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Abstract. Learning control policies for a large number of agents in a de-
centralized setting is challenging due to partial observability, uncertainty
in the environment, and scalability challenges. While several scalable
multiagent RL (MARL) methods have been proposed, relatively few
approaches exist for large scale constrained MARL settings. To address
this, we first formulate the constrained MARL problem in a collective
multiagent setting where interactions among agents are governed by the
aggregate count and types of agents, and do not depend on agents’ specific
identities. Second, we show that standard Lagrangian relaxation methods,
which are popular for single agent RL, do not perform well in constrained
MARL settings due to the problem of credit assignment—how to identify
and modify behavior of agents that contribute most to constraint vio-
lations (and also optimize primary objective alongside)? We develop a
fictitious MARL method that addresses this key challenge. Finally, we
evaluate our approach on two large-scale real-world applications: maritime
traffic management and vehicular network routing. Empirical results show
that our approach is highly scalable, can optimize the cumulative global
reward and effectively minimize constraint violations, while also being
significantly more sample efficient than previous best methods.

Keywords: Multi-agent Systems · Multiagent reinforcemene learning ·
Constraint optimization.

1 Introduction

Sequential mutiagent decision making allows multiple agents operating in an
uncertain, partially observable environment to take coordinated decision towards
a long term goal [4].The decentralized partially observable MDP (Dec-POMDP)
model [20] has emerged as a popular framework for cooperative multiagent
control problems with several applications in multiagent robotics [2], packet
routing in networks [12], and vehicle fleet optimization [17,32]. However, solv-
ing Dec-POMDPs optimally is computationally intractable even for a small
two-agent system [4]. When the planning model is not known, multiagent re-
inforcement learning (MARL) for Dec-POMDPs also suffers from scalability
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challenges. However, good progress has been made recently towards scalable
MARL methods [21,24,34,36].

To address the complexity, various models have been explored where agent
interactions are limited by design by enforcing various conditional and contextual
independencies such as transition and observation independence among agents [16]
and event driven interactions [3]. However, their impact remains limited due to
narrow application scope. To address practical applications, recently introduced
multiagent decision theoretic frameworks (and corresponding MARL algorithms)
model the behavior of a population of nearly identical agents operating collabo-
ratively in an uncertain and partially observable environment. The key enabling
insight and related assumption is that in several urban environments (such as
transportation, supply-demand matching) agent interactions are governed by the
aggregate count and types of agents, and do not depend on the specific identi-
ties of individual agents. Several scalable methods have been developed for this
setting such as mean field RL [26,27,28,36], collective Dec-POMDPs [17,18,35],
anonymity based multiagent planning and learning [32,33] among others [10].

A key challenge in MARL is that of multiagent credit assignment, which
enables different agents to deduce their individual contribution to the team’s
success, and is challenging in large multiagent systems [6,31]. Recently, there
has been progress in addressing this issue for large scale MARL [8,19]. However,
such previous methods address the credit assignment problem in a constraint-free
setting. With the introduction of constraints, we need to perform credit assignment
jointly both for primary objective and for the cost incurred by constraints, and
deduce accurately the role of each agent in optimizing the primary objective,
and lowering constraint violations. In our work, we develop novel techniques that
address this issue for constrained collective MARL settings.
Constrained RL Most existing works focus on single agent constrained RL
and deal with cumulative constraints (discounted and mean valued). The most
common approach to solve this problem is the Lagrangian relaxation (LR) [5].
The constrained RL problem is converted to an unconstrained one by adding
Lagrangian multipliers, and both Lagrange multipliers and policy parameters
are updated iteratively [30]. Methods such as CPO [1] extend the trust region
optimization to the constrained RL setting and solve an approximate quadratically
constrained problem for policy updates. IPO [13] algorithm uses a logarithm
barrier function as the penalty to the original objective to force the constraint to
be satisfied. Forming a max-min problem by constructing a lower bound for the
objective is used in [9].

Although the above mentioned approaches can solve the single agent con-
strained RL well, extending these approaches such as LR to multiagent constrained
RL directly is not trivial. Since credit assignment for costs also remains unsolved,
searching for a policy that satisfies the constraints becomes challenging. There are
few works aiming to solve multi-agent constrained RL. [7] used the LR method
and proposed to learn a centralized policy critic and penalty critics to guide the
update of policy parameters and Lagrangian multipliers. However, centralized crit-
ics can be noisy since contributions from each individual agents are not clear. [14]
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also proposed LR but in a setting where agents are allowed to communicate
over a pre-defined communication network (in contrast, our method requires
no communication during policy execution). The most recent work CMIX [12]
combines the multi-objective programming and Q-mix framework [8]. However,
scalability is still a big challenge since different Q-function approximators for
each constraint and each agent are required. To summarize, LR is one of the most
common approach to solve both single and multiagent constrained RL. However,
how to decide the credit assignment with respect to constraint costs and how to
scale to large-scale multiagent systems still remain challenging.

Our contributions First, we formulate the MARL problem for settings
where agent interactions are primarily governed by the aggregate count and types
of agents using the collective Dec-POMDP framework [17,18] augmented with
constraints. Second, we develop a fictitious constrained MARL method which is
also based on Lagrangian relaxation, but addresses the issue of credit assignment
for both primary objective and constraints. Finally, we test on both real world
and synthetic datasets for the maritime traffic management problem [25], and
network routing problem [12]. We show that our method is significantly better
in satisfying constraints than the standard LR method for MARL. Similarly,
when compared against CMIX [12], our approach reduces both average and peak
constraint violations to within the threshold using significantly lower number of
samples, while achieving similar global objective.

2 Fictitious Constrained Reinforcement Learning

2.1 Collective CDec-POMDP

We consider the collective decentralized POMDP (CDec-POMDP) framework to
model multi-agent systems (MAS) where the transition and the reward of each
individual agent depends on the number (count values) of agents in different
local states. CDec-POMDP MAS has a wide range of applications in many
real world domains such as traffic control, transport management or resource
allocation [17,25,35]. Formally, a CDec-POMDP model is defined by:

– A finite planning horizon H.
– The number of agents M . An agent m can be in one of the states in the state

space S. We denote a single state as i ∈ S. We assume that different agents
share the same state space S. Therefore, the joint state-space is S = SM .

– A set of actions A for each agent m. We denote an individual action as j ∈ A.
– st,at denote the joint state and joint action of agents at time t.
– Let (s1:H , a1:H)m=(sm1 , a

m
1 , s

m
2 . . . , smH , a

m
H) denote the complete state-action

trajectory of an agent m. We denote the state and action of agent m at time
t using random variables smt , amt . We use the individual indicator function
I(smt = i, amt = j) ∈ {0; 1} to indicate whether the agent m is in local state
i and taking action j at time step t. Other indicators are defined similarly.
Given different indicator functions, the count variables are defined as follows:
• nt(i, j, i

′) =
∑M
m=1 I(smt = i, amt = j, smt+1 = i′) ∀i, i′∈S, j∈A
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• nt(i, j) =
∑M
m=1 I(smt = i, amt = j) ∀i ∈ S, j ∈ A

• nt(i) =
∑M
m=1 I(smt = i) ∀i ∈ S

When states and actions are not specified, we denote the state count table as
nst = (nt(i) ∀i∈S), state-action count table as nsat = (nt(i, j) ∀i∈S, j∈A) and
transition count table as nt = (nt(i, j, i

′) ∀i, i′∈S, j∈A). For a given subset
S′ ⊆ S, we define the count table for agents in S′ as nt(S′) = (nt(i, j, i

′) ∀i∈
S′, j∈A, i′∈S).

– The local transition function of an individual m is P
(
smt+1|smt , amt ,nsat ). The

transition function is the same for all the agents. Note that it is also affected
by nsat , which depends on the collective behavior of the agent population.

– Each agent m has a policy πmt (j|i,nst) denoting the probability of agent m
taking action j given its local state i and the count table nst. Note that
when agent cannot fully observe the whole count table, we can model an
observation function o(i,nst) as a non-trainable component of π. When agents
have the same policy, we can ignore the index and denote the common policy
with π.

– Initial state distribution, bo = (P (i)∀i ∈ S), is the same for all agents.

We define a set of reward functions rl(nt), l = 1 : L and a set of cost functions
ck(nt), k = 1 : K that depend on the count variables nt. Our goal is to solve a
collective constrained program:

max
πθ

V (πθ) = En1:H

[ H∑
t=1

∑
l

rl(nt)|πθ
]

(1a)

s.t. En1:H

[ H∑
t=1

ck(nt)|πθ
]
≥ 0, ∀k (1b)

Agents with types We can also associate different types with different agents
to distinguish them (e.g., 4-seater taxi, 6-seater taxi). This can be done using a
type-augmented state space as S′ = S × T , where T is the set of possible agent
types. The main benefit of the collective modeling is that we can exploit the
aggregate nature of interactions among agents when the number of types is much
smaller than the number of agents
Simulator for MARL In the MARL setting, we do not have access to the
transition and reward function. As shown in [18], a count based simulator provides
the experience tuple for the centralized learner as (nst,nsat ,nt, rt). In other words,
simulation and learning in the collective setting can be done at the abstraction
of counts. This avoids the need to keep track of individual agents’ state-action
trajectories, and increases the computational scalability to large number of agents.

2.2 Individual Value Representation

Solving Problem(1) is difficult because the constraints are globally coupled with
the joint counts n1:H . In many domains in practice, the reward and cost functions
only involve the count variables over a subset of states S. For example, in
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congestion domain, we have the penalty cost defined for a specific area/zone. We
consider a general framework where we can define the subset Sk ⊆ S that affects
constraint k, and the subset Sl ⊆ S that affects reward rl. In extreme case where
a function is non-decomposable, Sk can be set to S. Let nt(Sl) denote count
table that summarizes the distribution of agents in states s ∈ Sl (as defined in
section 2.1). Let |nt(Sl)| denote the number of agents in Sl. We can re-write (1)
as follows:

max
πθ

V (πθ) = En1:H

[ H∑
t=1

∑
l

rl(nt(Sl))|πθ
]

(2a)

s.t. En1:H

[ H∑
t=1

ck(nt(Sk))|πθ
]
≥ 0, ∀k (2b)

Furthermore, we show that we can re-write the global constrained program in
the form of an individual agent’s constrained program. For a specific function fl,
which can be either cost fl = cl(Sl) or reward function fl = rl(Sl), we define an
auxiliary individual function:

fml
(
smt , a

m
t ,nt(Sl)

)
=

 fl

(
nt(Sl)

)
|nt(Sl)| if smt ∈ Sl

0 otherwise

We use sm1:H ,a
m
1:H to denote the state-action trajectory with length H of agent

m, and use s1:H ,a1:H to denote the join state-action trajectory of all M agents
in our system.

Proposition 1. Consider any reward/cost component fl. The global expected
value of fl is equal to a factor of individual value function:

En1:H

[ H∑
t=1

fl(nt(Sl))|πθ
]
=M × Es1:H ,a1:H

[ H∑
t=1

fml (smt , a
m
t ,nt(Sl))

]
(3)

Proof. By applying the exchangeability theorem from [17], we can derive the
individual function for reward/cost component fl as:

Es1:H ,a1:H
[

H∑
t=1

fml (smt , a
m
t ,nt(Sl))]

=

H∑
t=1

Es1:H ,a1:H
[fml (smt , a

m
t ,nt(Sl))] (4)

We replace the joint probability P (s1:H ,a1:H) with P (sm1:t,am1:t,n1:t).

=

H∑
t=1

∑
sm1:t,a

m
1:t,n1:t

P (sm1:t,a
m
1:t,n1:t)f

m
l (smt , a

m
t ,nt(Sl)) (5)

=

H∑
t=1

∑
sm1:t,a

m
1:t,n1:t

P (sm1:t,a
m
1:t,n1:t)

∑
s′∈Sl

I(smt = s′)
fl(nt(Sl))

|nt(Sl|
(6)
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We now apply the exchangeability of agents with respect to the count variables
n [17]:

=

H∑
t=1

∑
n1:t

P (n1:t)
∑
s′∈Sl

nt(s
′)

M

fl(nt(Sl))

|nt(Sl|
(7)

=
1

M
En1:H

[ H∑
t=1

fl(nt(Sl)|πθ
]

(8)

ut

By applying Proposition 1 to reward and cost functions in (2), we have the
following lemma.

Lemma 1. Solving a collective constrained reinforcement learning problem de-
fined in (1) is equivalent to solve the individual constrained reinforcement learning
problem defined as follows:

max
πθ

V m(πθ) = Es1:H ,a1:H

[ H∑
t=1

∑
l

rml (smt , a
m
t ,nt(Sl))|πθ

]
(9a)

s.t. Es1:H ,a1:H

[ H∑
t=1

cmk (smt , a
m
t ,nt(Sk))

]
≥ 0, ∀k (9b)

To solve Prolem (9), we apply fictitious-play [15] based constrained optimiza-
tion (FICO) in which at each iteration, agent tries to optimize its own policy
given the joint state-action samples and ignore the effect of its policy change on
other agents. Amongst popular methods to solve constrained RL, in this work
we apply the Lagrange relaxation method to solve FICO.

We also highlight that Problem (9) is the key to performing the credit assign-
ment for primary objective and constraints. This problem clearly separates out
the contribution of each agent m to the value function (or V m) and each con-
straint k (or cmk ). Therefore, the FICO method enables effective credit assignment
for both primary objective and constraints.

2.3 Fictitious Collective Lagrangian Relaxation

We consider applying Lagrangian relaxation to solve FICO (9). The Lagrange
dual problem is given as follows.

min
λ≥0

max
πθ

Es1:H ,a1:H

[ H∑
t=1

∑
l

rml (smt , a
m
t ,nt(Sl)) +

∑
k

λkc
m
k (smt , a

m
t ,nt(Sk))|πθ

]
(10)

To solve this dual Problem (10), we apply stochastic gradient ascent-descent to
alternatively update parameters θ of the policy and the Lagrange multiplier λ
following the two-time scale approximation [30].
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Individual policy update To optimize πθ, we first compute the modified
reward as follows.

R(smt , a
m
i ,nt) =

∑
l

rml (smt , a
m
t ,nt(Sl)) +

∑
k

λkc
m
k (smt , a

m
t ,nt(Sk))

Given the fixed Lagrange multipliers, parameters θ are optimized by solving the
following problem,

max
πθ

Es1:H ,a1:H

[ H∑
t=1

R(smt , a
m
i ,nt)|πθ

]
(11)

The benefit of the above representation is that now we can apply various tech-
niques developed for collective Dec-POMDPs to optimize (11) using stochastic
gradient ascent. To optimize (11), we consider a fictitious play approach to
compute policy gradient for policy πθ of agent m over all possible local state i
and individual action j. Using the standard policy gradient [29] with respect to
an individual agent m, we can perform the update for θ as follows:

θ′ =θ + αθ
∑
t

∑
i,j,nt

Est:H ,at:H

[
I(smt = i, amt = j)I(nt ∼ st,at, st+1)

×
H∑
T=t

R(smT , a
m
T ,nT )|πθ

]
∇θ log πθ(j|i,nt) (12)

where I(nt ∼ st,at, st+1) is an indicator function for whether the count table
of the joint transition st,at, s

′
t is identical to nt. Applying results from [17] for

collective Dec-POMDPs, we can sample the counts (using the current policy)
and use these counts to compute the gradient term in (12) as:

Est:H ,at:H

[
I(smt = i, amt = j)I(nt ∼ st,at, st+1)

H∑
T=t

R(smT , a
m
T ,nT )|πθ

]
=
∑
n′

1:H

P (n′1:H)I(n′t = nt)
n′t(i, j)

M

H∑
T=t

∑
smT ,a

m
T

n′t(s
m
T , a

m
T )

M
R
(
smT , a

m
T ,n

′
T

)
(13)

The above expected value can be estimated by a Monte-Carlo approximation
Q̂mt (i, j, nt) with samples ξ = 1, . . . ,K of counts [17]. For a given count sample
nξ1:H :

V ξH(i, j) = RH(i, j, nξH(i)) (14)

V ξt (i, j) = Rt(i, j, n
ξ
t (i)) +

∑
j′

nξt (i, j
′, i′)

nξt (i)
V ξt+1(i

′, j′) (15)

Qξt (i, j) =
nξt (i, j)

M
× V ξt (i, j) (16)

Q̂mt (i, j, nt) =
1

K

∑
ξ|nξ=nt

Qξt (i, j) (17)
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Continuous actions We highlight that even though we have formulated FICO
for discrete action spaces, our method works for continuous action space also as
long as the policy gradient analogue of (12) is available for continuous actions.
Empirically, we do test on the maritime traffic control problem where action
space is continuous, and policy gradient is derived in [25].
Lagrange multiplier update Given a fixed policy πθ, the Lagrange multiplier
λk for each constraint k is optimized by solving the following problem.

min
λk

Es1:H ,a1:H

[ H∑
t=1

λkc
m
k (smt , a

m
t ,nt(Sk))|πθ

]
(18)

We re-write the objective in the collective way as follows.

=λk
∑
s′∈Sk

H∑
t=1

∑
sm1:t,a

m
1:t,n1:t

I(smt = s′)P (sm1:t,a
m
1:t,n1:t)

ck(nt(Sk))

|nt(Sk)|

=λk
1

M
En1:H

[ H∑
t=1

ck(nt(Sk))|πθ
]

(19)

By applying gradient descent, we have λ′k = λk−αk 1
MEn1:H

[∑H
t=1 ck(nt(Sk))|πθ

]
where αk is the learning rate for the update of λk.

3 Experiments

In the section, we evaluate our proposed approach FICO on two real-world tasks:
Maritime traffic management (MTM) and vehicular network routing problem
with a large scale of agent population. For the MTM problem, we compare FICO
with two baseline approaches LR-MACPO and LR-MACPO+. LR-MACPO
is a Lagrangian based approach without any credit assignment. The policy in
this case is trained with global reward and global cost signal, similar to RCPO
algorithm [30]. LR-MACPO+ is also a standard Lagrangian based approach with
credit assignment only for the reward signal but not for the cost function in
constraint. The detailed problem formulations for LR-MACPO and LR-MACPO+
are provided in the supplementary. We compare FICO with CMIX [12] in the
vehicular network routing problem. Since CMIX only deals with discrete action
space, we did not evaluate CMIX in the MTM problem where the action space is
continuous. Our code is publicly available (link in supplementary).

3.1 Maritime traffic management

The main objective in the MTM problem is to minimize the travel delay incurred
by vessels while transiting busy port waters and also to reduce the congestion
developed due to uncoordinated movement of vessels. The previous formulations
of the MTM problem in [23,25] involved unconstrained policy optimization—the
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Fig. 1: Results on the map with 23 zones and different agent population. The
lower is the better for both metrics.

objective is a weighted combination of the delay and congestion costs. This
requires an additional tuning of the weight parameters in the objective. We
propose a new MTM formulation using constrained MARL as in (1). In our
formulation, we introduce constraints that the cumulative congestion cost should
be within a threshold and minimize the travel delay as the main objective. The
new formulation with constraint is more interpretable, and avoids the intensive
search over weight parameters to formulate a single objective as in previous
models [25]. Additional description of the formulation is in supplementary.

We evaluate our constrained based approach of the MTM problem in both
synthetic and real-data instances. In synthetic data experiments we test the
scalability and robustness of our proposed algorithm. Real-data instances are
used to measure the effectiveness of the approach in a real-world problem.
Synthetic data instances For synthetic data experiments, we first randomly
generate directed graphs (provided in supplementary) similar to the procedure
described in [23]. The edge of the graph represents a zone, vessels move from left
to right through the zones. Each zone has some capacity i.e the maximum number
of vessels the zone can accomodate at any time. Each zone is also associated
with a minimun and maximum travel time to cross the zone. Vessels arrive at
the source zone following an arrival distribution, and its next heading zone is
sampled from a pre-determined distribution. More details on the experimental
settings are provided in supplementary.

We first evaluate the scalability of our approach with varying agent population
size from 60 agents to 420 agents on the map with 23 zones. We show the results
on total delay and total constraint violation respectively as in Fig. 1(a) and
Fig. 1(b). Delay is computed as the difference between actual travel time and
minimum travel time in the zone. Total violation computes the total constraint
violations over all zones. X-axis denotes the agent population size in both the
subfigures, and y-axis denotes the total delay and total constraint violation in
(a) and (b) respectively. We observe LR-MACPO baseline perform poorly than
other approaches in terms both the metric of delay and violation. This is because
LR-MACPO is trained with global system reward and global cost function, which
is without any credit assignment technique. LR-MACPO+’s performance on
delay metric is superior than our approach FICO, but it suffers severely on
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Fig. 2: Results on agent population 300 and different maps

violation metric in Fig. 1(b). This is an expected result because in LR-MACPO+
credit assignment is provided only for the reward signal not for the cost signal.
This makes each agent’s credit for the cost component to be noisy resulting in
ineffective handling of the constraints. Also, low delay benefits from the high
constraint violation in LR-MACPO+.

We next evaluate the robustness of our approach with different maps with
varying number of zones (from 20 zones to 80 zones). As in Fig. 2, x-axis denotes
different maps with varying number of zones in both the subfigures, and y-axis
denoted the total delay and total constraint violation in (a) and (b) respectively.
In this experiment the complexity of the problem increases with the increasing
number of zones. We observe that our approach FICO is able to reduce the
violation consistently for all the settings as shown in Fig. 2(b). In settings with
less than 80 zones, LR-MACPO+ beats our approach in terms of total delay.
However, it fails to satisfy the constraints poorly. We see that at the most difficult
setting with 80 zones, our approach performs better than LR-MACPO+ in terms
of both total delay and constraint violation.

Finally, we evaluate the robustness of our approach with different constraint
thresholds on the map with 23 zones and 420 agents. The constraint threshold
specifies the upper bound of cumulative resource violation over the horizons. The
constraint threshold is defined as a percentage of the total resource violations over
the horizons when agents are moving with the fastest speed. As shown in Fig. 3,
x-axis denotes different constraint thresholds in both the subfigures, and y-axis
denotes the total delay and total constraint violation in (a) and (b) respectively.
We observe that FICO performs better than LR-MACPO baseline in terms
of both the metric of delay and constraint violation. In Fig. 3(b), we see that
FICO performs better than other baselines consistently over different constraint
thresholds. With the increase of constraint threshold, the total constraint violation
is decreasing. FICO is almost able to make the constraint satisfied with the loosest
constraint threshold (30%). The constraint violation comes from the zone in the
middle of the map which is the busiest zone.

Real data instances We also evaluated our proposed approach on real-world
data instances from Singapore strait. The strait is considered to be one of the
busiest in the world. It connects the maritime traffic of South China Sea and
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Fig. 3: Results on agent population 420 and 23 zones with different constraint
threshold

Indian Ocean. We use 6 months (2017-July - 2017-December) of historical AIS
data of vessel movement in Singapore strait. Each AIS record consists of vital
navigation information such as lat-long, speed over ground, heading etc, and is
logged every 15 seconds. In our evaluation we mainly focus on tankers and cargo
vessel types because majority of traffic belongs to these two types.

Fig. 6(a) shows the electronic navigation chart of Singapore strait. Vessels
enter and leave the strait through one-way sea lanes called traffic separation
scheme (TSS). It is created for easy transit of vessels in the strait and helps in
minimizing any collision risks. TSS is further sub-divided into smaller zones for
better management of the traffic. From the total datasets of 6 months (180 days),
150 days are used for training and 30 days for testing.
Training From the historical data, we first estimate the problem instance pa-
rameters such as capacity of each zones, minimum and maximum travel time
in each zone. The simulator that we use is the same as in [25], and is publicly
available at [22].

The capacity of a zone is computed as 60% of the maximum number of vessels
present at any time in the zone overall all days. Each zone can have a different
capacity value. We treat the physical sea space in a zone as a resource. Each vessel
occupies 1 unit of resource of that zone. The constraint for each zone is expressed
as the cumulative resource violation over time should be within a threshold.
There are also other problem parameters which are specific to a particular day
such as vessels’ arrival time on the strait and initial count distribution of vessels
present at the strait in beginning of the day. For each training day we estimate
the two parameters. Our constrained based policy FICO is trained on varying
scenarios of training days. From historical data we observe that there are peak
hour periods of traffic intensity during 3rd - 7th hour of the day. Therefore, in
our evaluation we focus on optimizing the peak hour periods.
Testing We test our trained policy on separate 30 testing days. Fig. 4(a) shows
the results of average travel time of vessels crossing the strait averaged over 30
test days. We observe all the three baselines achieve better travel time than
the historical data baseline Hist-Data. LR-MACPO performs poorly among the
three. This is because LR-MACPO is trained with the system reward and cost
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Fig. 4: Results on maritime real-data over 30 testing days. (lower is better for
both metrics)

.

Fig. 5: (a) Average travel time(lower is better) (b-f) Resource violation for peak
hours 3rd-7th (lower is better)

signals which are without any credit assignment techniques. We also observe that
LR-MACPO+ baseline is able to further reduce the travel time slightly better
than our approach FICO but at the expense of higher resource violation as seen
in Fig. 4(b).

Results in Fig. 4(b) show the average violation of resource over 30 testing
days. X-axis denotes the peak hour periods. During the peak hour period, FICO
achieves reduced violation of resource among all the baselines. Since LR-MACPO+
lacks the credit assignment signal on the cost function it performs sub-optimally
than FICO. The results in Fig. 4 validate the benefit of providing efficient credit
assignment technique to both reward and cost function.

In Fig. 5 we show the results of top 5 busiest testing days and results for
remaining 25 days are provided in supplementary. Fig. 5(a) shows the results
for travel time, x-axis denotes days and y-axis denotes average travel time for
crossing the strait. Fig. 5(b-f) show the results of resource violation during peak
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(a)

BS
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Vehicle

Cluster

(b)

Fig. 6: (a) Electronic navigation chart(ENC) of Singapore Strait; (b)Vehicular
network model (adapted from [11])

hour periods (3rd-7th hour), x-axis denotes the days and y-axis denotes the
resource violation. In all 5 days and during the peak hour periods, our approach
achieves an improved reduction in violation of resource while also reducing the
travel time better than other baselines.

3.2 Vehicular Network Routing Problem

We compare our approach with CMIX [12] in their cooperative vehicular net-
working problem, which is their largest tested domain. Fig. 6(b) shows a network
model with three cells and six clusters. There are two types of cluster - inter
cluster (between two cells) and intra cluster. Each cluster contains well connected
vehicles that can communicate with high throughput via V2V (Vehicle-to-Vehicle)
links. The base station (BS) cell is shared by other mobile user equipments (UEs)
and can communicate with vehicles via the direct V2I (Vehicle-to-Infrastructure)
links. In this paper, we consider the problem of downlink data transmission where
the data are transmitted from BSs to vehicles in the clusters. The objective for all
vehicles/agents here is to find the network routes such that the total throughput
is maximized (i.e., delivering high volumes of data to destination vehicles), while
satisfying both the peak and average latency constraints. Peak constraint means
that the latency due to the execution of an agent’s action at any time step should
be bounded. In CMIX, each agent requires an individual policy to perform action
selection. In contrast, agents that belong to the same cluster share the same
policy in our collective method. Time limit is set to 180 mins. Further details on
hyperparams and neural network structure are in supplementary.

We first follow the same experimental settings as in the CMIX paper to
evaluate the performance. There are total three cells and six clusters that are
randomly distributed over cells. The number of vehicles in each cluster is randomly
generated between a range [5, 10] so that there will be total 30 ∼ 60 vehicles. The
throughput and latency of these V2V and V2I links are also randomly generated.
Fig. 7 shows the learning curves of global reward, peak violation and latency over
time steps. The average latency over time steps in one episode is bounded by
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Fig. 7: Convergence results over time steps with total 30 ∼ 60 agents
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Fig. 8: Convergence results over time steps with total 150 ∼ 180 agents

60. The threshold for peak constraint is also 60. From Fig. 7(c), we can see that
the average constraint is satisfied when convergence occurs in both approaches.
However, our approach converged much faster and is more sample efficient than
the CMIX. In Fig. 7(b), the peak constraint is almost satisfied in our approach.
Only one agent’s latency is greater than 60 in average. The reason is that we use
shared policy for agents in the same cluster. And it is challenging for the policy
to consider each agent’s peak constraint. In Fig. 7(a), the global rewards in both
approaches are increasing (higher is better), and converged to almost the same
values (530 in our approach v.s. 535 in CMIX). It shows that our approach is
also able to maximize the delivered volumes of data.

We next evaluate the scalability of our approach. We increase agents in each
cluster to [5, 10]; total number of agents are between 150 and 180. CMIX is only
able to train around 100K steps within the limit and our approach can finish
400K steps. Therefore, we show the learning process over 100K steps. Figures 8(b)
and (c) show that peak violation and average latency are decreasing in both
two approaches. However, the average latency and peak violation in FICO are
decreasing with a much faster speed than CMIX. Also, our approach is able
to find a policy to satisfy the latency constraint within 100K steps, confirming
the effectiveness of our method for large scale problems. The average latency in
CMIX is still greater than the threshold 60. The global rewards over time steps
are almost unchanged in CMIX, and decreased slightly from 1970 to 1940 in our
approach as our approach results in lower constraint violations versus CMIX.
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4 Conclusion

We presented a new approach for solving constrained MARL for large agent pop-
ulation. We formulate the constrained MARL problem in a collective multiagent
setting then propose to use the fictitious collective Lagrangian relaxation to solve
the constrained problem. We developed a credit assignment scheme for both the
reward and cost signals under the fictitious play framework. We evaluate our
proposed approach on two real-world problems: maritime traffic management
and vehicular network routing. Experimental results show that our approach is
able to scale up to large agent population and can optimize the cumulative global
reward while minimizing the constraint violations.
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