
Decentralized Planning in Stochastic Environments with Submodular Rewards

Rajiv Ranjan Kumar, Pradeep Varakantham and Akshat Kumar
School of Information Systems

Singapore Management University
{rajivk,pradeepv,akshatkumar}@smu.edu.sg

Abstract

Decentralized Markov Decision Process (Dec-MDP) pro-
vides a rich framework to represent cooperative decentral-
ized and stochastic planning problems under transition un-
certainty. However, solving a Dec-MDP to generate coordi-
nated yet decentralized policies is NEXP-Hard. Researchers
have made significant progress in providing approximate ap-
proaches to improve scalability with respect to number of
agents. However, there has been little or no research de-
voted to finding guarantees on solution quality for approxi-
mate approaches considering multiple (more than 2 agents)
agents. We have a similar situation with respect to the com-
petitive decentralized planning problem and the Stochastic
Game (SG) model. To address this, we identify models in the
cooperative and competitive case that rely on submodular re-
wards, where we show that existing approximate approaches
can provide strong quality guarantees (a priori, and for co-
operative case also posteriori guarantees). We then provide
solution approaches and demonstrate improved online guar-
antees on benchmark problems from the literature for the co-
operative case.

1 Introduction
Decentralized stochastic planning for a team of agents is re-
quired in a wide variety of problems such as target tracking
by a team of sensors (Nair et al. 2005; Kumar and Zilberstein
2011; Chapman and Varakantham 2014), securing targets
from unknown attackers using a team of defenders (Shieh et
al. 2014), rescuing of victims by a team of robots during dis-
aster (Melo and Veloso 2011; Varakantham et al. 2009) and
analysing underwater samples using a team of underwater
vehicles (Yin and Tambe 2011). Existing literature has fo-
cussed on Decentralized Markov Decision Processes (Dec-
MDPs) or Stochastic Games to represent such problems of
interest. Unfortunately, solving Dec-MDPs and Stochas-
tic Games is computationally challenging, which precludes
solving problems with many (>> 2) agents. While approxi-
mate approaches have been proposed to solve multiple agent
problems (Velagapudi et al. 2011; Varakantham et al. 2009;
Kumar, Zilberstein, and Toussaint 2015), there is little or no
research in approximation methods that provide strong guar-
antees on solution quality in such decentralized settings.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

With the emphasis on quality guarantees, we focus specif-
ically on multi-agent sequential planning models with joint
submodular reward functions. Previous work has considered
submodularity in the context of sequential decision making
for multi-agent problems. Kumar et al. (2009) considered
submodularity in rewards across time steps in the context
of Multi-agent MDPs (MMDPs) in weather tracking satel-
lites. Detecting storms early is of key interest and this re-
ward function for detecting storms is submodular over time
steps. Satsangi et al. (2015) considered submodularity in
multi-agent sensor selection problem modelled as a POMDP
with submodular belief based reward function. Our contri-
butions differ from this line of work due to the focus on de-
centralized planning models (and not on centralized plan-
ning models) and our algorithms rely on showing submodu-
larity of the value function.

Specifically we consider Transition Independent Dec-
MDPs (TI-Dec-MDPs), Transition Independent Dec-
POMDPs (TI-Dec-POMDPs) and Transition Independent
Stochastic Games (TI-SGs). There has been existing work
in solving some of these models (Dibangoye, Amato, and
Doniec 2012; Mostafa and Lesser 2009), and in some in-
stances providing posteriori guarantees (using lower and up-
per bounds). In this paper, we specifically focus on submod-
ular joint rewards and hence are able to provide strong a
priori and posteriori guarantees.
The main contributions of this paper are:

• In the cooperative case, for Transition Independent Dec-
MDPs and Transition, Observation Independent Dec-
POMDPs with monotone submodular reward functions,
we show that greedy solution provides an a priori guar-
antee of at least 50% from optimal. We also provide a
method to compute posteriori guarantees which are much
tighter than the worst case of bound of 50%.

• We provide a lazy version of the well-known greedy al-
gorithm and enhance a recent approach for exploiting
anonymity and homogeneity to solve the problem mod-
els identified above.

• In the competitive case, we show that for TI-SGs with
submodular social rewards and private rewards that are
greater than Vickrey rewards, any Nash Equilibrium solu-
tion is at least 50% from the social welfare optimal. That
is to say, price of anarchy is 2.

• Finally, we provide experimental results on two bench-
marks from the Dec-MDP literature, where we show that
the posteriori quality guarantees are significantly better
(in some cases close to 90% of optimal) than the a priori
guarantee of at least 50% from optimal.

2 Background
2.1 Transition Independent Dec-MDP
Transition Independent Decentralized Markov Decision
Process (TI-Dec-MDP) model (Becker et al. 2004) is char-
acterized by the tuple:〈

Ag, S,A, {Ti}i∈Ag, R,H, α
〉

• Ag is the set of agents.
• S is the factored joint state space. S = S1 × S2 . . . S|Ag|,

where Si is the state space corresponding to each individ-
ual agent i. We can also have a global unaffected state
feature, Su. It is a trivial extension and not provided here.

• A is the joint action space. A = ×i∈AgAi, where Ai is
the action space corresponding to each individual agent i.

• Ti is the individual agent transition function. Ti(si, ai, s′i)
indicates the transition probability of moving from si to
s′i on taking action ai.

• R is the submodular joint reward, with R(s, a) represent-
ing the reward for taking joint action a in joint state s.

• H is the time horizon and α is the starting state distribu-
tion.
The goal is to obtain a joint policy ~π = 〈~π1, ~π2, . . . , 〉

(with one policy, ~πi for each agent i) that maximizes ex-
pected reward or value defined as follows:

V (~π) =
∑
s

α(s) · V H(s, ~π) (1)

V t(s, ~π) = R
(
s,
〈
πt1(s1), . . . , πt|Ag|(s|Ag|)

〉)
+∑

s′

[∏
i∈Ag

Ti

(
si, π

t
i(si), s

′
i

)]
· V t−1(s′, ~π) (2)

2.2 Monotone Submodularity and Matroids
We now describe submodular functions and matroids.
Definition 1. Given a finite set, Π, a submodular function
is a set function, g : 2Π → R, where 2Π is the power set
corresponding to Π. More importantly, ∀X,Y ⊆ Π with
X ⊆ Y and for every i ∈ Π \ Y , we have:

g(X ∪ i)− g(X) ≥ g(Y ∪ i)− g(Y)

A submodular function g is monotone if g(Y) ≥ g(X) for
X ⊆ Y .
Monotone submodular functions are interesting because
maximizing a submodular function to pick a fixed number
of elements (say k) from the finite set (Π) while difficult can
be approximated efficiently with a strong quality guarantee.
Specifically, a greedy algorithm that incrementally generates
the solution set by maximizing marginal utility provides so-
lutions that are at least 63% (1− 1

e) of the optimal solution.

In this paper, we are also interested in maximizing a sub-
modular function, however, under a specific constraint on
the finite set (Π) and the elements that are picked. Specif-
ically, the constraint is specified using a partition matroid.
We provide the formal definitions below:

Definition 2. For a finite ground set, Π, let P be a non-
empty collection of subsets of Π. The system Γ = (Π,P) is
a matroid if it satisfies the following two properties:

• The hereditary property: P1 ∈ P ∧ P2 ⊂ P1 =⇒ P2 ∈
P . In other words, all the subsets of P1 must be in P .

• The exchange property: ∀P1,P2 ∈ P : |P1| < |P2| =⇒
∃x ∈ P2 \ P1;P1 ∪ x ∈ P .

We are specifically interested in a ground set that is parti-
tioned as Π = Π1 ∪ Π2 ∪ . . . ∪ Πk. The family of subsets,
P = {P ⊆ Π : ∀i, |P ∩ Πi| ≤ 1} forms a matroid called
a partition matroid. This family of subsets denotes that any
solution can include at most one element from each ground
set partition. This is relevant in this paper, as ground set par-
titions represent policy space of each agent and we need to
pick one policy for each agent.

3 Submodular TI-Dec-MDP
In this section, we describe important properties of TI-Dec-
MDPs with monotone submodular rewards. First, we pro-
vide a concrete example of a joint reward function employed
to coordinate defender teams in security domains (Shieh et
al. 2014) that is both monotonically increasing and submod-
ular. It is defined as follows:

R(s, a) =
∑
b

yb · fb(σ(s, a, b)) (3)

yb indicates value of target b and hence is a non-negative
number. fb(.) is a monotone submodular function referred
to as the effectiveness of patrolling a target b. Effectiveness
of patrols at a target b depends on the number of agents pa-
trolling the target. σ(s, a, b) counts the number of agents
at target b if the current joint state is s and joint action is
a. The usual definition of f(.) for effectiveness parameter ε
(0 < ε ≤ 1) is as follows:

f(k) = 1− (1− ε)k.

We now formally state our definition of the submodular
joint-reward function. We define our ground set SA as the
set of all possible state-action pairs for all the agents

SA=∪|Ag|i=1 {(si, ai) ∀si∈Si, ai∈ Ai}.

The joint-reward function R is defined for all the possi-
ble subsets of this ground set. As per definition 1, we as-
sume that this set-based reward function R is submodular
and monotone. Notice that explicitly defining such a re-
ward function for all the possible subsets of SA would be
intractable. Therefore, one often uses a functional definition
of such reward function R similar to the security domain
case describe above. We also note that the reward functionR
needs to be properly defined even when two different actions
are selected for the same state for an agent. That is, when we
have {(si, ai), (si, a′i)} part of the subset for which R needs

to be defined. As such, this is not a valid state-action combi-
nation because for the given state si, we have two different
actions ai and a′i mapped to si. In many cases, we can still
define a reward function R for this invalid case by assum-
ing that agent i repeated, and inconsistent state-action pairs
are assigned properly to different repeated agents. Note that
when computing final policies, this case will never occur as
we will optimize policies subject to a partition matroid con-
straint that enforces valid policies, as described in section 4.

For TI-Dec-MDPs with monotone submodular rewards,
expected reward, V (~π) is monotone submodular. We show
this in three key steps:
Step 1: There exists a finite ground set, Π such that expected
reward can be defined over its power set. In our case, the
ground set is the set of all individual agent policies, i.e.,

Π = ∪iΠi

Step 2: Value function is defined over the power set for Π.
We define V : 2Π → R as a mapping from all subsets of
Π to a real value. This entails that the value function will
be defined for not only correct joint policies (i.e., one policy
for each agent) but also for incorrect joint policies (i.e., more
than one policy for certain agents). We can directly employ
the definition provided earlier in Equations 1 and 2. When
we have an incorrect policy with an agent i having multiple
policies, then we assume that there are multiple versions of
agent i, each executing a different policy.
Step 3: Finally, we show that the V H(s, ~π) is monotone
submodular in the proofs of Proposition 1 and Proposition 2.
Then, V (~π) is a linear combination of submodular functions
and hence is also monotone submodular.

In the following proposition and proof, we will employ
the following notation. For a set of agents Z, joint state for
all agents in Z is given by sZ and joint policy for agents in Z
is given by ~πZ =

〈
~π1, . . . , ~π|Z|

〉
. We employ the following

short forms in the proof that follows:

RtZ = R(sZ , π
t
Z(sZ))

T ti = Ti(si, π
t
i(si), s

′
i)

VtZ = V t(sZ , ~πZ)

V ′tZ = V t(s′Z , ~πZ)

Proposition 1. For a TI-Dec-MDP, V H(s, ~π) is submodular
if joint reward, R is submodular.
Proof. Let us consider two agent sets M (∈ Ag) and N
(∈ Ag), with M ⊆ N . sM and sN denote joint states of
agents in sets M and N respectively. aM and aN denote
joint action of agents in sets M and N respectively. Each
agent has one policy1. In order to show submodularity of the
value function, V H(), we employ mathematical induction
on the time horizon, H.
Base case: H = 1

V1
M = R1

M ; V1
M∪i = R1

M∪i ; V1
N = R1

N ; V1
N∪i = R1

N∪i

=⇒ V1
M∪i − V1

M = R1
M∪i −R1

M ; V1
N∪i − V1

N = R1
N∪i −R1

N

1It should be noted that we can also represent the case of in-
correct joint policies by assuming the same agent is repeated (with
different policies) multiple times in sets M and N

Since R is submodular: R1
M∪i −R1

M ≥ R1
N∪i −R1

N

Hence, V1
M∪i − V1

M ≥ V1
N∪i − V1

N

Let us assume the proposition holds for H = τ , i.e:.
VτM∪i − VτM ≥ VτN∪i − VτN (4)

ForH = τ+1: Using value function definition from Equa-
tion 2:

Vτ+1
N∪i − V

τ+1
N = Rτ+1

N∪i −R
τ+1
N +

∑
s′
N

=(s′1,...,s
′
|N|)

[∏
j∈N

T τ+1
j

]
·

·

[∑
s′i

T τ+1
i V ′τN∪i − V ′

τ
N

]

Since
∑
s′i
Ti(si, π

τ+1
i (si), s

′
i) = 1 or

∑
s′i
T τ+1
i = 1, we have

= Rτ+1
N∪i −R

τ+1
N +

∑
s′
N

=(s′1,...,s
′
|N|)

[∏
j∈N

T τ+1
j

]
·

·

[∑
s′i

T τ+1
i ·

[
V ′τN∪i − V ′

τ
N

]]
(5)

From Equation 4 and submodularity of reward function, we have:

≤ Rτ+1
M∪i −R

τ+1
M +

∑
s′
N

=(s′1,...,s
′
|N|)

[∏
j∈N

T τ+1
j

]
·

·
[∑
s′i

T τ+1
i

[
V ′τM∪i − V ′

τ
M

]]
≤ Rτ+1

M∪i −R
τ+1
M +

∑
s′
M

=(s′1,...,s
′
|M|)

[∏
j∈M

T τ+1
j

]
·

·
∑
s′
N\M

∏
j∈N\M

T τ+1
j

[∑
s′i

T τ+1
i

[
V ′τM∪i − V ′

τ
M

]]
≤ Rτ+1

M∪i −R
τ+1
M +

∑
s′
M∪i

[∏
j∈M∪i

T τ+1
j

]
·
[
V ′τM∪i − V ′

τ
M

]
·
∑
s′
N\M

∏
j∈N\M

T τ+1
j

Since
∑
s′
N\M

∏
j∈N\M T

τ+1
j = 1, we conclude

Vτ+1
N∪i − V

τ+1
N ≤ Vτ+1

M∪i − V
τ+1
M �

Proposition 2. For a TI-Dec-MDP, V H() is monotonically
increasing if R is monotonically increasing.
Proof Sketch. Again, we employ mathematical induction
on time horizon H . Since R is monotonically increasing,
base case of H = 1 is trivially satisfied. We can make the
assumption that V H is monotonically increasing forH = τ .
For H = τ + 1, we have from Equation (5):

Vτ+1
N∪i − V

τ+1
N = Rτ+1

N∪i −R
τ+1
N +

∑
s′
N

=(s′1,...,s
′
|N|)

[∏
j∈N

T τ+1
j

]
·

·

[∑
s′i

T τ+1
i

[
V ′τN∪i − V ′

τ
N

]]

From the proposition statement: Rτ+1
N∪i − R

τ+1
N ≥ 0. Fur-

thermore, from assumption for H = τ , V ′τN∪i − V ′
τ
N ≥ 0.

Therefore,

Vτ+1
N∪i − V

τ+1
N ≥ 0 �

3.1 Submodular TOI-Dec-POMDPs
Another important model of relevance in decentralized
stochastic planning, where submodularity of reward plays
a significant role is TOI-Dec-POMDP. In Transition Obser-
vation Independent Dec-POMDPs, for each agent i we have
a set of observations, Ωi and an individual observation func-
tion Oi in addition to the TI-Dec-MDP tuple. Oi(s′i, ai, ωi)
refers to the probability of receiving observation ωi on tak-
ing action ai to arrive in state s′i. Value function for this case
is defined as follows:

V (~π) =
∑
s

b(s) · V t(s, ~π, ~ω)

V t(s, ~π, ~ω) = R
(
s,
〈
πt1(~ω1), . . . , πt|Ag|(~ω|Ag|)

〉)
+
∑
s′,ω′∏

i∈Ag

Ti
(
si, π

t
i(si), s

′
i

)
·
∏
i∈Ag

Oi
(
s′i, π

t
i(~ωi), ω

′
i

)
· V t−1(s′, ~π, ~ω′)

ND-POMDP (Nair et al. 2005) is a subcategory of the
TOI-Dec-POMDP model. In ND-POMDPs, apart from tran-
sition and observation independence, there is also a fixed
network structure of interactions among agents.
Proposition 3. For a TOI-Dec-POMDP, V H() is monoton-
ically increasing and submodular if R is monotonically in-
creasing and submodular.
Proof Sketch. We employ mathematical induction similar
to the proofs for TI-Dec-MDP. �

3.2 Submodular TI-SG
Both TOI-Dec-POMDPs and TI-Dec-MDPs are cooper-
ative models for decentralized stochastic planning. We
now consider Transition Independent Stochastic Games (TI-
SGs) (Parthasarathy and Sinha 1989; Eitan Altman and
Miller 2005) model, a competitive model that is a sub-class
of the well-known Stochastic Games model (Shapley 1953).
The tuple for TI-SG is given by:〈

Ag, S,A, {Ti}i∈Ag, {Ri}i∈Ag, H
〉

Except for the reward function, the elements in this tuple
carry the same meaning and representation as in TI-Dec-
MDPs. Unlike in TI-Dec-MDPs, reward function is defined
for each agent i separately and is dependent on actions of
all other agents. Formally, private reward function for agent
i, Ri(s, a) is defined over joint state and dependent on the
joint action a =

〈
a1, a2, . . . , a|Ag|

〉
.

Private value of an agent i for a joint policy π =
〈π1, π2, . . .〉 is defined as follows:

V ti (s, ~π) = Ri(s,
〈
πt1(s1), . . . , πt|Ag|(sAg)

〉
)+

∑
s′

[∏
k∈Ag

Tk

(
sk, π

t
k(sk), s′k

)]
· V t−1

i (s′, ~π)

Social value of all agents for a joint policy π is the sum of
private values of all agents: V H(s, ~π) =

∑
i V

H
i (s, ~π)

Given the selfish nature of individual agents, the solution
concept of interest is no longer optimality. Instead, we are
interested in Nash equilibrium solutions. The key result for
Nash Equilibrium solutions in TI-SGs is provided In Propo-
sition 6. We show that any Nash equilibrium solution is at
least 50% of the social welfare optimal solution (optimal
social value policy). Proof for Proposition 6 requires two
key major steps: (i) showing social value is submodular; (ii)
showing private value for any agent is as much as its Vickrey
value. We use the following short forms in proofs:

Rti = Ri

(
s,
〈
πt1(s1), . . . , πt|Ag|(sAg)

〉)
T ti = Ti(si, π

t
i(si), s

′
i)

Proposition 4. In TI-SGs, the social value function is mono-
tone submodular given sum of individual agent rewards is
monotone submodular.

Proof Sketch. As with proofs for Proposition 1 and Propo-
sition 2, we will employ mathematical induction. �

Before we describe the next proposition. Vickrey reward
for an agent is defined as the marginal contribution of that
agent, i.e., difference in joint reward with and without the
agent. In the following proposition we show that if the pri-
vate reward for an agent is greater than the Vickrey reward
with respect to that agent, then the private value for that
agent is also greater than the Vickrey value with respect to
that agent.
Proposition 5. In TI-SGs,

Ri(sAg, aAg) ≥
∑
k∈Ag

Rk(sAg, aAg)−
∑

k∈Ag\i

Rk(sAg\i, aAg\i)

=⇒ V Hi (sAg, ~πAg) ≥
∑
k∈Ag

V Hk (sAg, ~πAg)−∑
k∈Ag\i

V Hk (sAg\i, ~πAg\i)

Proof. We prove this using mathematical induction on time
horizon, H . From the proposition statement, it naturally
holds for the base case of H = 1. Let us assume it holds
for H = τ , i.e.,

V τi (sAg, ~πAg) ≥
∑
k∈Ag

V τk (sAg, ~πAg)−
∑

k∈Ag\i

V τk (sAg\i, ~πAg\i)

For H = τ + 1:

V τ+1
i (sAg, ~πAg) = Rτ+1

i +
∑
s′
Ag

[∏
k∈Ag

T τ+1
k

]
· V τi (s′Ag, ~πAg)

By assumption for H = τ and proposition statement, we have:

≥
∑
k∈Ag

Rk(sAg, aAg)−
∑

k∈Ag\i

Rk(sAg\i, aAg\i)+

∑
s′
Ag

[∏
k

T tk
]
·

[∑
k∈Ag

V τk (sAg, ~πAg)−
∑

k∈Ag\i

V τk (sAg\i, ~πAg\i)

]

Multiplying product of transition functions to the value functions
and grouping terms gives us the final result

≥
∑
k∈Ag

V τ+1
k (sAg, ~πAg)−

∑
k∈Ag\i

V τ+1
k (sAg\i, ~πAg\i)�

Definition 3. Price of anarchy is defined as the ratio of so-
cial optimal (maximum social value for any joint policy) and
any nash equilibrium solution.
Proposition 6. Price of anarchy (ratio of Social Optimal
and any Nash Equilibrium) in TI-SGs of interest (monotone
submodular social value function and private value greater
than Vickrey utility for every agent) is upper bounded by 2.
Proof Sketch. A basic utility/value system is characterized
by three key properties:
• Social and private value functions are measured in the

same unit: Both social and private values are based on
the same reward unit in TI-SGs of interest.

• Social value function is monotone and submodular:
Proposition 4 shows it for relevant TI-SGs.

• Private value function is as much as the Vickrey value:
Proposition 5 demonstrates this for relevant TI-SGs.

Vetta et al. (Vetta 2002) have shown that in basic utility sys-
tems, the price of anarchy is upper bounded by 2. Given that
TI-SGs of interest satisfy the three key properties of basic
utility systems, price of anarchy is upper bounded by 2. �

4 Approaches
In this section, we provide enhancements to existing ap-
proaches for solving TI-Dec-MDPs2, so that we can provide
and investigate posteriori guarantees.

The goal in TI-Dec-MDPs is to obtain a correct joint pol-
icy (i.e., a joint policy where there is exactly one policy for
each agent) that maximizes the expected value. Formally,
the goal is to maximize V (π) given the partition matroid
Γ = (Π, I) where I = {X ⊆ Π : |X∩Πi| = 1}. Intuitively,
the partition matroid enforces that we can only have one pol-
icy for each agent which results in a valid joint-policy. Par-
tition matroid has also been used previously to compute the
joint-policy in (Kumar and Zilberstein 2009). In (Kumar and
Zilberstein 2009), partitions correspond to different states in
the state-space. In our case, we have one partition for each
agent i, and elements of this partition correspond to the set
of all valid policies for the agent i.

Here we provide two types of approaches extending on
existing work: (a) A lazy extension of the greedy algo-
rithm that extends on the work by Shieh et al. (Shieh et al.

2For TI-SGs, since well-known iterative best response and ficti-
tious play approaches can be employed to obtain equilibrium solu-
tions, we do not provide any new approaches. For TOI-Dec-MDPs,
greedy approaches mentioned in this section are applicable. How-
ever, those approaches rely on solving single agent decision prob-
lem optimally so as to guarantee the a priori bound. This is a
challenge in the case of POMDPs, unless specific size controllers
are employed (Amato, Bonet, and Zilberstein 2010), in which case
guarantee is with respect to optimal for that size controller.

Algorithm 1: GREEDY

(〈
Ag, S,A, {Ti}i∈Ag, R,H, α

〉)
1: Z ← ∅
2: ~π∗i ← ∅,∀i
3: repeat
4: for all i ∈ Ag \ Z do
5: ~π∗i ← max~πi

Vi(~πi, α
0
i |~π∗Z)

6: 〈i∗, Vi∗〉 ← maxi∈Ag\Z Vi(~π
∗
i , α

0
i |~πZ)

7: Z ← Z ∪ {i∗}
8: until Ag \ Z = ∅
9: return ~π∗ ← {~π∗i }i∈Ag

2014) to improve scalability; (b) An approach that exploits
anonymity and submodularity by extending on the work by
Varakantham et al. (2014).

4.1 Greedy and Lazy Greedy
Greedy algorithm has previously been explored in the con-
text of Dec-MDPs (Shieh et al. 2014; Agrawal, Varakan-
tham, and Yeoh 2016) and Dec-POMDPs (Varakantham et
al. 2012). Algorithm 1 provides the pseudo code for the
greedy algorithm. It builds the solution set incrementally
by adding policy for a different agent at each iteration. Ini-
tially, we start with an empty solution set (line 1). At ev-
ery iteration, for each of the agents that have not yet been
assigned a policy (line 4), we compute a policy with the
highest marginal value given the current solution set (line
5). Among those highest marginal value policies, we pick
the one with the highest value and add that to the solution
set (lines 6-7). This process continues for |Ag| iterations
(line 8), when every agent is assigned exactly one policy.

Highest marginal value policy for an agent given the cur-
rent solution set (line 5) is computed by constructing and
solving an MDP. At an arbitrary iteration k, let the solu-
tion set contain policies, {~πz}z∈Z where |Z| = k. We first
compute the probability distribution, Prt(sZ) over the joint
state sZ at each time step, t corresponding to the current
solution set policies, {~πz}z∈Z . The most efficient way to
derive an accurate estimate of Prt(sZ) is by simulating the
policies, {~πz}z∈Z many times (tens of thousands of simu-
lations). Once Prt(sZ) is computed, we identify the aug-
mented MDP for agent i from the original TI-Dec-MDP as
follows:

〈Si, Ai, Ti,Ri〉
Si, Ai, Ti are directly taken from the original TI-Dec-MDP
tuple. As for the reward function, we have:

Rti(si, ai) =
∑
sZ

Prt(sZ) ·R(〈sZ , si〉 ,
〈
πtZ(sZ), ai

〉
)

We then optimally solve this MDP to obtain a policy with
the highest marginal value for i.
Proposition 7. (Fisher, Nemhauser, and Wolsey 1978):
Greedy algorithm for maximizing a monotone submodular
function subject to a partition matroid yields solutions that
are at least 50% of the optimal solution.

This provides an a priori guarantee on the quality of solu-
tions obtained using the greedy algorithm. While the a pri-
ori guarantee bounds the worst case loss, in many cases, the
solution provided by greedy is much better than 50% of op-
timal. In fact, we can provide much tighter post hoc quality
guarantees after obtaining the final solution. Intuitively, by
adding the marginal value of the best policy for every agent
given the solution set obtained by greedy, we obtain an up-
per bound on the optimal solution. We provide the formal
characterization of this online bound below:

Proposition 8. For any joint policy, ~π:

V (~π∗) ≤ V (~π) +
∑
i∈Ag

δi(~π)

where δi(~π) = max~πi∈Πi V (~π ∪ πi)− V (~π)

Proof. The proof for the above proposition is a direct re-
sult of applying the greedy algorithm to a partition ma-
troid (Goundan and Schulz 2007). For any monotone sub-
modular function, g : 2Π → R:

g(Z∗) ≤ g(Z) +
∑

e∈Z∗\Z

δe(Z)

In the context of value function, this translates to

V (~π∗) ≤ V (~π) +
∑

πk∈~π∗\~π

δπk (~π)

In the worst case, ~π may have completely different policies
for every agent when compared to the individual policies
in ~π∗. While we do not know the composition of ~π∗, by
adding the individual policies that yield best marginal values
for each agent, we get an upper bound on the value of the
optimal policy. Hence,

V (~π∗) ≤ V (~π) +
∑
i∈Ag

δi(~π)�

Since greedy algorithm has to evaluate marginal value for
every available agent in each and every iteration, scalability
of greedy decreases significantly with increase in number of
agents. Therefore, we pursue a lazy greedy method that has
all the same properties of greedy, but is more efficient.

Unlike the original greedy algorithm, in lazy greedy al-
gorithm (Minoux 1978) we do not need to test all avail-
able agents (line 5 of Algorithm 1) in order to find the op-
timal one. Submodularity property of value/objective func-
tion guarantees that the marginal gain for an agent is always
equal to or lower than the previous iteration. Therefore,
when marginal gain of one of the agents is evaluated and its
marginal gain is higher than marginal gains of a certain sub-
set of agents from the previous iteration, then those subset of
agents do not have to calculate their marginal gain. In fact,
to ensure we reduce marginal gain computation as much as
possible, we maintain a sorted order of marginal values at
each iteration and we compute marginal gain according to
the descending order in the next iteration. Finally, we also
exploit homogeneity in agent models by ensuring marginal
value is evaluated for one agent of each type.

Algorithm 2: PWCSUBMOD()
1: maxx

∑
s,t,k y

t
k(s)V tk (s) s.t

2:
∑
a x

t(s, a)−
∑
s′,a x

t−1(s′, a)ϕ(s′, a, s) =

αt(s) ∀s, t
3:
∑
k y

t
k(s) = 1

4: |P | ·
∑
a x

t(s, a) ≥
∑
k y

t
k(s) · ďk

5: |P | ·
∑
a x

t(s, a) ≤
∑
k y

t
k(s) · d̂k

6: xt(s, a) ∈ [0, 1] ∀s, a, t

4.2 Linear Optimization to Exploit
Submodularity

Varakantham et al. (2014) introduced linear optimization
formulations for approximately solving factored Dec-MDPs
with homogeneous agents and anonymous interactions. Ho-
mogeneity refers to agents having similar models and
anonymity in interactions refers to joint reward and/or tran-
sition functions being dependent on the number of agents
and not on the identity of the agents. Anonymity and ho-
mogeneity were exploited in three ways to significantly im-
prove scalability with respect to number of agents: (a) Em-
ploying reward and transition functions, that are parameter-
ized on the number of agents; (b) Approximating expected
reward in a state, action pair by using reward for expected
number of agents in that state, action pair; (c) Extending
dual formulation for solving MDPs to handle parametric re-
ward and transition functions.

Building on the approach by Varakantham et al. (2014),
we employ the formulation that considers piecewise con-
stant reward functions, by approximating submodular re-
ward using a piecewise constant reward function. In do-
mains of interest (security games and sensor networks),
due to submodularity, irrespective of the number of agents
present in the system, reward function becomes constant af-
ter only a few agents (e.g., for efficiency of even 0.7 in secu-
rity games, with 3 agents reward is close to 1, the maximum
value). This reduces the number of PWC components re-
quired to represent the reward function.

We provide the formulation in Algorithm 2 where xt(s, a)
represents the flow of agents, ytk(s) represents whether com-
ponent k is active at time t for state s, and V tk (s) represents
the value for component k at time t and state s. Submod-
ularity is exploited in determining the intervals [ďk, d̂k] for
each component and also in reducing the number of intervals
required.

5 Experimental Results
We focus primarily on the cooperative case with TI-Dec-
MDPs to verify the online guarantees provided by our ap-
proaches.

5.1 Security Games
For this domain, we experiment with the problem domain
provided by Shieh et al. (Shieh et al. 2014). In this domain,
there are a set of targets on a rail network which have to be

60
50

45
40

Effectiveness of agents = 0.3

35

Number of Agents

30
27

60

80

24

100

O
n

li
n

e
 B

o
u

n
d

10 2012Number of targets

14 1616 141820 10
50

60

70

80

90

100

60
50

45
40

Effectiveness of agents = 0.5

35

Number of Agents

30
27

60

80

24

100

O
n
li
n
e
 B

o
u
n
d

10 2012Number of targets

161416 141820 10
50

60

70

80

90

100

60
50

45
40

Effectiveness of agents = 0.7

35
30

Number of Agents

27

60

24

80

100

O
n
li
n
e
 B

o
u
n
d

201012 16Number of targets

1416 141820 10

50

60

70

80

90

100

Figure 1: Online Bound of Lazy Greedy

defended by a set of decentralized (yet cooperative) defend-
ers in the presence of transition uncertainty. We described
the submodularity of the reward function in Section 3 around
Equation 3. This domain also has anonymous interactions,
as the reward is dependent on number of agents at a target
(and not on the specific set of agents), hence our second ap-
proach PWCSUBMOD is also relevant. We experimented
with the following values of the different parameters: (i)
Number of targets = {10, 12, 14, 16, 18, 20}. Targets are
different points in a network; (ii) Number of agents was var-
ied from 10-60, depending on the number of targets; (iii)
Effectiveness parameter, ε = {0.3, 0.5, 0.7}.

Irrespective of the number of targets, agents or effective-
ness parameter,PWCSUBMOD obtained the solution in a
few seconds. We primarily experimented with lazy greedy,
as greedy was unable to solve problems beyond the smallest
ones and lazy greedy is more efficient without losing on so-
lution quality. Lazy greedy took a few seconds for the small-
est scenario (10 targets with 10 agents) to 12000 seconds for
the largest scenario (20 targets and 60 agents).

Figure 1 provides the comparisons for the online (pos-
teriori) guarantees obtained for the solutions generated by
lazy greedy. We employ Proposition 8 to generate the online
guarantee for any given solution. As can be seen the online
guarantees are significantly better than the a priori guaran-
tees (of 50% from optimal), with a best case of even 90%
from optimal. To avoid clutter, we do not show the online
guarantees provided by policies generated using PWCSUB-
MOD in the same graph. However, PWCSUBMOD fared
slightly worse than lazy greedy in terms of guarantees. In
the best case, PWCSUBMOD provided a guarantee that was
3% less and in the worst case, it was 9% less.

5.2 Sensor Network
We consider a sensor network domain that is a variant of
the one employed in literature (Nair et al. 2005; Kumar
and Zilberstein 2011), where the reward of tracking a tar-
get is dependent on number of sensors tracking the target.
This reward function is submodular, as tracking accuracy is
submodular in the number of tracking agents. More im-
portantly, we consider n-ary interactions (any number of
agents can track a target), as opposed to binary interactions
(maximum 2 sensors track a target) employed in the litera-
ture (Nair et al. 2005; Kumar and Zilberstein 2011). Multi-
ple sensors are fixed at various locations on a grid to track

Grid
Size

Sensors, Targets,
Global States

ε

0.7 0.5 0.3
2*2 2, 1, 4 68.9 63.8 58.1
2*2 4, 1, 4 76.1 68.0 61.6
3*3 4, 2, 5*5 64.7 62.3 58.3
3*3 3, 2, 5*5 68.5 63.9 58.3
5*5 5, 2, 6*6 71.4 63.3 57.9
5*5 5, 1, 10 65.6 64.7 58.4
5*5 4, 2, 6*6 68.2 62.2 57.7
10*5 6, 3, 14*10*10 63.6 61.0 57.2
10*5 6, 5, 6*5*5*5*5 64.1 61.3 57.0

Table 1: Online Bounds on Sensor Network Problems.

moving targets. All the targets move stochastically (accord-
ing to some fixed distribution) in the grid . Movements of
targets are independent of sensor actions. In this domain,
there is a global unaffected state that represents the target
locations. For instance, if there are 2 targets moving on fix
paths of sizes 5 and 10 then there are 5*10= 50 possible
global states.

We experimented by varying grid size, number of Sen-
sors, number of moving targets, global states (decided based
on paths of the moving targets) and effectiveness parameter
value, ε. Similar to the case of security games, even here,
PWCSUBMOD3 was significantly faster than lazy greedy.
For lazy greedy, runtime linearly increased with the settings
from being less than a second for the smallest setting to
about 4800 seconds for the largest setting. PWCSUBMOD
on the other hand was able to generate solutions in a few
seconds and was even able to scale to much bigger problems
(not shown here) with many more agents.

Unlike in the case of security games, PWCSUBMOD typ-
ically provided slightly better solutions than lazy greedy.
However, in terms of online guarantees, they were typically
the same as provided in Table 1. For different effectiveness
parameter values, guarantees provided varied from 57% to
76%. While not as significant as with security games, on-
line guarantees are still better than the a priori guarantees of
50% from optimal.

3It should be noted that for sensor networks, agents are not ho-
mogenous, so we consider an adaptation of the formulation in Al-
gorithm 1 that considers multiple types.

6 Acknowledgements
This work was partially supported by the Singapore National
Research Foundation through the Singapore-MIT Alliance
for Research and Technology (SMART) Centre for Future
Urban Mobility (FM).

References
Agrawal, P.; Varakantham, P.; and Yeoh, W. 2016. Scalable
greedy algorithms for task/resource constrained multi-agent
stochastic planning. In International Joint Conference on
Artificial Intelligence, IJCAI-2016.
Amato, C.; Bonet, B.; and Zilberstein, S. 2010. Finite-
state controllers based on mealy machines for centralized
and decentralized pomdps. In AAAI Conference on Artificial
Intelligence, AAAI-2010.
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2004. Solving transition independent decentralized markov
decision processes. Journal of Artificial Intelligence Re-
search 22:423–455.
Chapman, A. C., and Varakantham, P. 2014. Marginal con-
tribution stochastic games for dynamic resource allocation.
In International Conference on Principles and Practice of
Multi-Agent Systems, 333–340. Springer.
Dibangoye, J. S.; Amato, C.; and Doniec, A. 2012. Scal-
ing up decentralized mdps through heuristic search. arXiv
preprint arXiv:1210.4865.
Eitan Altman, Konstantin Avrachenkov, R. M., and Miller,
G. 2005. Zero-sum constrained stochastic games with inde-
pendent state processes. Mathematical Methods of Opera-
tions Research 62(3):375–386.
Fisher, M. L.; Nemhauser, G. L.; and Wolsey, L. A. 1978.
An analysis of approximations for maxi- mizing submodular
set functions - ii. Math. Prog. Study 8:73–87.
Goundan, P. R., and Schulz, A. S. 2007. Revisiting the
greedy approach to submodular set function maximization.
Optimization online.
Kumar, A., and Zilberstein, S. 2009. Event-detecting multi-
agent mdps: Complexity and constant-factor approximation.
In International Joint Conference on Artificial Intelligence,
201–207.
Kumar, A., and Zilberstein, S. 2011. Message-passing al-
gorithms for large structured decentralized POMDPs. In
Proceedings of the Tenth International Conference on Au-
tonomous Agents and Multiagent Systems, 1087–1088.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2015. Proba-
bilistic inference techniques for scalable multiagent decision
making. Journal of Artificial Intelligence Research 53:223–
270.
Melo, F. S., and Veloso, M. 2011. Decentralized mdps with
sparse interactions. Artificial Intelligence 175(11):1757–
1789.
Minoux, M. 1978. Accelerated greedy algorithms for max-
imizing submodular set functions. In Optimization Tech-
niques. Springer. 234–243.

Mostafa, H., and Lesser, V. 2009. Offline planning for com-
munication by exploiting structured interactions in decen-
tralized mdps. In Web Intelligence and Intelligent Agent
Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM Interna-
tional Joint Conferences on, volume 2, 193–200. IET.
Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M. 2005.
Networked distributed pomdps: A synthesis of distributed
constraint optimization and pomdps. In AAAI, volume 5,
133–139.
Parthasarathy, T., and Sinha, S. 1989. Existence of sta-
tionary equilibrium strategies in non-zero sum discounted
stochastic games with uncountable state space and state-
independent transitions. International Journal of Game The-
ory 18(2):189–194.
Shapley, L. S. 1953. Stochastic games. Proceedings of the
national academy of sciences 39(10):1095–1100.
Shieh, E.; Jiang, A.; Yadav, A.; Varakantham, P.; and Tambe,
M. 2014. Unleashing dec-mdps in security games: Enabling
effective defender teamworks. In ECAI’14.
Varakantham, P.; Adulyasak, Y.; and Jaillet, P. 2014. Decen-
tralized stochastic planning with anonymity in interactions.
In Proc. of the AAAI Conference on Artificial Intelligence,
2505–2512.
Varakantham, P.; Kwak, J. Y.; Taylor, M.; Marecki, J.;
Scerri, P.; and Tambe, M. 2009. Exploiting coordination
locales in distributed POMDPs via social model shaping.
In Nineteenth International Conference on Automated Plan-
ning and Scheduling, 313–320.
Varakantham, P.; Yeoh, W.; Velagapudi, P.; Sycara, K.; and
Scerri, P. 2012. Prioritized shaping of models for solv-
ing dec-pomdps. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-
Volume 3, 1269–1270. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Velagapudi, P.; Varakantham, P.; Sycara, K.; and Scerri, P.
2011. Distributed model shaping for scaling to decentral-
ized pomdps with hundreds of agents. In The 10th Inter-
national Conference on Autonomous Agents and Multiagent
Systems-Volume 3, 955–962. International Foundation for
Autonomous Agents and Multiagent Systems.
Vetta, A. 2002. Nash equilibria in competitive societies,
with applications to facility location, traffic routing and auc-
tions. In Proceedings of the 43rd Symposium on Founda-
tions of Computer Science, FOCS ’02, 416–. Washington,
DC, USA: IEEE Computer Society.
Yash Satsangi, S. W., and Oliehoek, F. 2015. Exploiting sub-
modular value functions for faster dynamic sensor selection.
In Twenty-Ninth AAAI Conference on Artificial Intelligence,
3356–3363.
Yin, Z., and Tambe, M. 2011. Continuous time planning
for multiagent teams with temporal constraints. In Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence, 465–471.

