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ABSTRACT
We address the problem of solving mathematical programs
defined over a graph where nodes represent agents and edges
represent interaction among agents. We focus on the class of
graph structured linear and quadratic programs (LPs/QPs)
which can model important multiagent coordination frame-
works such as distributed constraint optimization (DCOP).
For DCOPs, our framework provides a key benefit of mod-
elling functional constraints among agents (e.g. resource,
network flow constraints) in a much more tractable fashion.
Our framework is also more general than previous work on
solving graph-based LPs/QPs as it can model a richer class
of objective function and constraints than previous work.
Our iterative approach has several desirable properties—it
is guaranteed to converge to the optimal solution for LPs, it
works for general cyclic graphs, it is memory efficient mak-
ing it suitable for resource limited agents, and has anytime
property. Empirically, our approach provides solid empir-
ical results on several standard benchmark problems when
compared against previous approaches.
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1. GRAPH-BASED OPTIMIZATION
We are given a pairwise graph G=(V,E). The semantics

of this graph is same as for DCOPs. Each node i ∈ V can
be considered an agent with an associated random variable
xi. With each edge, there is a potential function θij associ-
ated, and with each node a unary function θi is associated.
In addition, our approach provides explicit support for lin-
ear constraints defined over nodes and edges of the graph.
Specifically, a set of linear constraints M is given. Our goal
is to solve the program with the structure in table 1. We
next explain the structure of this program.

• Associated with each random variable xi is a proba-
bility distribution µi(xi). Its contribution to the ob-
jective function is

∑
xi∈Di

[
µi(xi)θi(xi) + αi(xi)µi(xi)

2
]
.

In a departure from DCOPs, we allow quadratic terms
αi(xi)µi(xi)

2 in the objective function, where αi(xi) ≥ 0.
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max
µ

∑
i∈V

∑
xi

µi(xi)θi(xi)+
∑

(i,j)∈Q

∑
xixj

µi(xi)µj(xj)θij(xi, xj)

+
∑

(i,j)∈L

∑
xixj

µij(xi, xj)θij(xi, xj) +
∑
i∈V

∑
xi

αi(xi)µi(xi)
2

(1)

s.t.
∑
i∈Vm

∑
xi

cmi (xi)µi(xi)+∑
(i,j)∈Em

∑
xi,xj

cmij (xi, xj)µij(xi, xj) = km ∀m ∈M (2)

0 ≤ µ ≤ 1 (3)

Table 1: GraphOpt: Graph-based optimization

∀i ∈ V∀i ∈ V ∀(i, j) ∈ L ∀(i, j) ∈ Q

xix̃i

r r

xi

r

xij xj

r

xi

Figure 1: Mixture of BNs for GraphOpt in table 1

Such terms can help model QP problems.

• We are given a partition of the edge set as E = L ∪ Q.
We associate probabilities {µij(xi, xj)∀xi, xj} with each
edge (i, j) ∈ L. The contribution of an edge (i, j)∈L to
the objective is

∑
xi,xj

µij(xi, xj)θij(xi, xj). Intuitively,

this forms the linear part of the objective in parameters
µij . The edge set L is known as the set of LP edges.

• The contribution of an edge (i, j) ∈ Q to the objective
function is

∑
xi,xj

µi(xi)µj(xj)θij(xi, xj). This forms

the quadratic part of the objective function; and the edge
set Q is known as the set of QP edges.

The overall objective function defined over the edges E is
shown in program (1).The distributions µ={µi, µij} are the
parameters to optimize by solving the program (1). We next
show how solving program (1) can be recast as a likelihood
maximization problem using decision making-as-inference
strategy used previously [3, 2].

We create a mixture of simple Bayesian networks (BNs)
corresponding to the GraphOpt problem in table 1. Fig. 1
shows the structure of each of four types of BNs. For first BN
type, we introduce a binary reward variable r whose condi-
tional probability is directly proportional to αi(xi) providing
a link between the likelihood in this model and our objective
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Figure 2: Solution quality, Simulated Runtime and Message size comparisons for congestion-based routing instances

in (1). The parameters of this model are set as:

P (r=1|xi, x̃i)=
{
αi(xi)+1

K
if xi= x̃i

1
K

otherwise
(4)

where K is a large enough positive constant such that each
αi(xi)+1

K
is less than 1 to make it a probability. For the 2nd,

3rd and 4th type of BN components, we have:

P (r=1)=
∑
xi

µi(xi)θ̂xi , P (r=1) =
∑
xi,xj

µij(xi, xj)θ̂xixj

and P (r=1) =
∑
xi,xj

µi(xi)µj(xj)θ̂xixj (5)

Theorem 1. Maximizing the likelihood P (r=1;µ) of ob-
serving the variable r = 1 in the mixture model of figure 1
subject to constraints M in (2) is equivalent to solving the
GraphOpt problem.

The above result shows how the principle of likelihood max-
imization (LM) can be used to solve our program (1). The
well known Expectation Maximization (EM) algorithm is
a general approach for maximum likelihood parameter esti-
mation. Therefore, we use it to maximizes the log-likelihood
of our parameters µ. In each iteration, the EM algorithm
solves the following convex optimization problem:

min
µ?

∑
i∈V,xi

− log µ?i (xi)

[
θ̂xiµi(xi) +

2αi(xi)µi(xi)
2 + 2µi(xi)

K
+

∑
j∈Nbi

Q

∑
xj

θ̂xixjµi(xi)µj(xj)

]
−
∑

(i,j)∈L,xi,xj

θ̂xixjµij(xi, xj) log µ
?
ij(xi, xj)

(6)

s.t.
∑
i∈Vm

∑
xi

cmi (xi)µ
?
i (xi)+

∑
(i,j)∈Em,xi,xj

cmij (xi, xj)µ
?
ij(xi, xj)=km ∀m

where µ denote parameters from previous iteration, µ? are
parameters to optimize. The above optimization problem
can be solved using a message-passing scheme over the un-
derlying graph, resulting in a distributed approach.

2. EXPERIMENTAL RESULTS
We test our approach on instances based on congestion-

based routing problem and standard DCOP benchmarks
based on random graphs and sensor networks. We com-
pare our EM based solver with several standard approximate
DCOP solvers such as Max-Sum (MS), DSA, and an efficient
centralized solver Toulbar2 [1] which provides a strong base-
line for solution quality comparisons. We set iterations for
each approach (EM, MS, DSA) to 1000. Each data point is
an average over 10 instances. We always show normalized
solution quality. For the Toulbar2, we set 30 min. limit.

Congestion aware routing: We tested on random and

grid shaped graphs with varying agent population size. We
compare DCOP solvers against EM. For DCOP solvers, we
first convert the problem instance to a DCOP instances and
the constraints tables in those instances are exponentially
sized requiring O(N2d) space, where d is degree of a node
in the graph and population size is N . Due to this rea-
son, DCOP solvers did not scale up to solve large networks.
Fig. 2(a) shows comparison on small 9 and 16 node graphs
with small population size. All the approaches, except DSA,
provided good solution for N=1. EM always achieved opti-
mal solution, same as Toulbar2. DSA failed for these prob-
lems and did not find any feasible solution satisfying the
flow constraints highlighting how the presence of functional
hard constraints adversely affects the accuracy of previous
approximate solvers. On larger grid graphs and higher pop-
ulation size, none of the DCOP solvers scaled up. For larger
grid graphs in fig. 2(b), we provide comparisons against an
optimal network flow based solver [5] that can solve symmet-
ric congestion games with linear congestion cost. The cost
of EM’s solution is only marginally worse than the network
flow solver showing the accuracy of the QP approximation.

For larger population N , results in fig. 2(c,d) show that
the optimal solver scales poorly with the increasing N . The
runtime of the network flow solver increases exponentially
with the increasingN , whereas EM has nearly constant (cen-
tralized) runtime (≈180 sec) with varyingN . These set of re-
sults confirm that for problems with functional constraints,
it is more tractable to solve a graph-based math program
that handles functional constraints explicitly. Fig. 2(e) show
the simulated runtime for small 9 and 16 node instances solv-
able using DCOP solvers. This result shows that EM is or-
ders of magnitude faster than MS. As EM’s message-passing
structure and MS’s message-passing are not equivalent, for
fairness sake, we show total average network load per iter-
ation of MS and per outer loop of EM in fig. 2(f). That is,
for EM, per iteration load counts messages exchanged in a
single outer loop and all the inner loops. Fig. 2(f) clearly
shows that EM has significantly lower network overhead.

DCOP instances: We also tested EM on DCOP bench-
marks including random grid graphs and sensor network
problems [4]. The grid size varied from 5×5 till 10×10. For
these graphs, the domain size was 4. Our results on these
problems show that our approach is competitive with exist-
ing DCOP solvers. However, in the presence of network flow-
based functional constraints such as for congestion-based
routing, our approach provided significants speedups over
DCOP solvers.
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