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Abstract- ‘In evolutionary algorithms a critical parameter 
that must he tuned is that of selection pressure. If it is set too low 
then the rate of convergence towards the optimum is likely to 
he slow. Alternatively if the selection pressure is set too high the 
system is likely to become stuck in a local optimum due to a loss of 
diversity in the population. The recent Fitness Uniform Selection 
Scheme (FUSS) is a conceptually simple but somewhat radical 
approach to addressing this problem - rather than biasing the 
selection towards higher fitness, FUSS biases selection towards 
sparsely populated fitness levels. In this paper we compare the 
relative performance of FUSS with the well known tournament 
selection scheme on a range of problems. 

I. INTRODUCTION 

The standard selection schemes used in evolutionary algo- 
rithms (such as tournament, ranking, proportional, truncation 
selection, and so on) all focus the selection pressure towards 
individuals of higher fitness in the population. The rational 
being that these individuals are the most likely to produce 
offspring (either by mutation or crossover or both) that belong 
to still higher fitness levels. For many problems this is often a 
valid assumption, however for difficult, deceptive and highly 
multi-modal functions the path towards the global optimum is 
rarely smooth (by “deceptive” we mean in the general rather 
than the technical sense). In these cases it is important that 
we explore the solution space very carefully before becoming 
too committed to any subset of solutions that appears to be 
promising. In order to do this we must not focus too much of 
our search energy on only the most fit individuals. In particular 
we must ensure that we keep some less fit individuals in the 
population in case we need to use them to initialize a new 
direction of exploration should we become stuck in a local 
optimum. 

For standard selection schemes this is controlled by ap- 
propriately setting the parameters that govern the selection 
pressure on the individuals. If this pressure is set too high 
the evolutionary algorithm (EA) will converge quickly but 
possibly to a local optimum, while if it is set too low the 
system will converge only very slowly, if at all. It is often 
the case that this can only be done through a process of 
experimentation with the particular problem at hand. 

Many systems have been devised to help prevent this 
problem by ensuring that the population maintains a certain 
degree of diversity. Significant contributions in this direction 
are fitness sharing [I], crowding [2] and local mating [3]. 
The Fitness Uniform Selection Scheme (FUSS) [4] is another 
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proposed solution to this problem which is well suited for very 
difficult optimization problems. The key idea is to preserve 
genetic diversity in the population by using the fitness of 
individuals to estimate their similarity. The beauty of this 
approach is that it is simple to implement, problem intrinsic 
and also representation independent. 

In this paper we present the first experimental investigations 
into the performance of FUSS. Our goal is to develop a k t t e r  
understanding of its performance characteristics in practice 
and in particular how it compares to a standard selection 
scheme which favors fit individuals. 

Section 11 briefly explains how the relative fitness of indi- 
viduals can be used to define a simple metric that provides 
us with some indication of the similarity of individuals. In 
Section 111 we discuss the definition of the fitness uniform 
selection scheme for both discrete and continuous valued 
fitness functions. We also outline some of its key theoretical 
properties and contrast these with standard selection schemes. 
Section IV details our experimental setup. Section V examines 
the performance of FUSS and tournament selection on an 
artificially constructed deceptive optimization problem. We 
compare our results to the behavior predicted in [4]. The 
performance of FUSS and tournament selection is then exam- 
ined on a set of randomly generated integer valued funcf.ions 
in Section VI. In Section VU we detail the performance of 
FUSS and tournament selection on both artificial and real 
traveling salesman problems. In Section VllI we examine 
the set covering problem, an NP hard optimization problem 
which has many real world applications. For our final test in 
Section IX  we compare FUSS and tournament selection on 
random maximum CNF3 SAT problems and graph coloring 
problems which have been expressed in the CNF form. These 
are also NP hard optimization problems. Section X contains a 
brief summary of our results and possible avenues for future 
research. 

11. USING FITNESS TO MEASURE SIMILARITY 

There are many ways to measure the similarity of indi- 
viduals in a population. If the individuals are binary coded 
one might use the Hamming distance as a similarity relation. 
This distance is consistent with a mutation operator which 
flips a few bits. It produces Hamming-similar individuals:, but 
recombination (like crossover) can produce very dissimilar 
individuals w.r.t. this measure. In any case, genotypic sim- 
ilarity relations, like the Hamming distance, depend on the 
representation of the individuals as binary strings. Individuals 
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Fig. 1. Evolution of the papulation under FUSS versus standard selection schemes (STD): STD may get stuck in a local optimum if all unfit individuals 
were eliminated too quickly. In FUSS, all fitness levels remain occupied with “free” drift within and in-between fitness IevcIs, from which new mutants are 
steadily created, wcasionally leading to further evoludan in a more promising direction. 

with very dissimilar genomes might actually be functionally 
(phenotypically) very similar. For instance, when most bits 
are unused (like introns in GP), they can be randomly dis- 
turbed without affecting the property of the individual. For 
specific problems at hand, it might be possible to find suitable 
representation-independent functional similarity relations. On 
the other hand, in genetic programming, for instance, it is in 
general undecidable, whether two individuals are functionally 
similar. 

FUSS takes a different approach. The distance between two 
individuals i and j with fitness f( i)  and f(j) is defined as 

d ( i > j )  := If(9 - f(j)l. 
The distance is based solely on the fitness function, which is 
provided as part of the problem specification. It is independent 
of the codinglrepresentation and other problem details, and 
of the optimization algorithm (e.g. the genetic mutation and 
recombination operators), and can trivially be computed from 
the fitness values. If we make the natural assumption that 
functionally similar individuals have similar fitness, they are 
also similar w.r.t. the distance d. On the other hand, individuals 
with very different coding, and even functionally dissimilar 
individuals may be d-similar, but we will see that this does not 
matter. For instance, individuals from different local optima of 
equal height are d-similar. 

Armed with this simple measure of similarity between 
individuals we can now define a selection scheme that aims 
to preserve diversity in the population. 

111. FITNESS UNIFORM SELECTION STRATEGY (FUSS) 
The idea behind FUSS is that we should focus the selection 

pressure towards fitness levels which have relatively few 
individuals rather than on the highest fitness levels. In this 
way fitness levels which are difficult to reach are thoroughly 
explored and on no fitness level does the population size de- 
crease towards extinction (see Figure l). Thus FUSS preserves 
genetic diversity more actively than the standard selection 
schemes which tend to drive the populations on lower fitness 
levels to zero. Moreover, parts of the fitness space which are 
interesting, in the sense that they are difficult to reach, are 
focused on, rather than easy to reach areas which are already 
well represented in the population. This approach might seem 
counter intuitive as we are not even attempting to increase 
the average fitness of the population! The point is that for 
optimization problems we are’usually only interested in finding 

a single individual with the highest possible fitness -having 
low average fitness is not in itself a problem. 

For general real-valued fitness functions FUSS is defined as 
follows: A uniform random number is chosen in the interval 
[fmin,fmaz]. where fmar and fmin are the maximum and 
minimum fitness values in the current population. Then the 
individual with fitness nearest to this number is chosen (see 
Figure 2). If this is ambiguous one of the nearest individuals 
is chosen at random. In the case of integer valued fitness 
functions this is equivalent to selecting a fitness level at 
random from the set {fmin, fmin + 1,. . . , fmoz} and then 
randomly selecting an individual within that fitness level if 
the level is occupied. If the level is empty, higher and lower 
fitness levels are progressively searched until a non empty level 
is found at which time a random individual is selected. 

While the probability of selecting each fitness level is equal, 
the probability of then selecting a given individual within 
a fitness level depends on the population of that level. For 
example, if an individual belongs to a fitness level with 
50 members its selection probability is twice as high as an 
individual that belongs to a fitness level with 100 members. 
It is easy to see that under a selection scheme based on the 
FUSS approach, the proportion of individuals at each fitness 
level tends towards the fraction 2 where IF1 is the number 
of fitness levels as depicted in igure 3 See [4] for a more 
detailed description. 

While this preserves a greater degree of population diversity 
than the standard selection schemes, it comes at the cost of 
a potential loss of performance due to the large number of 
selections from low fitness levels. Thus the currently highest 
parts of the fitness space are now searched more slowly than 
under a standard selection scheme. In the worst case FUSS 
will slow the performance of the system down by a factor of 
IFI. However for significantly deceptive problems the loss of 
performance due to becoming stuck in a local optimum for 
a long period of time is a much more significant cost than a 
potential factor of IFI. It is for these problems that the author 
of [41 expects the strengths of FUSS to become evident. 

At first glance it might appear that there is little pressure on 
selecting highly fit individuals under FUSS. Usually this is not 
the case as the most fit individuals in a population are typically 
quite rare. If these individuals start to make up a significant 
proportion of the total population this indicates that this part 
of the space has been significantly searched and thus is more 
likely to be an evolutionary dead end. In this case FUSS will, 
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Fig. 2. If the IowesUhighest timess values in the current population P 
are Jm,n,n,nz, FUSS selects a fitness d u e  f uniformly in the inleml 
[Jmmin. Jmaz]. then, Ule individual i E P with fitness nearest to f is selected 
and a copy IS added to P, possibly after mutation and recombination. 

Fig. 3. Effects of ranking=toumament and fimess uniform (FUSS) selection 
on the fimesr dishibulion in a generation based EA. The IefIJright diagrams de- 
pict fimess distributions befardafter applying the Selection schemes depicted 
in the middle diagrams. 

by its nature, automatically move selection pressure away from 
these highly fit individuals and focus its search energy on 
lower fitness levels that have fewer individuals. In this way 
the selection intensity varies dynamically with the evolution of 
the population. Clearly this is preferable to the situation where 
we must manually fix the selection pressure for a particular 
optimization problem in order to  prevent the system from 
becoming stuck in local optima. 

IV. GA TEST SYSTEM 

We have implemented a GA test system in Java on a 
PC running Linux. The selection schemes include FUSS and 
the standard tournament selection scheme. With tournament 
selection we randomly pick a group of individuals and then 
select the fittest individual from this group. The size of the 
group is called the tournament size and it is clear that the 
larger this group is the more likely we are to select a highly 
fit individual from the population. A tournament size of 2 is 
commonly used in practice as this often provides sufficient 
selection intensity on the most fit individuals. In our tests we 
have used tournament sizes of 2.5 and 15 which we will refer 
to as TOIJR2, TOUR5 and TOUR15 respectively. This should 
provide some insight into how different levels of selection 
intensity affect performance in different problems. 

We have chosen to compare FUSS with tournament selec- 
tion as this scheme is simple to understand and implement and 
is also one of the most widely used. Also we consider it to 

be roughly representative of other standard selection schemes 
which favor the fitter individuals in the population; indeed in 
the case of tournament size 2 it can be show that tournament 
selection is equivalent to the linear ranking selection scheme 
[5, Sec.2.2.41. At some point in the future we may implement 
other standard selection schemes to broaden our comparison, 
however we expect the performance of these schemes tf3 be 
at best comparable to tournament selection when used with a 
correctly tuned selection intensity. 

The GA model we have chosen is the so called "Seady 
state" model as opposed to the more usual "generational" 
model. In a generational GA at each generation we select an 
entirely new population based on the old population. The old 
population is then simply discarded. Under the steady state 
model that we use, individuals are only selected one at a time: 
We select an individual, then with a certain probability we 
select another and cross the two to produce a new individual, 
and then with another probability we mutate the result. We. will 
refer to the probability of crossing as the crossover probability 
and the probability of mutating following a cross as the myltafe 
probability. In the case where no crossover took place the 
individual is always mutated to insure that we are not simply 
adding a clone of an existing individual into the population. 
Finally an individual must be deleted in order to keep the 
population size constant. How this is done is important as it 
can bias the population in a way that is similar to the selection 
scheme. We have chosen to simply delete a random individual 
from the population which is a common neutral strategy used 
in steady state GAS. 

The number of generations in a generational GA is roughly 
equivalent to the number of iterations in a steady state GA 
divided by the population size. We have used this approx- 
imation here when reporting the number of generations on 
graphs etc. Unfortunately the theoretical understanding of the 
relationship between the two types of GA is quite poor. It 
has been shown that under the assumption of no crossover the 
effective selection intensity using tournament selection with 
size 2 is approximately twice as strong under a steady state 
GA as it is with a generational GA [6] .  As far as we are 
aware a similar comparison for systems with crossover has 
not been performed, though we would not expect the results to 
he significantly different. While steady state GAS have certain 
advantages, the fact that generational GAS are more common 
means that we may in the future test FUSS under this model 
also. 

The important free parameters to set for each test are the 
population size, and the crossover and mutation probabilities 
mentioned above. Our default is to have both the.cros,sover 
and mutation probabilities set to 0.5. For each problem we 
conducted some preliminary experiments' to establish re;ason- 
able settings for these variables. Often the effect of these 
variables on performance was not particularly strong, though 
it was always worth checking to he sure. More importmtly, 
the relative performance of the selection schemes rem.nined 
quite stable. For population sizes less than 500 performance 
tended to degrade for difficult problems where the potential 
solution space was large. To avoid this our experiments have 
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been performed with populations of 1,OOO individuals or more Deceptive 2D Problem . ~. 

lmo~. ' 7 , 
For each test the parameters were the same for each selection 
scheme - indeed the only difference was which subroutine I " "  

* 

.I .*' 
<. -  

z/' 
,' 

in the code was used to select individuals. This ensures that 
our comparison was fair. 

In order to generate reliable statistics we ran each test 
multiple times; typically 20 or 30 times. From these runs 

/ '  a :z -Fuss , E  100 .. . 
we then calculated the average performance for each selection 
scheme. We also computed the sample standard deviation and 
from this the standard error in our estimate of the mean. This 
value was then used to generate the 95% confidence intervals 
which appear on the graphs. 

V. A DECEPTIVE 2D PROBLEM 
The first problem we examine is the simple but highly 

deceptive 2D problem for which the performance of FUSS 
was theoretically analyzed in [4]. The setup of the test is quite 
simple. The space of individuals is the unit square [0,1] x [0,1]. 
On this space narrow regions 1, := [a, a + 61 x [0, I] and 
Iz := [O, 11 x [6, 6 + 61 for some a, b, 6 E [0, l] are defined. 
Typically 6 is chosen so that it is much smaller than 1 and 
thus 11 and 12 do not occupy much of the domain space. The 
fitness function is defined to be, 

L 
"6 1: 

The example has sort of an XOR structure, which is hard for 
many optimizers. 

For this problem we set up the mutation operator to ran- 
domly set either the z or y position of an individual and the 
crossover to take the z position from one individual and the 
y position from another to produce an offspring. 

Under these operators this is a very deceptive and difficult 
optimization problem. The size of the domain for which the 
function is maximized is just 6' which is very small for small 
values of 6. Moreover the local maxima at fitness level 3 
covers most of the space and the only way to reach the global 
maximum is by leaving this local maxima and exploring the 
space of individuals with lower fitness value of 1 or 2. For 
such a problem FUSS should in theory perform much better 
than either random search or more standard selection schemes. 

For this test we set the maximum population size to 10,000 
and ran each scheme for each delta value 20 times. With a 
steady state GA it is usual to start with a full population of 
random individuals. However for this particular problem we 
reduced the initial population size down to just 10 in order 
to avoid the effect of doing a large random search when we 
created the initial population and thereby distorting the scaling. 
Usually this might create difficulties due to the poor genetic 
diversity in the initial population. However due to the fact that 
any individual can mutate to any other in just two steps this 
is not a problem in this situation. Initial tests indicated that 
reducing the crossover probability from 0.5 to 0.25 improved 

Delta 
Fig. 4. As predicted FUSS scales significantly bener than both tournament 
selection and random search for this problem. Also, increasing selection 
pressure in tomamen1 selection (TOUR2 YS. TOURS) degraded performance. 

the performance slightly and so we have used this setting. For 
comparison random search (RAND) was also implemented. 
The results of these tests appear in Figure 4. 

As expected higher selection pressure on the most fit 
individuals is clearly a disadvantage for this problem. With low 
selection pressure (TOUR2) tournament selection performs 
slightly worse than random search while with medium selec- 
tion pressure (TOURJ) performance was in the order of 20 
times slower than random search. With high selection pressure 
(TOUR15) the test became infeasible to compute. Our results 
confirm the theoretical scaling factors of $ for RAND and 
TOUR2, and f for FUSS, as predicted in [4]. 

VI. RANDOM FUNCTIONS 

In order to gain a better understanding of how FUSS 
performs relative to tournament selection in more general 
problem settings we tested the selection schemes on a set of 
randomly generated functions. In this case the domain of each 
function was the 4 dimensional hyper cube [0, lI4. To create 
each random function we randomly generated 16 cuboids of 4 
dimensions inside the domain space. The function value of a 
point inside the domain space was then taken to be the number 
of random cuboids that contained the point. Thus, depending 
on where the random cuboids where, the range of the function 
could be anything from {O, 1) to {O, 1,. . . ,16}. This process 
of building up functions using cuboids allowed the functions 
to be quite complex and multi modal while still keeping some 
rough continuity. In order to make the optimization problem 
a little more tractable we limited the width of the cuboids 
in any one dimension to be in the range [0.2,1]. While this 
limited the minimum size of each random cuboid, two or more 
cuboids could still form arbitrarily small intersections and thus 
the domain region in which a function achieves its maximal 
value could still be extremely small. 

In the first test we generated 100 random functions and 
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DrecomDuted each function's dobal  maximum value by using VII. TRAVELING SALESMAN PROBLEM 
;he cuboid position information used to construct the function. 
For each function we then ran both FUSS and TOUR2 10 
times and computed for each the average number of genera- 
tions needed to find the global maximum. This produced 100 
data points corresponding to the 100 random functions. 

We first tested TOUR2 as we expected the problem to be 
relatively deceptive and thus higher selection pressure would 
be a disadvantage. The population size for these tests was set 
at 10,000. The results are plotted in Figure 5.  

We see that FUSS typically manages to find the global 
maximum 2 to 20 times faster than TOURZ, with 10 being 
about average. We then compared FUSS with TOURS. The 
results of this test are plotted in Figure 5. 

Interestingly the performance of tournament selection im- 
proved to the extent that it was then roughly equivalent to 
FIJSS. Typically a toumament size of 2 is sufficient selection 
pressure for most problems. This performance improvement 
due to increased selection pressure indicates that toumament 
selection wasn't becoming significantly stuck in local optima 
and thus these random function problems where not as decep- 
tive as we had anticipated. We increased selection pressure 
further by testing TOURIS, but no further performance gains 
were to be had. 

While the strength of FUSS is in dealing with very difficult 
and deceptive optimization problems, this result demonstrates 
that even for problems where greater selection pressure is an 
advantage the performance of FUSS can remain competitive. 
FUSS also had the advantage that no parameter tuning was 
required in order to achieve optimum performance for this 
problem. 

To find the shortest Hamiltonian cycle (path) in a graph of 
N vertices (cities) connected by edges of certain lengths is 
a difficult optimization problem. In the following we present 
preliminary results of a simple evolutionary TSP optimizer 
with standard selection (here tournament selection) and %with 
FUSS. There are highly specialized (evolutionary) algorithms 
finding paths less than one percent longer than the optimal ]path 
for up to lo7 cities [7], [SI, [9], [IO]. Whether FUSS could 
further improve these algorithms will be studied elsewhere. 
Here, we are just interested in the performance of FIJSS 
compared to tournament selection on a difficult optimization 
problem that has real world applications. 

The mutation and crossover operators we used were quite 
simple. Mutation was done by simply switching the position 
of two of the cities in the solution. For crossover we used the 
common partial mapped crossover technique [Ill.  

The first test was carried out on a set of TSP problems 
with random distance matrices. There were 50 TSP problems 
in total each with 20 cities. The distance between any two 
cities was chosen uniformly from the interval ( O , l ] .  This is a 
particularly deceptive form of the TSP problem as the usual 
triangle inequality relation does not hold. For example, the 
distance between cities A and B might be 0.1, between cities 
B and C 0.2, and yet the distance between A and C might be 
0.8. The problem still has some structure though as efficient 
partial solutions tend to be useful building blocks for efficient 
complete tours. For this test we used a population size of 5,000 
and the default mutation and crossover rates of 0.5. The re:sults 
appear in Figure 6. 

We see here that the selection intensity with TOUR2 ir; too 
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Fig. 6.  
manages to avoid becoming stuck in a local optimum like TOUR15. In the real TSP problem FUSS again has dose to the optimal selection inlensiry 

FUSS performs well in both anificial and real TSP problems. For the random TSP problem FUSS converges much fasler &an TOUR2 bur also 

low for the system to converge in a reasonable number of 
generations. On the other hand the selection intensity under 
TOUR15 is too high and causes the system to become stuck 
in a local optimum. TOURS has about the correct selection 
intensity for this problem. FUSS outperforms both TOUR2 
and TOUR15 and is very close to TOURS at the end of the 
run. 

We also tested the system on a number of real TSP problems 
based on the location of real cities from various countries 
around the world [121. For these tests the population size 
was set at 5,000. Based on experimentation we increased the 
crossover probability to 1.0 and the probability of mutation 
was reduced to 0.2 for better performance. The results were 
averaged over a total of 5 runs. The results for the "Sahara" 
dataset are shown in Figure 6. 

Here we see that a higher level of selection intensity is 
appropriate. FUSS again performs significantly better than 
TOUR2 and also a little better than TOURS. At the end of the 
run FUSS has converged to the same level as both TOURS 
and TOUR15 which is again a positive result for FUSS. 

We tested the system on a number of other datasets under 
various other parameter settings for population size, rate of 
mutation and crossover etc. and obtained similar results. Nev- 
ertheless a fuller analysis comparing other possible mutation 
and crossover operations and parameters settings will need to 
be done before more substantive conclusions are possible. 

VIII. SET COVERING PROBLEM 

The set covering problem (SCP) is a reasonably well known 
NP-complete optimization problem with many real world 
applications. Let A4 t (0, l}"Xn be a binary valued matrix 
and let cj > 0 for j t (1,  . . . n} be the cost of column j .  The 
goal is to find a subset of the columns such that the cost is 
minimized. Define xj = 1 if column j is in our solution and 
0 otherwise. We can then express the cost of this solution as 

E,"=, c j x j  subject to the condition that E;=, m;jzj 2 1 for 

Our system of representation, mutation operators and 
crossover follow that used by Beasley 1131. We compared 
the performance of FUSS with tournament selection on a 
number of standard test problems [14]. For these tests we set 
the population size to 5,000, crossover probability to 1.0, the 
mutation probability to 0.5 and averaged the performance of 
the systems over 30 runs on each problem. 

The results in Figure 7 were based on the "SCP49" and 
"SCP41" datasets. Here the performance of FUSS is less 
impressive. For SCP49 FUSS performs better than TOUR2 
however the rate of convergence is still too low. SCP41 is an 
easy problem with TOUR15 converging in just 4 generations. 
Nevertheless FUSS is converging very slowly, if at all. It is 
interesting that FUSS performs poorly on this relatively easy 
problem when its performance was strong on more difficult 
problems such as random TSP and the deceptive 2D problem 
presented earlier. We will look more closely into the reasons 
for this in the next section. 

i € { l ,  ... m}. 

IX. MAXIMUM CNF3 SAT 

Maximum CNF3 SAT is a well known NP hard optimization 
problem [I51 that has been extensively studied. A three literal 
conjunctive normal form (CNF) logical equation is a boolean 
equation that consists of a conjunction of clauses where each 
clause contains a disjunction of three literals. So for example, 
(a  v b V -c) A (a  V T e  V f )  is a CNF3 expression. The goal in 
the maximum CNF3 SAT problem is to find an instantiation 
of the variables such that the maximum number of clauses 
evaluate to true. Thus for the above equation if a = F ,  b = T, 
c = T ,  e = T ,  and f = F then just one clause evaluates to 
true and thus this instantiation gets a score of one. Achieving 
significant results in this area would be difficult and this is 
not our aim; we are simply using this problem as a test to 
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however for some reason FUSS becomes stuck far from the optimum. 

In SCP49 FUSS wnverges more quickly than TOUR2 but is still VI0 slow. SCP41 is an easy problem as TOURIS find the oplimum very quickly 

compare FUSS and tournament selection. 
Our test problems have been taken from the SATLIB collec- 

tion of SAT benchmark tests [16]. The first test was performed 
on 30 instances of randomly generated CNF3 forumlae with 
150 variables and 645 clauses which are all known to be 
satisfiable. The second test was performed on 30 instances 
of “flat” 3 colorable graph coloring problems with 50 vertices 
and 115 edges which have been expressed in CNF form. The 
graph coloring problems have a slightly different structure as 
the clauses contain either 2 or 3 literals. 

Our mutation operator simply flips one boolean variable and 
the crossover operator forms a new individual by randomly 
selecting for each variable which parent’s state to take. The 
population size was set to 10,000 and the crossover and 
mutation probabilities were left at the default setting of 0.5. 
The test was run 30 times for each selection method. The 
results for both tests appear in Figure 8. 

In both tests we see that the maximum fitness under 
FUSS initially climbs very rapidly. Closer inspection showed 
that it climbs even more rapidly than TOUR15 for the first 
0.5 generations. This indicates that FUSS has an extremely 
high selection intensity to start with; much higher than even 
TOURlS. After this period FUSS starts to slow down. It 
appears to become either stuck in a local optimum or the 
selection intensity falls dramatically, either way, it is then 
easily passed by the tournament selection schemes. We also 
tested the system with controlled backbone CNF problems 
from the same set of benchmark tests and obtained similar 
results. 

We can explain this behavior by considering a simple 
example. Consider a situation where there is a large number of 
individuals in a small band of fitness levels, say 10,000 with 
fitness values ranging from 50 to 70. Add to this population 
one individual with a fitness value of 73. Thus the total 
fitness range is now 24. Whenever FUSS picks a random 

point from 72 to 73 inclusive this single individual with 
maximal fitness will be selected. That is, the probability that 
the single fittest individual will be selected is 2/24 = 0.083. 
Now compare this to TOUR15, a selection scheme with high 
selection intensity. Under TOUR15 the probability that. the 
fittest individual is selected is the same as the probahility 
that it is picked for the sample of 15 elements used for the 
tournament. that is, 15/10000 = 0.0015. Thus we can see 
that in this simple example the probability of selecting the 
fittest individual under FUSS is over 50 times higher than 
what it is under TOUR15. This effectively gives FUS:S an 
extremely high selection intensity and would likely result in a 
very rapidly rising maximal fitness value. If a mutant derived 
from our highly fit individual had a fitness value higher tha.n 73 
then the situation would become much more extreme causing 
the system to rapidly explore this evolutionary path and fill 
the higher fitness levels with many highly related individuals 
in the process. 

Once a high level of fitness is reached and further progress 
becomes difficult the distribution of individuals across the 
fitness range balances out. When this happens the selection 
probability for individuals at the highest fitness levels con- 
verges towards 1 where /PI is the size of the population. 
Thus the selection intensity becomes very -low, much lower 
than under TOUR15. This explains why FUSS becomes s.tuck 
after its initial rapid rise in maximal fitness. 

Further experiments have been carried out to test whether 
these difficulties are responsible for the performance problems 
we have seen. While FUSS is suited for problems where it 
is difficult to directly measure and thus control diversity, in 
the CNF problems we are able measure diversity quite easily 
by computing hamming distance. Doing so reveals that the 
diversity in the total population remains very high under FUSS 
over the evolution of the system, much higher than unde.r the 
tournament selection schemes. This is what we would ex.pect 
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Fig. 8. 
selection. The graph coloring problem shows a similar result. 

In the CNF3 SAT benchmark with 150 variables and 645 clauses the performance of FUSS was slightly below the performance of tomament 

to see given that FUSS maintains a broad set of both fit and 
unfit individuals in the population. However if we look at the 
genetic diversity in the top 10% of the population we see that 
diversity under FUSS falls very rapidly and is generally sig- 
nificantly worse than under the toumament selection scheme. 
Thus while we have succeeded in preserving diversity in the 
population as a whole, among the fittest individuals in the 
population diversity is actually rather poor. This is consistent 
with the scenario described above where FUSS tends to over 
exploit a very small number of fit individuals in the population. 

X. CONCLUSIONS & FUTURE RESEARCH DIRECTIONS 
Theoretical analysis suggests that FUSS should be able 

to outperfom standard selection schemes in some situations, 
in particular on highly deceptive optimization problems. Our 
results for a deceptive 2D optimization problem and for TSP 
problems confirm this. However we have also observed cases 
where FUSS has performance difficulties. Further analysis 
indicates that this is due to the greedy nature of FUSS selection 
in the early stages of the system's evolution. While total 
genetic diversity was very strong, diversity among the most 
fit individuals was poor due to the nature of our selection 
scheme. This suggests that while fitness can be used to control 
diversity, our current method of doing so is inadequate. We 
are currently investigating alternates to FUSS which achieve 
diversity across fitness levels while not exploiting small groups 
of fit individuals too heavily in the process. Our results so far 
have been encouraging with diversity being strong both in the 
population as a whole and among fit individuals. 
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