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ABSTRACT
Decentralized POMDPs provide a rigorous framework for
multi-agent decision-theoretic planning. However, their high
complexity has limited scalability. In this work, we present
a promising new class of algorithms based on probabilis-
tic inference for infinite-horizon ND-POMDPs—a restricted
Dec-POMDP model. We first transform the policy opti-
mization problem to that of likelihood maximization in a
mixture of dynamic Bayes nets (DBNs). We then develop
the Expectation-Maximization (EM) algorithm for maximiz-
ing the likelihood in this representation. The EM algorithm
for ND-POMDPs lends itself naturally to a simple message-
passing paradigm guided by the agent interaction graph. It
is thus highly scalable w.r.t. the number of agents, can be
easily parallelized, and produces good quality solutions.
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1. INTRODUCTION
Decentralized partially observable MDPs (Dec-POMDPs)

have emerged in recent years as an important framework
for sequential multi-agent planning under uncertainty [2].
Their expressive power allows them to capture situations
when agents must act based on different partial information
about the environment and about each other to maximize
a global objective function. Many problems such as multi-
robot coordination [1], broadcast channel protocols [2] and
target tracking by a team of sensor agents [7] can be modeled
as a Dec-POMDP. However, their NEXP-Complexity even
for two agents has limited their scalability.

To counter such scalability issues, an emerging paradigm
is to consider restricted forms of interaction among agents
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that arise frequently in practice [1, 7]. In particular, we tar-
get the Network-Distributed POMDP (ND-POMDP) model
that is inspired by the realistic problem of coordinating tar-
get tracking sensors [6, 7]. The key assumptions in this
model are that of conditional transition independence and
conditional observation independence along with factored
immediate rewards. We aim to solve infinite-horizon ND-
POMDPs using stochastic, finite-state controllers to repre-
sent policies. To the best of our knowledge, our work is the
first approach to tackle infinite-horizon ND-POMDPs, and
the first to solve such problems with 20 agents. We present
a promising new class of algorithms, which combines decen-
tralized planning with probabilistic inference. Our work is
based on recently developed techniques for planning under
uncertainty using probabilistic inference [8, 5].

The expectation-maximization algorithm we develop for
ND-POMDPs lends itself naturally to a simple message pass-
ing implementation based on the agent interaction graph.
In each iteration of EM, an agent only needs to exchange
messages with its immediate neighbors. The complexity of
computing and propagating such messages is linear in the
number of links in the agent interaction graph. Thus EM
is highly scalable w.r.t. the number of agents allowing us to
solve a 20-agent problem. Furthermore, using the DBN rep-
resentation, we efficiently exploit the highly factored state
and action spaces of the ND-POMDP model, allowing us to
solve large problems which are highly intractable when us-
ing a flat representation. To test the scalability of the EM,
we also design new benchmarks that are much larger than
the existing ND-POMDP instances. Empirically, EM pro-
vides good solution quality when compared against random
controllers and a loose upper bound.

2. THE ND-POMDP MODEL
The ND-POMDP model is motivated by target tracking

applications such as the one illustrated in Fig. 1. This ex-
ample includes a sensor network with 5 camera sensors (or
agents). For details, we refer to [3]. In our work, sensors
also have an internal state, which indicates battery level.
Each action consumed some power. Sensors could recharge
at some cost and save battery power by being idle.

2.1 Policy evaluation in ND-POMDPs
We present two new results regarding policy evaluation

in infinite-horizon ND-POMDPs. The stationary policy of
each agent is represented using a fixed size, stochastic finite-
state controller (FSC). An FSC for agent i is described by a
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(a) Camera sensor network
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(b) Interaction graph

Figure 1: Targets T1 and T2 follow dotted trajectories.

tuple 〈Q, π, λ, ν〉. Q denotes a set of controller nodes q. π :
Q×Si → ∆Ai denotes the stochastic action selection policy,
i.e., πaiqsi = P (ai|q, si). λ : Q × Yi → ∆Q represents the
stochastic node transition model, i.e., λq′qyi

=P (q′|q, yi). ν :
Q → ∆Q denotes the initial distribution over the controller
nodes, i.e., νq = P (q).

Theorem 1. The value of starting the joint controller in
the configuration q in the joint-state s is factored and addi-
tive along the links l, that is, V (q, s) =
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We can further use the fact that the external state-space

Su is factored; in the sensor network example each factor
corresponds to a location of a target.

Theorem 2. Let the external state-space Su be factored
as St1 × . . .× Stm with each state-factor having its own in-
dependent transition function. Let the immediate reward Rl

and the transition and observation probabilities of all the
agents on a link l involve at most the state factors Stl ⊆ Su,
then the policy value along a link l satisfies:

Vl(ql, sl, su) = Vl(ql, sl, stl) s.t. su ∈ Su , stl ∈ Stl

3. EM ALGORITHM FOR ND-POMDPS
Algorithm 1 shows the message-passing implementation

of EM. Messages are exchanged locally among immediate
neighbors in the interaction graph. The function fij([aqs]j)
is defined for each edge (i, j) of the interaction graph and
both the agents i and j of this edge. The argument of this
function, [aqs]j , represents a specific action a, controller
node q and internal state s of the agent j. The function
is given by the following probabilistic inference in the DBN
mixture corresponding to the edge (i, j):

f(a, q, s) =

∞X
T=0

P (T )

TX
t=0

Pt(r̂=1, a, q, s|L, T ; θ). (1)

where r̂ is the auxiliary reward variable as introduced in [5].
This inference can be implemented using a message-passing
paradigm as in [8, 5], which makes EM highly scalable with
the number of agents. EM also offers a great potential for
parallelization. All the messages in EM for each link can
be computed in parallel leading to a significant speedup
when using massively parallel computing platforms, such as
Google’s MapReduce. This further highlights the scalability
of EM for large multiagent planning benchmarks.

We experimented on several sensor network benchmarks
from [7, 3]. In addition, we also used a 20-agent benchmark

Algorithm 1: Message-Passing for ND-POMDPs

Initialize parameters π[aqs]i
randomly for each agent i1

for iter = 1 until MaxIter do2

for Agent i = 1 until n do3

for each agent j ∈ Ne(i) do4

Compute fij([aqs]j) for each [aqs]j5

Send message µi→j = fij to agent j6

end7

end8

for Agent i = 1 until n do9

Receive all messages µj→i from j ∈ Ne(i)10

Set π?
aqs = 1

Cqs

P
j∈Ne(i) µj→i([aqs])11

end12

Set π[aqs]i
← π?

[aqs]i
for each agent i13

end14

from [4]. For all these problem, EM converged quickly, of-
ten within 200 iterations. When compared against random
controllers, EM provided significantly better solution qual-
ity. Against a loosely computed upper bound, EM provide
a solution within 45% of the bound.

4. CONCLUSION
We developed a new approach for solving infinite-horizon

ND-POMDPs using probabilistic inference in a mixture of
dynamic Bayes nets. We then derived the EM algorithm for
iteratively improving the policy. The resulting algorithm can
be easily implemented using local message passing among
the agents. Each message can be computed efficiently and
involves only the parameters of agents connected to a single
interaction link, making this message passing scheme par-
ticularly scalable w.r.t. the number of agents and links in
the interaction graph. Another practical advantage of EM
is that it naturally lends itself to parallelization; our exper-
iments on a multi-core machine showed linear speedup.
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