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Abstract. Influence diagrams (IDs) offer a powerful framework for deci-
sion making under uncertainty, but their applicability has been hindered
by the exponential growth of runtime and memory usage—largely due
to the no-forgetting assumption. We present a novel way to maintain
a limited amount of memory to inform each decision and still obtain
near-optimal policies. The approach is based on augmenting the graph-
ical model with memory states that represent key aspects of previous
observations—a method that has proved useful in POMDP solvers. We
also derive an efficient EM-based message-passing algorithm to compute
the policy. Experimental results show that this approach produces high-
quality approximate polices and offers better scalability than existing
methods.

1 Introduction

Influence diagrams (IDs) present a compact graphical representation of deci-
sion problems under uncertainty [8]. Since the mid 1980’s, numerous algorithms
have been proposed to find optimal decision policies for IDs [4,15,9,14,5,11,12].
However, most of these algorithms suffer from limited scalability due to the ex-
ponential growth in computation time and memory usage with the input size.
The main reason for algorithm intractability is the no-forgetting assumption [15],
which states that each decision is conditionally dependent on all previous ob-
servations and decisions. This assumption is widely used because it is necessary
to guarantee a policy that achieves the highest expected utility. Intuitively, the
more information is used for the policy, the better it will be. However, as the
number of decision variables increases, the number of possible observations grows
exponentially, requiring a prohibitive amount of memory and a large amount of
time to compute policies for the final decision variable, which depends on all the
previous observations.

This drawback can be overcome by pruning irrelevant and non-informative
variables without sacrificing the expected utility [16,17]. However, the analysis
necessary to establish irrelevant variables is usually nontrivial. More importantly,
this irrelevance or independence analysis is based on the graphical representation
of the influence diagram. In some cases the actual probability distribution implies
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Fig. 1. a) Influence diagram of the oil wildcatter problem (left); b) with a shaded
memory node (right). Dotted arrows denote informational arcs.

additional independence relationships among variables that cannot be inferred
from the graphical structure. This is usually the case when variables have a large
number of successors. Therefore it is beneficial to extract additional (exact or
approximate) independence relations in a principled way, thereby decreasing the
number of variables that each decision must memorize. In this work, we address
this issue by introducing the notion of memory nodes.

Finite-state controllers have been proved very effective in solving infinite-
horizon POMDPs [7]. Instead of memorizing long sequences of observations, the
idea is to maintain a relatively small number of internal memory states and to
choose actions based on this bounded memory. Computing a policy in that case
involves determining the action selection function as well as the controller tran-
sition function, both of which could be either deterministic or stochastic. With
bounded memory, the resulting policy may not be optimal, but with an increas-
ing controller size ε-optimality can be guaranteed [2]. A number of search and
optimization methods have been used to derive good POMDP policies repre-
sented as controllers [1]. More recently, efficient probabilistic inference methods
have been proposed as well [19].

Our goal in this paper is to leverage these methods in order to develop more
scalable algorithms for the evaluation of IDs. To achieve that, first we introduce a
technique to augment IDs with memory nodes. Then, we derive an expectation-
maximization (EM) based algorithm for approximate policy iteration for the
augmented ID. In the evaluation section, we examine the performance of our
algorithm against standard existing techniques.

2 Influence Diagram

An influence diagram (ID) is defined by a directed acyclic graph G = {N, A},
where N is a set of nodes and A is a set of arcs. The set of nodes, N , is divided
into three disjoint groups 〈X, D, R〉. The set X = {X1, X2, ..., Xn} is a set of n
chance nodes, the set D = {D1, D2, ..., Dm} is a set of m decision nodes and
R = {R1, R2, ..., RT } is a set of T reward nodes. Fig. 1(a) shows the influence
diagram of the oil wildcatter problem [21], in which decision nodes are illustrated
by squares, chance nodes by ellipses and reward nodes by diamonds.

Let π(·) and Ω(·) denote the parents and domain of a node respectively. The
domain of a set Z = {Z1, Z2, ...Zk} : Z ⊆ N , is defined to be the Cartesian
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product ×Zi∈ZΩ(Zi) of its individual members’ domains. Associated with each
chance node is a conditional probability table P (Xi|π(Xi)). The domain of each
decision node is a discrete set of actions. The parents π(Di) of a decision node
Di are called observations, denoted by O(Di). In other words, decisions are
conditioned on the value of their parents [15]. Each reward node Ri defines a
utility function gi(π(Ri)) which maps every joint setting of its parents to a real
valued utility.

A stochastic decision rule for a decision node Di is denoted by δi and models
the CPT P (Di|π(Di); δi) = δi(Di,π(Di)). A policy ∆ for the ID is a set of
decision rules {δ1, δ2, ..., δm}, containing one rule for each decision node. Given a
complete assignment {x, d} of chance nodes X and decision nodes D, the total
utility is:

U(x, d) =
T∑

i=1

gi

(
{x, d}π(Ri)

)
(1)

where {x, d}π(Ri) is the value of π(Ri) assigned according to {x, d}. The ex-
pected utility (EU) of a given policy ∆ is equal to

∑

x∈Ω(X),d∈Ω(D)

P
(
x, d

)
U(x, d)

The probability of a complete assignment {x, d} is calculated using the chain
rule as follows: P

(
x, d

)
=

∏n
i=1 P

(
xi|π(Xi)

) ∏m
j=1 δj

(
dj ,π(Dj);∆

)
. Therefore,

the expected utility is:

EU(∆; G) =
∑

x∈Ω(X),d∈Ω(D)

n∏

i=1

P
(
xi|π(Xi)

) m∏

j=1

δj

(
dj ,π(Dj);∆

)
U(x, d) (2)

The goal is to find the optimal policy ∆# for a given ID that maximizes the
expected utility.

A standard ID is typically required to satisfy two constraints [8,15]:
• Regularity: The decision nodes are executed sequentially according to some

specified total order. In the oil wildcatter problem of Fig. 1(a), the order is
T ≺ D ≺ OSP . With this constraint, the ID models the decision making
process of a single agent as no decisions can be made concurrently.

• No-forgetting: This assumption requires an agent to remember the entire
observation and decision history. This implies π(Di) ⊆ π(Di+1) where Di ≺
Di+1. With the no-forgetting assumption, each decision is made based on all
the previous information.

3 Influence Diagram with Memory States

The no-forgetting assumption makes the policy optimization computationally
challenging. In this work, we introduce the notion of influence diagrams with
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Algorithm 1. IDMS representation of an influence diagram
input : An ID G = (N, A), k as the number of memory states
Create a copy Gms ← G1

foreach decision node i ≥ 2 do2

Add a memory node Qi to Gms with |Qi| = k3

Add incoming arcs into Qi s.t.4

π(Qi; Gms) ←
{

π(D1; G) (i = 2)(
π(Di−1; G) ∪ Qi−1

)
\π(Di−2; G) (i > 2)5

If π(Qi; Gms) ≡ φ, then delete Qi6

foreach decision node i ≥ 2 do7

if ∃Qi then8

Delete all incoming arcs to Di in Gms9

Set the parent of Di s.t.10

π(Di; Gms) ←
(
Qi ∪ π(Di; G)

)
\π(Di−1; G)11

return: the memory bounded ID Gms

memory states (IDMS). The key idea is to approximate the no-forgetting as-
sumption by using limited memory in the form of memory nodes. We start with
an intuitive definition and then describe the exact steps to convert an ID into
its memory bounded IDMS counterpart.

Definition 1. Given an influence diagram (ID), the corresponding influence
diagram with memory states (IDMS) generated by Alg. 1 approximates the no-
forgetting assumption by using new memory states for each decision node, which
summarize the past information and provide the basis for current and future
decisions.

The set of memory states for a decision node is represented by a memory node.
Memory nodes fall into the category of chance nodes in the augmented ID. Such
memory nodes have been quite popular in the context of sequential decision mak-
ing problems, particularly for solving single and multiagent partially observable
MDPs [7,13,2]. In these contexts, they are also known as finite-state controllers
and are often used to represent policies compactly. Such bounded memory rep-
resentation provides a flexible framework to easily tradeoff accuracy with the
computational complexity of optimizing the policy. In fact, we will show that
given sufficient memory states, the optimal policy of an IDMS is equivalent to
the optimal policy of the corresponding original ID.

Alg. 1 shows the procedure for converting a given ID, G, into the corresponding
memory states based representation Gms using k memory states per memory
node. We add one memory node Qi for each decision node Di, except for the first
decision. The memory nodes are added according to the decision node ordering
dictated by the regularity constraint (see line 1). Intuitively, the memory node Qi

summarizes all the information observed up to (not including) the decision node
Di−1. Therefore the parents of Qi include the information summary until the
decision Di−2 represented by the node Qi−1 and the new information obtained
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after (and including) the decision Di−2 and before the decision Di−1 (see line 1).
Once all such memory nodes are added, we base each decision Di upon the
memory node Qi and the new information obtained after (and including) the
decision Di−1 (see line 1). The rest of the incoming arcs to the decision nodes
are deleted.

The IDMS approach is quite different from another bounded-memory repre-
sentation called limited memory influence diagrams (LIMIDs) [11]. A LIMID
also approximates the no-forgetting assumption by assuming that each decision
depends only upon the variables that can be directly observed while taking the
decision. In general, it is quite non-trivial to convert a given ID into LIMID as
domain knowledge may be required to decide which information arcs must be
deleted and the resulting LIMID representation is not unique. In contrast, our
approach requires no domain knowledge and it augments the graph with new
nodes. The automatic conversion produces a unique IDMS for a given ID using
the Alg. 1, parameterized by the number of memory states.

Fig. 1(b) shows an IDMS created by applying Alg. 1 to the ID of the oil wild-
catter problem. In the original ID, the order of the decisions is T ≺ D ≺ OSP ,
namely D1 = T , D2 = D and D3 = OSP . In the first iteration (see lines 2-6),
Q2 is created as a parent of the node D. However, since T has no parents in the
original ID, no parents are added for Q2 and Q2 is deleted (see line 6). In the
second iteration, Q3 is created as a parent of OSP , and T , R are linked to Q3

as its parents because both T and R are parents of D (see line 4 with condition
“i > 2”). Then, the parents of OSP are reset to be Q3, D and MI (see line 11
with “i = 3”) because the additional parent of OSP other than D in the original
ID is MI.

The CPT of memory nodes, which represents stochastic transitions between
memory states, is parameterized by λ: P

(
Qi|π(Qi);λi

)
= λi(Qi,π(Qi)). The

decision rules δ for an IDMS are modified according to the new parents. The
policy for the IDMS is defined as ∆ms = {λ2, . . . ,λm, δ1, . . . , δm}. The expected
utility for an IDMS with policy ∆ms, denoted EU(∆ms; Gms), is:

∑

x,q,d

n∏

i=1

P
(
xi|π(Xi)

) m∏

j=2

λj

(
qj ,π(Qj);∆ms

) m∏

l=1

δl

(
dl,π(Dl);∆ms

)
U(x, d) (3)

The goal is to find an optimal policy ∆#
ms for the IDMS Gms. As the IDMS

approximates the no-forgetting assumption and the value of information is non-
negative, it follows that EU(∆#

ms; Gms) ≤ EU(∆#; G). As stated by the follow-
ing proposition, an IDMS has far fewer parameters than the corresponding ID.
Therefore optimizing the policy for the IDMS will be computationally simpler
than for the ID.

Proposition 1. The number of policy parameters in the IDMS increases
quadratically with the number of memory states and remains asymptotically fixed
w.r.t. the number of decisions. In contrast, the number of parameters in an ID
increases exponentially w.r.t. the number of decisions.
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Proof. The no-forgetting assumption implies that π(Di−1; G) ⊆ π(Di; G) in the
ID G. Therefore the number of parameters P (Di|π(Di);G) increases exponen-
tially with the number of decisions. In the IDMS Gms, the size of the parent
set of a decision node Di is |π(Di; Gms)| = |π(Di; G)\π(Di−1; G)| + 1. In many
IDs, one can often bound the amount of new information available after each
decision by some constant I ≥ |π(Di; G)\π(Di−1; G)| for every i. If there are k
memory states and the maximum domain size of any node is d, then the number
of parameters is O(dI+1 ·k) for each decision rule. We can use the same reasoning
to show that there are at most I +1 parents for a controller node Qi. Therefore
the total number of parameters for a controller node is O(dI · k2). This shows
that overall, parameters increase quadratically w.r.t. the memory states.

Proposition 2. With a sufficiently large number of memory states, the best
policy of an IDMS has the same utility as the best policy of the corresponding ID.
Specifically, when |Ω(Qi; Gms)| = |Ω(π(Qi; Gms))| for all i, EU(∆#

ms; Gms) =
EU(∆#; G).

Proof. Let Oi be the set of nodes observed up to (not including) Di in an IDMS.
First, we prove the statement that if in the IDMS, |Ω(Qi)| = |Ω(π(Qi))|, then a
one-to-one mapping can be built from Ω(Oi−1) to Ω(Qi). For Q2, the first mem-
ory node, π(Q2) = O1 and the size of Q2 is equal to |Ω(O1)|. Thus the mapping
can be easily built. Now suppose that the statement is correct for Qi−1. Then
for Qi, since π(Qi) = {Qi−1}

⋃
(Oi−1/Oi−2) and a one-to-one mapping from

Ω(Oi−2) to Ω(Qi−1) already exists, then a one-to-one mapping from Oi−1 to Qi

can be built similarly in which Qi−1 provides all the information of Oi−2. Thus,
the statement is true for all i. As a result, for each Di, a one-to-one mapping
from Oi to π(Di; Gms) can be created such that the no-forgetting condition is
satisfied. Therefore, we have EU(∆#

ms; Gms) = EU(∆#; G).

4 Approximate Policy Iteration for IDMS

In this section, we present an approximate policy iteration algorithm based on
the well known expectation-maximization (EM) framework [6]. The key idea is to
transform the policy optimization problem in the IDMS to that of probabilistic
inference in an appropriately constructed Bayes net. Such planning-by-inference
approach has been shown to be quite successful in Markovian planning prob-
lems [20,18,10]; we extend it to influence diagrams. To construct the Bayes net
BNms for a given IDMS, we transform all the reward nodes Rt in the IDMS into
binary chance nodes R̂t with the domain Ω(R̂t) = {0, 1}. The rest of the model
is the same as the given IDMS. The CPT of R̂t is set as follows:

P
(
R̂t = 1|π(Rt)

)
∝ gt(π(Rt);Gms) (4)

This can be easily done in several ways such as setting P
(
R̂t = 1|π(Rt)

)
=(

gt(π(Rt);Gms)− gmin

)
/(gmax − gmin), where gmax, gmin denote the maximum

and minimum values of the reward.
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Proposition 3. The expected utility of an IDMS is directly proportional to
the sum of expectation of binary reward nodes in the corresponding Bayes net:
EU(∆ms; Gms) ∝ E

( ∑T
t=1 R̂t

)
+ 〈Ind. terms〉.

Proof. By the linearity of the expectation, we have:

E
( T∑

t=1

R̂t; ∆ms

)
=

T∑

t=1

E
(
R̂t; ∆ms

)
(5)

=
T∑

t=1

P (R̂t = 1; ∆ms) · 1 + P (R̂t = 0; ∆ms) · 0

=
T∑

t=1

∑

π(Rt)

P (π(Rt); ∆ms)P
(
R̂t =1|π(Rt)

)

=
T∑

t=1

∑

π(Rt)

1
gmax − gmin

P (π(Rt); ∆ms)gt(π(Rt); Gms) −
T · gmin

gmax − gmin

∝
T∑

t=1

∑

π(Rt)

P (π(Rt); ∆ms)gt(π(Rt)) + 〈Ind. terms〉

= EU(∆ms; Gms) + 〈Ind. terms〉 (6)

where 〈Ind. terms〉 is a constant with respect to different policies.

4.1 Bayes Net Mixture for IDMS

Intuitively, Proposition 3 and Eq. (5) suggest an obvious method for IDMS policy
optimization: if we maximize the likelihood of observing each reward node R̂t =
1, then the IDMS policy will also be optimized. We now formalize this concept
using a Bayes net mixture. In this mixture, there is one Bayes net for each reward
node Rt. This Bayes net is similar to the Bayes net BNms of the given IDMS,
except that it includes only one reward node R̂ corresponding to a reward node
R̂t of BNms; all other binary reward nodes and their incoming arcs are deleted.
The parents and the CPT of R̂ are the same as that of R̂t. Fig. 2(a) shows this
mixture for the oil wildcatter IDMS of Fig. 1(b). The first BN corresponds to the
reward node TC, all other reward nodes (DC, OS, SC) are deleted; the second
BN is for the node DC. The variable T is the mixture variable, which can take
values from 1 to T , the total number of reward nodes. It has a fixed uniform
distribution: P (T = i) = 1/T . The overall approach is based on the following
theorem.

Theorem 1. Maximizing the likelihood L(R̂;∆ms) of observing the variable R̂ =
1 in the Bayes net mixture (Fig. 2(a)) is equivalent to optimizing the IDMS
policy.

Proof. The likelihood for each individual BN in the BN mixture is L∆ms
t =

P (R̂ = 1|T ;∆ms), which is equivalent to P (R̂t = 1;∆ms) in the Bayes net
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T

Q3

R̂

Q3

R̂

Fig. 2. Bayes net mixture for the oil wildcatter problem

BNms. Note that the deleted binary reward nodes in each individual BN of the
mixture do not affect this probability. Therefore the likelihood for the complete
mixture is:

L(R̂;∆ms) =
T∑

t=1

P (T = t)L∆ms
t =

1
T

T∑

t=1

P (R̂t = 1;∆ms) (7)

From Proposition 3, we now have L(R̂;∆ms) ∝ EU(∆ms; Gms). Therefore max-
imizing the likelihood for the mixture would optimize the IDMS policy.

Note that for the implementation, we do not explicitly create the mixture; all
the computations on this mixture can be directly performed on the single Bayes
net BNms.

4.2 The Expectation Maximization (EM) Algorithm

We now derive the E and M-step of the expectation-maximzation framework
that can be used to maximize the above likelihood [6]. In the EM framework,
the observed data is R̂ = 1; the rest of the variables are hidden. The parameters
to optimize are the policy parameters for the IDMS: the λ’s for the memory
nodes and δ’s for the decision nodes. The full joint P (R̂, X, D, Q, T ;∆ms) for
the BN mixture is given by:

P
(
R̂|π(R̂), T

) n∏

i=1

P (Xi|π(Xi))
m∏

j=1

δj

(
Dj ,π(Dj)

) m∏

l=2

λl

(
Ql,π(Ql)

)
(8)

We will omit specifying ∆ms as long as it is unambiguous. As EM maximizes
the log-likelihood, we take the log of the above to get:

log P (R̂, X, D, Q, T ;∆ms)=
m∑

j=1

δj

(
Dj ,π(Dj)

)
+

m∑

l=2

λl

(
Ql,π(Ql)

)
+〈Ind. terms〉

(9)
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where 〈Ind. terms〉 denote terms independent of the parameters λ and δ. EM
maximizes the expected log-likelihood Q(∆ms,∆#

ms) to be equal to:

T∑

T =1

∑

X,D,Q

P (R̂ = 1, X, D, Q, T ;∆ms) log P (R̂ = 1, X, D, Q, T ;∆#
ms) (10)

where ∆ms is the current policy and ∆#
ms is the policy to be computed for the

next iteration. We first show the update rule for decision node parameters δ.

Q(∆ms,∆
#
ms)=

T∑

T =1

∑

X,D,Q

P (R̂ = 1, X, D, Q, T ;∆ms)
m∑

j=1

log δj

(
Dj ,π(Dj);∆#

ms

)

=
m∑

j=1

1/T
∑

Dj,π(Dj)

T∑

T =1

P (R̂ = 1, Dj ,π(Dj)|T ;∆ms) log δj

(
Dj ,π(Dj);∆#

ms

)

The above expression can be easily maximized for each parameter δj using the
Lagrange multiplier for the normalization constraint:

∀π(Dj) :
∑

Dj

δj

(
Dj |π(Dj)

)
= 1.

The final updated policy is:

δj

(
Dj,π(Dj);∆#

ms

)
=

∑T
T =1 P (R̂ = 1, Dj,π(Dj)|T ;∆ms)

Cπ(Dj)
(11)

where Cπ(Dj) is the normalization constant. The memory node parameter (λ)
update equation is analogous to the above with the node Di replaced by Ql. The
above equation describes the M-step. We next describe the E-step that involves
computing the probabilities P (R̂ = 1, (·),π(·)|T ;∆ms) where (·) ranges over the
decision and memory nodes.

4.3 Probabilities Computation

The join-tree algorithm is an efficient algorithm for computing marginal proba-
bilities [3]. The algorithm performs inference on the Bayesian network by trans-
forming it into a join-tree. The tree satisfies the running intersection property.
Each tree node represents a clique containing a set of nodes in the BNms. An
advantage of this algorithm is that any node and its parents are included in
at least one clique. Therefore by performing a global message passing, the joint
probabilities of nodes and its parents with a given evidence can be obtained from
cliques implementing the E-step.

Alg. 2 describes the procedure to update the decision rules δi

(
Di,π(Di)

)
. In

each iteration, one of the variables Rt is set to 1 and the corresponding proba-
bilities are calculated. New parameters are computed using Eq. (11).
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Algorithm 2. Procedure for updating δj

(
Dj ,π(Dj)

)

input : BNms – the transformed Bayesian network
Build the join-tree for BNms1

Initialize parameters δi randomly ∀i = 1 : m2

repeat3

Initialize V
(
Di, π(Di)

)
← 04

for t = 1 : T do5

Set evidence Rt = 1 to every clique containing Rt6

Conduct a global message passing on the join-tree7

Compute P (Rt = 1, Di, π(Di)) by marginalization ∀i=1:m8

V (Di, π(Di)) ← V (Di, π(Di)) + P (Rt = 1, Di, π(Di))9

Recover potentials and clear evidence10

δ"
i

(
Di, π(Di)

)
= V (Di, π(Di))/Cπ(Di) (C ≡ normalization constant)11

Set δ"
i into BNms12

until the convergence criterion is satisfied13

return: the BNms with updated policy parameters

Fig. 3 shows the join-tree of the oil wildcatter problem. The performance of
Alg. 2 is mainly determined by the size of the largest clique or tree-width of the
join-tree. The size of the cliques is influenced largely by the number of parents of
each node because each node and its parent are contained in at least one clique
(family preserving property). Therefore this algorithm will be more efficient for
the IDMS as the number of parents of each node is much smaller that in the ID.

Q3

Q3

Q3

Fig. 3. Join Tree of Oil wildcatter problem

5 Experiments

In this section, we compare the
EM algorithm against Cooper’s
algorithm [4], implemented in
SMILE, a library created by
the Decision Systems Lab at
U. Pitt. We test the algorithms
on two datasets: randomly gen-
erated IDs and Bayesian net-
works converted into IDs. The
Cooper’s algorithm provides
optimal solutions.

5.1 Randomly Generated IDs

We randomly generated IDs with different settings and fixed the number of
parents of chance nodes and reward nodes to be 2. Each decision node has two
more parents than the previous decision node (the no-forgetting assumption is
forced). With 0.1 probability, a chance node degenerates into a deterministic
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Table 1. ‘C40’ and ‘C60’ denote the number of chance nodes (40 and 60 re-
spectively). All the networks have 6 reward nodes. ‘D’ is the number of decision
nodes. ‘-’ means that Cooper’s algorithm ran out of memory before terminating.
T denotes time in seconds. M denotes memory required in MB. Loss is equal to(
EU(Cooper) − EU(EM)

)
/EU(Cooper).

C40 Cooper EM C60 Coopers EM
D T M T M Loss D T M T M Loss

4 1.1 5.3 0.2 7.0 <1.0% 4 1.2 5.3 0.8 7.0 <1.0%
5 7.2 8.1 0.2 8.0 1.2% 5 7.1 8.1 1.6 8.0 <1.0%
6 24.2 11.5 0.4 10.7 1.0% 6 25.4 12.0 5.6 10.7 <1.0%
7 106.7 48.6 0.6 16.5 <1.0% 7 112.6 48.2 1.1 16.5 <1.0%
8 264.0 227.0 1.3 31.1 1.6% 8 256.8 227.0 6.8 31.1 <1.0%
9 - >764 2.4 111.0 - 9 - >763.8 2.7 111.0 -

10 - - 3.1 111.0 - 10 - - 2.0 111.0 -
11 - - 5.1 150.0 - 11 - - 16.7 150.0 -
12 - - 6.7 207.0 - 12 - - 18.9 207.0 -
13 - - 5.6 207.0 - 13 - - 37.2 207.0 -

node. In order to increase bias, for each reward node, the reward value is in
range [0, 20] with 40% probability, in [20,70] with 20% probability and in [70, 100]
with 40% probability. For each network setting, 10 instances are tested and the
average is reported. The results are shown in Table 1. In these experiments,
Cooper’s algorithm ran on the original ID (no-forgetting) and EM on an IDMS
with 2 states per memory node. As the number of decision nodes increases, the
running time and memory usage of Cooper ’s algorithm grows much faster than
EM’s. When the ID has 9 decision nodes, Cooper’s algorithm fails to terminate,
but EM can still solve the problem in less than 3 seconds using only 111 MB of
memory. Furthermore, EM provides good solution quality. The value loss against
Cooper’s algorithm (which is optimal) is about 1%.

5.2 Bayesian Networks Transformed into IDs

Since real world decision problems are likely to have more structure and nodes
are usually not randomly connected, we also experimented with the Bayesian
network samples available on the GENIE website. We built IDs by transforming
a portion of chance nodes into decision nodes and also adding a certain number
of reward nodes. Two Bayesian network datasets were used. The average results
are reported in Table 2. In both of these benchmarks, EM again performs much
better w.r.t. runtime and the solution quality loss remains small, around 1%.
On these benchmarks, both EM and Cooper’s algorithm are faster than on the
random graphs as many of these Bayes nets are tree-structured.

5.3 The Effect of Memory States

In this section, we examine how well memory states approximate the no-forgetting
assumption and the effect of the number of memory states on the overall quality
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Table 2. Results for the Hepar II and Win95pts Bayesian network datasets. D, C, R
represent the number of decision nodes, chance nodes and reward nodes respectively.
T is the running time in seconds. M is the amount of memory in MB.

Hepar II Coopers EM Win95pts Coopers EM

D C R T M T M Loss D C R T M T M Loss
14 61 5 47.27 759.8 0.22 3.5 1.5% 13 63 5 45.05 759.8 0.26 3.4 1.5%
15 60 5 15.17 760.1 0.21 3.7 1.1% 14 62 5 14.81 760.7 0.23 3.6 < 1%
16 59 5 10.98 760.3 0.26 3.7 < 1% 15 61 5 10.66 761.1 0.21 3.6 < 1%
17 58 5 22.02 761.7 0.24 4.0 < 1% 16 60 5 21.29 762.6 0.22 3.9 < 1%
18 57 5 14.20 762.3 0.21 4.3 < 1% 17 59 5 13.86 763.2 0.22 4.3 < 1%
18 57 5 15.35 762.6 0.22 4.6 < 1% 18 58 5 14.71 763.4 0.21 4.6 < 1%

achieved by EM. For simplicity, we use a small ID containing only three nodes:
a chance node, a decision node, and a reward node as their child. We let both
the chance node and the decision node have 50 states and the value of the chance
node is distributed uniformly. This simple ID can be easily made to represent more
complex situations. For example, we can replace the chance node with a complex
Bayes net and similarly replace the reward node by a Bayes net with additional
reward nodes.
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Fig. 4. The effects of memory states w.r.t. ex-
pected utility

In this simple ID, we assume
that the chance node models some
events that occurred much earlier
such that the current decision node
does not observe them directly.
However, the nodes have some ef-
fect on the reward obtained, so
a memory node is provided that
could record the value of the chance
node so that the right decision can
be made. I would like to change as:
In order to test the effect of increas-
ing the size of the memory node on
the expected utility, we assign value
for the reward node such that for
each value of the chance node, only one action (selected randomly) of the deci-
sion node produces the reward “1” and all the other actions produce “0”. In this
way, it is crucial to know the value of the chance node in order to maximize the
expected utility.

When the size of the memory node is 50, then according to Proposition 2, the
maximum expected utility that can be obtained by an optimal policy is 1. In
these experiments, we tested the EM algorithm with different sizes of the mem-
ory node. The results, shown in Fig. 4, confirm that the EU increases quickly
at the beginning and then remains almost constant at about 26 memory states.
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Note that the EU does not reach 1 with 50 memory states because the EM
algorithm converges to local optima. This example illustrates a case in which
a large size of the memory node is needed in order to obtain good solutions.
We also note that this experiment is deliberately designed to test the impact of
violating the no-forgetting assumption in an extreme situation. In practice, we
anticipate that smaller memory nodes will suffice because reward nodes are not
as tightly coupled with chance nodes as in these experiments.

6 Conclusion

In this paper, we introduce a technique to transform an influence diagram into
an influence diagram with memory states by relaxing the no-forgetting assump-
tion. We also develop the EM algorithm to solve the resulting IDMS efficiently.
We show that there exist problems that require large memory states to obtain
good quality solutions. However, experiments with both randomly generated
and standard benchmark IDs yield near-optimal policies using a small num-
ber of memory states. This work unifies techniques for solving (decentralized)
POMDPs using finite-state controllers and solving large influence diagrams. The
connections we establish in this work between various memory-bounded approx-
imations will facilitate greater sharing of results between researchers working on
these problems.
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