at time step t for attraction
u given diffusion dynamics p and placement of side shows
given by l. f represents the cost of placing a side show and
B is the budget available.

III. LEARNING DIFFUSION DYNAMICS

We now describe our method for solving the learning
problem described in Equation 1, when we only have access to



aggregate observations n. We assume that the diffusion dynam-
ics from any node u described by p

u

is a standard probability
distribution characterised by a few parameters. Specifically, we
explore the most relevant ones, namely Multinomial, Multino-
mial Dirichlet and Poisson. The notation employed in this and
subsequent sections is provided in Table I. Boldface letters
are used to represent vectors of the items described by the
corresponding normalface letter.

TABLE I: Notation

Variable Definition
p

t
u,v Transition probability between nodes u and v at time step t

n

t,d
u Number of agents in node u at time t on day d

su Service rate (number of agents serviced in one time step) of node u

D Set of cascades or days on which observations about n are made
x

t,d
u,v Number of agents moving from node u to node v at time t on day d

l

t,k
u,v Binary variable that is set to 1 if side show of type k is placed on

edge (u, v) at time t

�

k Percentage of diffusion attracted by side show of type k

Before we describe our approach, we note that our learning
problem is different than the collective flow diffusion (CFD)
model of [2] that was developed to understand traffic flow. In
the CFD model, it is assumed that the total number of agents
that exit and enter each node are known. However, in many
domains, such as theme parks, trade shows, travel tours, this
type of data is not available. Instead, we only observe the total
number of people waiting to be serviced at a node u. This
makes learning more complex due to more hidden variables
than the CFD model. We develop additional constraints to
reflect such visitor queues as explained later using constraint 5
in Table II.

We provide multinomial distribution based diffusion mod-
el1 and develop optimization based learning algorithm for
computing the parameters.

A. Multinomial Distribution Based Diffusion

Multinomial distribution – a generalization of the binomial
distribution – is a categorical distribution where each trial
results in exactly one of k possible outcomes with probabilities
P

1

, · · · , P
k

(so that P
i

� 0, 8i = 1, · · · , k) and
P

k

i=1

P

i

= 1.
We represent diffusion from each node, u at time t as a
multinomial distribution with probabilities given by {pt

u,v

}
v2V

for each of the outcomes v 2 V . Therefore, the probability of
observing x

t,d

u,v

number of transitions2 from node u to node v,
x

t,d

u,w

number of transitions from node u to node w and so on
for any day/cascade d is given by:

Pr(xt,d

u

|p) =
(

P
z

x

t,d

u,z

)!

Q
z

x

t,d

u,z

!

Y

z

(p

t

u,z

)

x

t,d
u,z

where
P

z

p

t

u,z

= 1 and x

t,d

u,z

represents the number of times
(frequency) there was a transition from u to z at time t on
day d. Since, we do not observe either the probabilities, p or
frequencies, x. We learn them by maximizing the likelihood,
L(p|x, n).

1We can also employ Dirichlet-Multinomial distribution and Poisson distri-
bution based diffusion models. Similar optimization problems as Table II that
maximize the likelihood can be provided for both distributions.

2Since x represents an observation, it can be different for different days or
cascades, d 2 D.

TABLE II: GETDIFFUSIONDYNAMICS(n, s)

max:
X

d

X

u

X

t

✓
log

�
(

X

z

x

t,d
u,z)!

�
�

X

z

log(x

t,d
u,z !)

+

X

z

x

t,d
u,z log(p

t
u,z)

◆

s.t. n

t+1,d
u = n

t,d
i +

X

z

x

t,d
z,u�

X

z

x

t,d
u,z, 8t, d, u (5)

X

z

x

t,d
u,z  min(su, n

t,d
u ), 8t, d, u (6)

X

z

p

t
u,z = 1, 8t, u (7)

x

t,d
u,z 2 N0, 8t, d, u, z (8)

0  p

t
u,z  1, 8t, u, z (9)

More specifically, over all the attractions, likelihood is
defined as follows:

L(p|x, n)=Pr(x, n|p)=
Y

d2D

Y

t2T

Y

u2V

(

P
z

x

t,d

u,z

)!

Q
z

x

t,d

u,z

!

Y

z

(p

t

u,z

)

x

t,d
u,z

(2)

where X

z

x

t,d

u,z

=

⇢
n

t,d

u

if n

t,d

u

< s

u

s

u

otherwise

Given the equivalence of maximizing likelihood and max-
imizing log likelihood, we employ the following objective

max

p

log

X

x

Pr(n,x|p) (3)

To make it computationally simpler, we use the following
approximation:

max

p,x

logPr(n,x|p) (4)

This approximation is in the same spirit as the one in
Sheldon et al. [17]. The main intuition is that for categorical
distributions, such as Binomial distribution, the mode is very
close to the mean. The above optimization problem can be
formulated as a non-linear program as shown in Table II. The
objective function is the logarithm (log) of Eq.(2). The first and
the second constraint jointly represent the flow conservation
at each node. In the first constraint, the number of visitors at
a node u at time t + 1 according to a cascade d (= n

t+1,d
u

)
is constrained to be equal to the number of visitors at the
same node at time t with the addition of in-flow into the
node (=

P
z

x

t,d

z,u

) and subtraction of the out-flow from the
node (=

P
z

x

t,d

u,z

) at the same time step. The second constraint
ensures that the out-flow is equal to the minimum of the service
rate at node u and the number of people currently waiting to
be serviced at the node at time step t. Rest of the constraints
enforce basic properties of the diffusion model.

We solve the optimization problem in Table II using a
commercial non-linear solver called Lingo (http://www.lindo.com).

IV. CONTROLLING DIFFUSION DYNAMICS

We now describe our mechanism to compute plans of
management actions that will be used to control diffusion
dynamics. In this work, we consider management actions that



can be viewed as dampeners that are placed on an edge to
absorb the diffusion on that edge for a certain time duration.
In the context of a theme park, these management actions cor-
respond to side shows that can be placed between attractions
for a limited time. Depending on their type, such management
actions have an associated cost and impact on the diffusion.
For instance, a photo opportunity with a cartoon character only
attracts a few people and is not typically expensive as only one
actor is involved. In contrast, an elaborate road show attracts
most visitors traveling on that edge, and is more expensive due
to multiple actors being involved. .

Fig. 2: Representation of Management Actions

Figure 2 provides a visual representation of how the
diffusion dynamics are altered due to a management action.
As explained earlier, pt

u,v

represents the preference of visitors
coming out of node u to move to node v; �k is the proportion
of visitors absorbed on an edge for one time step due to
the management action of type k. When l

t,k

u,v

= 1, there is
a management action of type k executed on edge between u

and v at time step t. In this case, �

k proportion of visitors
are absorbed into the buffer node F for the current time step
t. Such visitors at the buffer node move with probability 1 to
their original intended destination v at time step t + 1. Thus,
introducing the buffer node via the action l

t,k

u,v

= 1 reduced
congestion at node v at time step t. Action l

t,k

u,v

=0 indicates
that there is no management action of type k executed on
edge between u and v at time step t. In this case, the diffusion
probability remains the same as p

t

u,v

.

Given the diffusion dynamics, p, the goal is to compute
the plan l of management actions that will minimize the
total waiting time or latency over all the nodes across all
time steps over different realisations of diffusion. We also
assume that each management action has a cost, and there
is a fixed available budget. Two existing methods that have
been employed for controlling/influencing diffusion are:

• Exploiting submodularity: The problem of selecting a fixed
number of nodes in a social network that will maximize
influence in the context of independent cascade model [1]
is solved by exploiting submodularity of the objective.
Specifically, because of submodularity, nodes can be greedily
selected one after another based on their marginal addition to
the overall influence. Such an approach provides a solution
that is at least 1� 1

e

(=63%) of the optimal. Unfortunately,
with dependent diffusion dynamics, the problem of minimiz-
ing wait time is not submodular3. Given the relevance, we
experimentally benchmark the performance of our approach
against the greedy approach, even though it does not provide
quality guarantees.

3Due to space constraints, we do not include the proof here. However, it is
easy to identify a counter example.

• Employing Sample Average Approximation (SAA): The
problem of buying parcels of land to maximize the pop-
ulation of rare species [15] is formulated as a stochastic
optimization problem. The key idea is that instead of solving
the stochastic optimization problem directly, a solution is
computed for a few samples from the diffusion process. Be-
cause of independence in cascades, samples can be generated
before the optimization.
Unfortunately, when simulating a large population of visitors
moving in a theme park, we would need to sample the
trajectory for each of them in the context of SAA. This
leads to a prohibitively large size of the decision problem
when formulated using a mathematical program, and is not
scalable.

Therefore, the main contribution of this work with respect
to controlling diffusion dynamics is a scalable approach that
substitutes the computation of expected wait time (expectation
over trajectory samples of visitors) with wait time for expected
numbers of visitors (expectation over diffusion dynamics)
over all nodes and all time steps. Specifically, we denote
EP [

P
i,t

g(n

t

i

)] as the expected wait time for the joint multino-

mial distribution P (=
Q

t

Q
i

(

P
j x

t
i,j)!Q

j x

t
i,j !

Q
j

(p

t

i,j

)

x

t
i,j ) over all

nodes and all time steps. We use
P

i,t

g(E

q

t
i
[n

t

i

]) to represent
the wait time of expected number of visitors with distribution
q

t

i

for each individual attraction i at time t.

Proposition 4.1: With liner function g(x) measuring the
wait time (i.e. g(x) = ax+ b), EP [

P
i,t

g(n

t

i

)] =

P
i,t

g(E

q

t
i
[n

t

i

]).

Proof: EP [

P
i,t

g(n

t

i

)] =

P
i,t

E

q

t
i
[g(n

t

i

)] =P
i,t

E

q

t
i
[an

t

i

+ b] =

P
i,t

aE

q

t
i
[n

t

i

] + b =

P
i,t

g(E

q

t
i
[n

t

i

]).

The resulting optimization formulation is much smaller and
scalable when compared with the sampling approach using
SAA. It should however be noted that even with using expected
numbers of visitors, the problem of minimizing wait time using
management actions remains NP-Hard.

Proposition 4.2: The problem of minimizing wait time for
expected numbers of visitors at nodes over all time steps by
using management actions l and a given budget is an NP-Hard
problem.

Due to space constraints, we omit the proof. We prove this by
showing that 0/1 knapsack problem is a special case of our
problem. Specifically, we reduce the 0/1 knapsack problem
to our problem. The key insight is that minimizing wait time
at all nodes at all times is equivalent to maximizing number
of agents in buffer nodes at all times. By mapping items in
knapsack to management actions, weight of an item, w

k to
the cost, ck of executing management action and value of an
item and finally v

k to the overall increase in number of agents
at buffer node due to execution of management action, we
demonstrate this reduction. ⌅

Table III provides an optimization formulation to compute
l that minimizes the average wait time for expected number of
visitors at every node and at every time step. Let |U | denote
the total number of attractions in the theme park, and T denote
total time steps. Each time step in our case denoted a block of
1 hour period during the day resulting in T =9. The objective
function is the average wait time over all the attractions u



across all time steps. This particular metric was suggested
to us by the theme park operator and is a key performance
indicator for the theme park management. While this formu-
lation contains non-linear constraints, we will subsequently
provide linear equivalents. We refer to this approach as CDON
(Controlling Diffusion through OptimizatioN).

TABLE III: CDON(p, s, n0)

min:
1

|U | · T
X

u,t

n

t
u

su

s.t. n

t
u +

X

z

x

t
z,u �

X

z

x

t
u,z = n

t+1
u 8u, t (10)

X

z

x

t
u,z = y

t
u 8u, t (11)

y

t
u = min(su, n

t
u) 8u, t (12)

x

t
u,z = y

t
u ·

h
p

t
u,z �

X

k

�

k · lt,ku,z · pt
u,z

i
8u, z, t (13)

x

t
u,F = y

t
u ·

hX

k

�

k · lt,ku,z · pt
u,z

i
8u, z, t (14)

x

t
F,z =

X

u

X

k

�

k · lt�1,k
u,z · yt�1

u · pt�1
u,z 8t, z (15)

X

k

l

t,k
u,z  1 8u, z, t (16)

X

t,u,z,k

l

t,k
u,zc

k  B (17)

l

t,k
u,u 2 {0, 1} 8u, v 6= u, k, t (18)

Constraints (10) ensures that expected number of visitors
in a node, u at time t+1 is equivalent to the expected number
of visitors at u at time t plus the expected number of visitors
transitioning out of u minus the expected number of visitors
transitioning into u at time t. Constraints (11) are the flow
preservation constraints, which ensure that all visitors coming
out of a node go to one of the other nodes. This introduces
dependencies across cascades. Constraints (12) ensures correct
computation of number of visitors coming out of a node u.
Service rate s

u

indicates the number of visitors that are served
in one time step. Therefore, the number of visitors served
in any one time step is the minimum of s

u

and number of
visitors in u at time t, i.e., nt

u

. Constraints (13)-(15) ensure
correct computation of the expected number of visitors4 that
move to other nodes and the buffer node due to placement
of side shows. Constraints (16) and (17) are the constraint on
for management actions. Constraints (16) ensures that for the
same link at the same time, it is only allowed for one type of
action. Constraint (17) enforces the budget constraints for the
management actions.

As can be noted, Constraints (12),(13),(14),(15) all con-
tain non-linear terms. The first non linear term is in Con-
straints (12). To provide a linearisation to this constraint, we
use two binary variables, namely, dt

u

and e

t

u

as follows:

d

t

u

+ e

t

u

= 1; y

t

u

 n

t

u

; y

t

u

 s

u

y

t

u

� n

t

u

�M · (1� d

t

u

); (19)
y

t

u

� s

u

�M · (1� e

t

u

)

In these constraints M is a large positive number and the tight-
est bound for M is the largest value of nt

u

and s

u

. The validity

4When there are no side shows, expected number of visitors moving from
node u to z at time t is given by yt

u

· pt
u,z
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Fig. 3: Hourly wait time data for the four busiest attractions.

of these linear constraints can be ascertained by considering all
possible values for the two binary variables, dt

u

and e

t

u

. Next,
we consider the non-linearity in constraints (13),(14) and (15),
which is the term y

t

u

· lt,k
u,z

. Since y

t

u

is positive and l

t,k

u,z

is a
binary number, the linear equivalent constraints are:

r

t,k

u,z

 l

t,k

u,z

·M ; r

t,k

u,z

 y

t

u

;

r

t,k

u,z

� y

t

u

� (1� l

t,k

u,z

) ·M ; r

t,k

u,z

� 0

Again the validity of these constraints can be ascertained by
considering both possible values for lt,k

u,z

.

V. EXPERIMENTS: LEARNING DIFFUSION DYNAMICS

In order to demonstrate the utility of our approaches in
computing diffusion dynamics, we use a 5-month long data
set of wait times from a real theme park in Singapore which
consists of 9 major attractions. Using the wait time data and
service rate for each attraction in the data set, we get an
estimate of how many visitors are currently waiting in queue
at each attraction. We are unable to provide a map of the
attractions due to confidentiality agreements.

To account for lack of data on visitors entering and exiting
the theme park as well as taking breaks, we introduce a new
attraction called the ‘leisure’ node numbered ‘A10’. This node
is required to account for initial inflow of visitors and their
exit. This node has infinite service rate and infinite capacity.
We will show concretely how this can be captured using the
leisure node.

Accuracy Figures 4(a) and (b) show the average accuracy
achieved by different diffusion models using the 5-fold cross
validation. Using the learned model parameters, for example,
transition probabilities {pt

u,z

} for the multinomial diffusion,
we predict the number of people n waiting at each attraction
at hourly intervals for all the days in the test data.

To compute the accuracy, we consider a fixed confidence
interval. A predicted aggregate value n is considered correct
for an attraction if it is within a particular threshold, say 25%,
of the true n. Using this definition, we count the total accuracy
for all the predictions with one prediction for each time step
for each test day per attraction. Figure 4(a) and (b) show the
accuracy for 25% and 30% threshold. We make the following
observations.

A key observation from figures 4(a) and (b) is that attrac-
tions that have high wait times (3, 5, 8, and 9 in Fig. 3) also
have a high accuracy of prediction (⇡ 70%-80%). The accura-
cy is lower for attractions that are relatively lightly congested,
such as attraction 7. Attraction 7 as well as attractions 1, 4 and
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(b) 30% tolerance
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Fig. 4: Accuracy for 5 busiest attractions and leisure node
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(a) Parameters for A8 for 4PM-5PM
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(b) Parameters for A9 for 12PM-1PM

Fig. 5: Learned parameter verification for the multinomial based
diffusion (figures best viewed in color)

6 have an average wait time of 15 minutes. This may contribute
to lower accuracy as we use hourly wait times. Using finer
grained reporting intervals (such as every 15 min.), we expect
to increase the accuracy for such lightly congested attractions.
We are currently in the process of collecting such fine grained
data from the theme park operator. Importantly, our approach
is able to provide good accuracy for all the heavily congested
attractions validating our models and learning algorithms.

We also observe from figures 4(a) and (b) that the multi-
nomial distribution consistently provides higher accuracy than
the other two distributions. A key insight is that the poisson
distribution performed significantly worse in comparison to the
other two distributions. Poisson is extensively used to model
individual queues. Our result indicates that it may not be an
ideal distribution to represent a network of queues, where the
status of one queue depends on the status of other queues.
While not provided here, we also have graphs that show how
the accuracy varies continuously with the tolerance threshold.

Learned Parameter Verification We now explain the transi-
tions into the leisure node and provide a verification mecha-
nism for the learned parameters obtained for the multinomial
diffusion model ({pt

u,z

}). Figure 4(c) shows the average
transition probability from and to the leisure node over all the
attractions for each time interval of the day. The legend 10-11
refers to the interval 10AM to 11AM. This figure clearly shows

that during the beginning of the day, the transitions from leisure
node to major attractions gradually increases until reaches
the peak at around 12PM to 1PM. Whereas the transition
probability to the leisure node is quite low. This is expected
as during the morning and early afternoon, visitors arrive in to
the theme park and they are joining the queue of those major
attractions. In contrast, the transition probability to the leisure
node increases significantly towards the latter part of the day.
This is also expected as visitors exit the theme park during
late afternoon and evenings. Thus, the concept of leisure node
is able to capture such visitor movements succinctly.

To verify the parameters generated using the optimization
formulation in table II, we compare the learned parameters p

against the p0 calculated for each day from the x values for that
specific day: p0t,d

u,z

=

x

t,d
u,zP

z x

t,d
u,z

. Ideally, the learned parameters
p and parameters p

0 for each test day should be as close as
possible.

Figure 5(a) and (b) show these comparisons for attraction
8 for time interval 4PM-5PM and attraction 9 for time interval
12PM-1PM respectively. The x-axis denotes the attractions to
which visitors can transition to. For example, for figure 5(a),
x = 3 implies the parameter p

0t=7,·
u=8,z=3

, where the holder ‘·’
is for day number. Intuitively, this parameter represents the
probability that a visitor currently at attraction 8 moves to
attraction 3 during the time interval 7 (4PM-5PM). For each
cluster on the x-axis, we show 7 bars. The first bar corresponds
to the ‘Learned’ parameter from table II. Other bars show the
computed parameter p0 for different test days, 6 in total.

We make the following observations from figures 5(a) and
(b). First, both the learned parameters p and the computed
parameters p

0 are very close to each other. This is true for
other busy attractions as well as rest of the time intervals. This
further validates our approach. In addition, for figures 5(a), we
see clearly that transition to the leisure node (x=10) dominates
all the other transitions. This is as expected as during the
evening hours, visitors exit the theme park. We also see a clear
domination of a few attractions to which the visitors move from
both the attractions 8 and 9. For example, figure 5(b) shows
that visitors prefer to move to attractions 3, 5 and 8. Thus, our
approach is able to extract meaningful visitor dynamics from
the observed aggregate data.
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Fig. 6: Average and Peak Wait Time Reduction for CDON
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Fig. 7: Average (Left figure) and Peak (Right figure) Wait Time
Reduction due to CDON in Comparison with greedy on Real Data

VI. EXPERIMENTS: CONTROLLING DIFFUSION
DYNAMICS

We now provide an empirical evaluation to demonstrate
the utility of our approach presented in Table III to control
diffusion compared to having no side shows and the greedy
baseline described below. We first consider the real data set of
theme park along with the diffusion dynamics obtained using
our learning mechanism (described in previous section) and
then consider synthetic problems to demonstrate scalability of
our approach in comparison to the greedy baseline.

Greedy We employ a greedy algorithm as a baseline in
our experiment. It starts with an empty action set S and
iteratively adds the best management actions until cost of
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Fig. 8: Runtime Comparison of CDON with greedy on Real and
Synthetic Datasets

management actions exceeds the budget. In each round, the
objective is evaluated by simulating the cascade when adding
every possible management action of type k to S . The action
with the largest reduction in wait time is added to the set S .

A. Real Dataset

Since side shows are placed on the edges, the complexity
of controlling diffusion is dependent on the number of edges,
which is 729 in the time indexed graph for the real data set.

Single Type of Side Show Initially, we show the utility
of using side shows by considering only one type of side
shows and � = 1.0 for that side show type. Since there is
only one type, we consider the budget to be the maximum
number of available side shows that can be employed across
different time steps. Figure 6 shows the average5 and peak wait
time6 reduction when compared to wait times without any side
shows for total population ranging from 5k-8k. As expected,
both average and peak wait time reduction increased with the
budget, irrespective of the population size and this reduction
in wait time is as much as 20% for the average and up to 25%
for the peak wait time.

Multiple Type of Side Shows We now consider multiple types
of side shows, where the cost, c

k and diffusion absorption
parameter, �

k for the type k are connected to each other
according to one of the five relations below: (1) ck=10

p
�

k;
(2) c

k

= 10�

k; (3) c

k

= 10(�

k

)

2; (4) c

k

= 10(�

k

)

3; and (5)
c

k

=10(�

k

)

4. Their relations are based on the fact that a side
show with low attractiveness (or low �) should be cheaper to
deploy than a popular one. We consider k=4 different types
of shows are available, with �

k values given by {0.2, 0.5, 0.75,
1.0} and a fixed initial population of 7000.

In figure 7, we compare the wait time reduction due to
CDON in comparison with greedy approach on real dataset or
(W

greedy

�W

cdon

)⇤100/W
greedy

, W
alg

denotes the objective for
the corresponding approach. A higher value of this percentage
reduction denotes better performance by CDON over greedy.
As the budget is increased, CDON performed consistently
better than greedy on all five relations. We observe that as
power of � is increased in the relation, the average wait
time reduction is increased. Because CDON coordinates the
placement of shows at different edges, if we have more
available shows to place, the difference with greedy increases.
With higher powers for beta, cost values for side shows are
smaller resulting in more available side shows. This explains
the reason for up to 9% wait time reduction provided by CDON
in comparison with greedy. We similarly compare the wait time
reduction for the peak attraction due to CDON in comparison
with greedy approach in Figure 7(b). We observe that for all
relations, the wait time reduction percentage is positive and in
the best case it goes up to 20%.

We also record the runtime for the 5 different relationships
for both CDON and greedy approach, the results are shown in
figure 8. Due to space constraints, we only provide the results
for relation 4. In each relation, greedy takes significantly more
time to run than our approach, with the difference increasing

5Average wait time is the objective of CDON
6Peak wait time is the current wait time with CDON strategy for the

attraction that had the highest wait time previously.
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Fig. 9: Synthetic Dataset: Reduction in Wait Time with CDON in
Comparison to the greedy Approach

as power of � is increased. This is because greedy strategy
needs to evaluate many options as more number of side shows
can be placed within the same budget.

B. Synthetic Data Set

To further demonstrate the performance improvement pro-
vided by CDON in comparison with greedy, we generate
synthetic problems. Our goal is to identify scalability limits
of CDON and greedy. The diffusion dynamics are skewed and
are generated by using a gamma distribution (with different
values of shape parameter � and scale parameter ✓). The sum
of diffusion probabilities out of an attraction are normalised to
1. We show results for relation 4.

Figure 8(b) provides the runtime results as the number of
nodes (N=12,16,20) and budget are increased. We have runtime
on y-axis and budget on x-axis. There is an order of magnitude
reduction in runtime provided by CDON in comparison with
greedy. For most cases, greedy does not compute a solution
within our threshold of 10000 seconds. This is because greedy
has to evaluate placement of a side show of each type on each
of the edges in the time indexed graph, and the number of
edges has been increased from 729 (real problem) to 1296
(for N=12), 2304 (for N=16) and 3600 (for N=20). Thus,
our CDON approach is highly scalable w.r.t. the number of
attractions or network nodes as opposed to greedy. Figure 9
provides the percentage reduction in average wait time as the
budget is increased for the same relation with different values
of the gamma distribution’s parameters. We again observe that
gain by CDON increases up to 15% as the budget is increased.

VII. CONCLUSION

Managing diffusion in networks is an important and chal-
lenging problem with applications in ecology, leisure and
entertainment, and marketing among others. Existing work has
primarily focused on phenomena that diffuse independently
on all outgoing edges of a node. We augmented the basic
independent cascade model with important features required to
model real-world problems, such as learning from aggregate
data, modeling queues at network nodes and addressing flow
conservation at network nodes. We also developed an opti-
mization based approach that provided a plan for management
actions to control the underlying diffusion process in a theme
park for reducing the average wait time. We also demonstrated
the efficiency and effectiveness of our learning and planning

approaches through extensive evaluations on both real world
and synthetic problems.
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