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Abstract

Distributed constraint optimization (DCOP) is an
important framework for coordinated multiagent
decision making. We address a practically use-
ful variant of DCOP, called resource-constrained
DCOP (RC-DCOP), which takes into account
agents’ consumption of shared limited resources.
We present a promising new class of algorithm
for RC-DCOPs by translating the underlying co-
ordination problem to probabilistic inference. Us-
ing inference techniques such as expectation-
maximization and convex optimization machinery,
we develop a novel convergent message-passing al-
gorithm for RC-DCOPs. Experiments on standard
benchmarks show that our approach provides bet-
ter quality than previous best DCOP algorithms and
has much lower failure rate. Comparisons against
an efficient centralized solver show that our ap-
proach provides near-optimal solutions, and is sig-
nificantly faster on larger instances.

1 Introduction

Distributed constraint optimization (DCOP) is a general
framework for coordinated decision making by a team of
agents [Yokoo et al., 1998; Mailler and Lesser, 2004; Modi
et al., 2005; Petcu and Faltings, 2005]. DCOPs have been
used to model several multiagent coordination problems [Ma-
heswaran et al., 2004; Kumar et al., 2009; Léauté and Falt-
ings, 2011; Zivan et al., 2014]. In DCOPs, agents control
a set of variables with constraint or utility functions defined
over subsets of variables. The task for agents is to assign val-
ues to variables to maximize the global utility using only local
coordination among them.

In several real world applications, agents consume multi-
ple shared resources with limited capacity. For e.g., in dis-
tributed meeting scheduling, agents’ schedule is constrained
by their travel budget; in sensor networks, sensors may have
limited battery. The coordination problem is now to op-
timize the global objective, while also respecting the re-
source limit for each resource. To address such settings, the
framework of resource-constrained DCOPs (RC-DCOPs) has
been developed [Bowring er al., 2006; Matsui et al., 2008;
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Bowring et al., 2009; Matsui erf al., 2011], and has been uti-
lized in applications such as distributed management of smart
grids [Kumar er al., 2009; Matsui and Matsuo, 2012].

RC-DCOPs have been solved by extending complete and
optimal DCOP search algorithms such as ADOPT [Modi et
al., 2005; Bowring et al., 2006; Matsui ef al., 2008], and
by adding support for resources to optimal dynamic pro-
gramming based DPOP algorithm [Petcu and Faltings, 2005;
Kumar et al., 2009; Matsui ef al., 2011]. However, progress
remains slow for developing approximate solvers for RC-
DCOP that can provide scalable and good quality solutions
in the presence of resource constraints. We show empir-
ically that adding resources as a generic n-ary constraint
to be solved using state-of-the-art approximate solvers such
as max-sum (MS) [Stranders et al., 2009] makes the algo-
rithm unstable leading to high failure rate; implying that
no resource-feasible solution was returned by the algorithm.
Therefore, our work develops a message-passing algorithm
that explicitly addresses resource constraints, is guaranteed to
converge, has low failure rate and provides high quality solu-
tions over a range of benchmarks when compared against an
efficient centralized constraint solver [de Givry et al., 2005;
Allouche et al., 2010].

Our work is motivated by the recently developed con-
nections between decision making and probabilistic infer-
ence. Such planning-as-inference paradigm allows adop-
tion of well known inference techniques such as expectation-
maximization (EM) [Dempster et al., 1977] for single agent
planning [Toussaint and Storkey, 2006; Toussaint et al., 2008]
and also multiagent planning [Kumar et al., 2011b]. Such in-
ference based approach has also been applied to the problem
of MAP estimation in graphical models [Kumar and Zilber-
stein, 2010], which is (almost) equivalent to the DCOP prob-
lem [Kumar et al., 2011a]. We extend the approach of [Ku-
mar and Zilberstein, 2010] to RC-DCOPs. However, address-
ing resource constraints within the EM framework proves
challenging as unlike the setting in [Kumar and Zilberstein,
2010], EM for RC-DCOP does not admit closed form so-
lutions. Therefore, we combine several tools from convex
optimization machinery (such as dual optimization, block co-
ordinate descent) and algebra (polynomial root finding) in a
novel way to derive the EM algorithm for RC-DCOPs. EM
is easily implementable using local message-passing among
agents, and is highly scalable. Unlike approaches such as MS,
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Figure 1: a) Resource-augmented graph for an RC-DCOP instance;
b) Message passing in outer loop c) Message passing in inner loop

EM is guaranteed to converge. Empirically, we show that EM
provides similar or better quality than MS, has low failure rate
even under tight resource constraints and also proves highly
competitive to an efficient centralized constraint solver.

2 The DCOP Framework

This section introduces the DCOP and the resource con-
strained DCOP (RC-DCOP) [Bowring er al., 2006; Matsui
et al., 2008] frameworks. A DCOP is defined using the tuple
(X,D,0). The set X ={z1,...,x,} is a set of n variables;
D={Dy,...,D,} is the (finite) domain of possible values
a variable can take. The set © = {...,0:5,...} is the set of
utility or constraint functions. A constralnt function between
variables x; and x; is defined as 0;; : D; x D; — R. We
assumed w.l.0.g.that each function involves two variables.

The DCOP framework can be represented using a con-
straint network G = (V, E) as follows. There is a node @
for each variables ;. For each constraint ;;, we create an
edge between the nodes ¢ and j in the graph. The objective is
to find the joint variable assignment to solve:

max Z 0i;(xi,x;) (D

" (4,5)€E

A key property of DCOPs is that there is an agent associ-
ated with each node of the constraint graph. An agent is only
aware of its shared constraints with neighbor agents. Thus,
there is no centralized view of the whole problem, requiring
local message-passing based coordination.

Resource Constrained DCOPs (RC-DCOPs) add support
for resources to DCOPs. They include a set R of resources
and a set U of requirements. The set R = {ry,...,rn} is
the set of m resources. Each resource r; has a fixed capacity
C(r;). The set U is a collection of resource utilization func-
tions wu;(+) for each agent i defined as u; : Rx D; —R™". The
RC-DCOP framework solves the same problem as (1) with
the added resource constraints as below:

VreR: Zui(r, z;) < C(r) (2)

i€V

We define a resource-augmented constraint network (RACN)
for a RC-DCOP by creating one node for each of the m re-
sources. For e.g., in figure 1(a), we have four agents x; to
x4, and two resources r; and ro. We say that an agent ¢ is in-
volved in resource constraint r if 3x; € D; 1 u; (r, ;) > 0. Us-
ing this notion, we create an edge between a resource r and all
the agents that are involved in r. In figure 1(a), resource r; in-
volves three agents x1, x5 and x4 denoted using dotted edges.
Notationally, ¢+ and 7 denote agents and their corresponding

max Z Z pi(xi)p;(25)0i5 (i, 25) “

(i,J)EE x;,x;

s.t. Zpi mi =
Y Do pileiuilre) < C(r)

iENB(r) ;

vieV 5)

Vr € R 6)

Table 1: Quadratic programming based relaxation of RC-DCOP

variables x; and z; in RACN (see fig. 1); symbol 7 is used to
index resources. Let Nb(4) denote the agents that are immedi-
ate neighbors of agent ¢. For e.g., Nb(1)={2,4} in fig. 1. Let
Nr(¢) denote resources that are connected to the agent i (e.g.,
Nr(2) = {r1,r2} in fig. 1). For a resource r, Nb(r) denotes
agents that are connected to it (e.g., Nb(r2) ={2, 3}).

3 Continuous Relaxation of RC-DCOP

In this section, we first present a continuous relaxation of the
DCOP and RC-DCOP problems. The continuous relaxation
is essentially a quadratic program (QP) for solving the DCOP
problem [Ravikumar and Lafferty, 2006]. The basis for this
QP lies in the near-equivalence of the DCOP problem and
MAP estimation in graphical models [Ravikumar and Laf-
ferty, 2006; Kumar et al., 2011al. We associate a probability
distribution p; (x;) with each variable x; in the DCOP. We can
then write the following QP:

max Z Z pi(xi)p;(x;)0:5 (@i, ;)

p={p1,-.,pn}
ol (i,j)€EE @4,z

st pi(z) =1VieV

Ti

3

The following result proved in [Ravikumar and Lafferty,
2006] shows that such a QP relaxation is tight.

Theorem 1. Let fjmp denote the optimal objective for the
DCOP problem (1) and [, denote the optimal objective for

the QP in (3). Then we have f(jmp =l

Therefore, optimally solving the QP (3) in a distributed
manner will also solve the DCOP problem. However, this QP
is non-convex, therefore, convergence to the global optimum
is not guaranteed.

RC-DCOP Relaxation Based on the QP formulation of the
DCOP problem, we now present a QP formulation of the RC-
DCOP problem in table 1. The key addition in the QP for
RC-DCOP are constraints (6) for each resource r. This con-
straint says that for each resource r, the expected consump-
tion of this resource by all the agents (=Nb(r)) must be less
than the resource’s capacity C'(r). Notice also that all these
constraints are linear in QP parameters p;, which would be
advantageous later.

Theorem 2. Let f deop denote the optimal objective for the
RC-DCOP problem (1) subject to constraints (2) and [ re
denote the optzmal objective for the QP in table 1. Then we
have f ol

qprc = Jredcop®
We omit the formal proof for space reasons. It is easy to
show the connection of the QP in table 1 with the LP relax-
ation of the knapsack problem.



Our goal in this work is to solve the QP relaxation of RC-
DCOP in table 1 in a distributed manner. We achieve this goal
via the following:

o We first transform the RC-DCOP problem to that of like-
lihood maximization (LM) in a mixture of Bayesian net-
works. The likelihood maximization problem is exactly
equivalent to solving the QP in table 1.

o We then use the well known Expectation-Maximization
(EM) framework [Dempster ef al., 1977] to maximize the
likelihood in the Bayes net mixture. However, the M-step
in this EM formulation does not admit a closed form so-
lution. Therefore, we use tools from convex optimization
such as block coordinate descent, and tools from algebra
such as polynomial root finding to develop a message-
passing algorithm to efficiently perform the M-step.

Once the EM algorithm has converged, we use a sim-
ilar message-passing based rounding technique proposed
in [Ravikumar and Lafferty, 2006] to extract an integral vari-
able assignment from the QP solution.

4 Expectation-Maximization For RC-DCOPs

In this section, we follow the similar strategy as in [Kumar
and Zilberstein, 2010] to recast the RC-DCOP as a likeli-
hood maximization problem. The key idea is to decompose
the constraint network into a mixture model of simpler Bayes
nets with many hidden variables — all the variables x; of the
RC-DCOP. To incorporate the constraint functions 6’s of RC-
DCOP and achieve equivalence between the likelihood and
the RC-DCOP objective, a special binary reward variable 6
is introduced with its conditional distribution proportional to
potentials 6.

For each edge (i, 7) in the constraint network, we create
a depth-1 Bayes net (BN). Notice that we do not consider
edges between resources and agents during this process. Each
Bayes net consists of a binary reward variable 6 with its par-
ents being the variables x; and z;. Fig. 2(a) shows the RACN
for a RC-DCOP instance over four variables. Fig. 2(b) shows
the equivalent mixture of Bayes nets for each of the four
agent-to-agent edges in this network. The mixture random
variable [ (with domain being agent-agent edge set F), is used
to identify the Bayes nets for the corresponding edge. It has
a uniform distribution (= 1/|E|).

The parameters to estimate in this mixture are the probabil-
ities p;(x;) for each node z;. Intuitively, these are the same
as the variables in the QP of table 1. Furthermore, differ-
ent Bayes nets share the same parameter p; for any common
variable ;. E.g., variable x5 in figure 2(b) is involved in two
Bayes nets for [=(1,2) and [ = (2, 3). Therefore, ps(z2) is the
same for these two Bayes nets. The space © of all the valid
parameters is specified by the following linear constraints:

CE Zpi(m)zlw; Z Zpi(xi)ui(r,xi)SC(r)VTER

z; €D; iENb(r) x;

Non-negativity of each p; is also included in ©. Therefore,
the constraint on valid parameters in this BN mixture repli-
cate those of in table 1. Next we set the conditional proba-

bility distribution of the variable 6 for each of the Bayes nets.

1=(1,2) 1=(1,4) 1=(2,3) 1=(3,4)
D () () ()

(0 (0 (0 (0)
D), D), D), ()

Mixture of Bayes nets

Figure 2: a) A RC-DCOP instance; b) Equivalent mixture represen-
tation

For a BN [ involving variables x; and x;, it is set as follows:

eij (zi; Ij) 79min

P(0=1zs25,1=(3,5)) =0y, 0, = (7)

emaw - Hmln

where 0,,,,, and 6,,;,, are the maximum and minimum value
over all constraint functions. The probabilities 9%% are
essentially normalized constraint functions ¢;; for the RC-
DCOP instance.

TheoremA 3. For each BN |, let the CPT of binary reward
variable 0 be set as per (7). Then maximizing the likelihood
LP = P(0 = 1;p) of observing the reward variable in the

mixture of Bayes nets is equivalent to solving the QP relax-
ation of RC-DCOP in table 1.

The proof is similar to the one in [Kumar and Zilberstein,
2010] that shows the equivalence of likelihood maximization
and the QP formulation (3) for DCOP. The only difference in
our case is that the space of possible parameters © includes
resource constraints, which makes the likelihood maximiza-
tion approach applicable to RC-DCOPs.

4.1 Expected Log-Likelihood
To derive the EM algorithm for BN mixture of figure 2(b),

we assume that only the reward variable 0 = 1; rest of the
variables are hidden. The full-joint for a BN [ is given as:
. o 1 -
PO=1,2i,25,1=(i,7);p) = E%,z_jpi(wi)pa’(%) ®)
The EM algorithm maximizes the following expected log-
likelihood, Q(p, p*), w.r.t. p* iteratively [Kumar and Zilber-
stein, 2010; Dempster et al., 1977]:

> D P=1,z,,m,,1;p)log POO=1, 1,215, 1;p) (9)

leE zy 2,

where x;, and z;, denote the two variables that are involved

in the BN [, p denotes the previous iteration’s parameters and
p* denote the new parameters to be optimized. We take the
log of (8), and simplify Q(p, p*) as follows:

Z Z éifll ,%szll (mll )plz (37[2){ Ingfl (xll) + logpfz (4312 )}
leE iy T,

In the above expression, we have ignored terms independent
of p*. We simplify the above expression by grouping together
terms for each variable z;:

Qp,p*) <Y _ > pi(w:)logp; (x:) Y D Ouiw,ps(a;) (10)

eV FEND(3) @

fi(zs)



Using the above expression, the M-step involves solving the
following convex optimization problem (minus sign used to
make it a minimization problem):

mmfZZpl x;) fi(z:) log pj (z:) (11
i€V x;
sty pi(w)=1VieV 12)

x4

Z Zp?(m)ui(r, x;) <C(r) Vr € R (13)

iEND(r) =;

4.2 Maximizing Expected Log-Likelihood

In this section, we detail how to solve the convex optimiza-
tion problem (11). Because of the complicating resource con-
straints (13), this problem does not admit a closed form solu-
tion unlike the case in [Kumar and Zilberstein, 2010]. There-
fore, we use several tools from convex optimization and alge-
bra to develop a message-passing algorithm for this problem.
Our high level approach is as follows:

e We write the dual of problem (11). The dual has sim-
pler structure than the original problem, making optimiza-
tion easier. Furthermore, as (11) is a convex optimization
problem, there is no duality gap implying optimal dual
quality equals optimal of (11) [Bertsekas, 1999].

e To optimize the dual, we use results from convex opti-
mization [Bertsekas, 1999] that guarantee that a block
coordinate descent (BCD) strategy wherein we fix all the
dual variables except one, and then optimize the dual over
the one variable is guaranteed to converge to the opti-
mal dual solution. The BCD strategy gets translated into
message-passing over the RACN.

Dual of (11): We first write the Lagrangian function for
problem (11) by introducing dual variables A, p for con-
straints (12), (13) respectively:

L(p™, A\ p)= ZZM ;) fi(z:) log p; (x4 +Z>\
eV oz,
ZP () = D)+ > e (D pi (@) - wi(r,z) — C(r)) (14)
r€ER i,T;

The dual function is g(\, p) = ming~ L(p*, A, ). It is found
by setting derivatives of L(p*, A, u) w.r.t. each p; to zero.
Upon simplification, the dual is given as:

O ) == 32 > pilwi) filwi) [log pi(w:) + log fi(ws)

~1-log (A + Y prui(r,@) | = YA = 3w C(r) (15)

Optimizing the dual (15): We now detail the problem of
maximizing the dual: maxx . g(\, p). Notice also the fact
that the domain of function ¢(-) includes only those A, p
where ¢(-) is defined and is greater than —oo [Bertsekas,
1999]. We also have each variable 1 > 0 [Bertsekas, 1999].
These facts will be exploited later.

Block Coordinate Descent (BCD) Consider the following
iterative strategy to maximize (15). We choose an arbitrary

dual variable, say \;, fix all other variables, and optimize the
function ¢(-) w.r.t. the chosen variable ()\;). In general, this
strategy is not guaranteed to converge to the optimal solu-
tion. However, the function g(, p) satisfies additional prop-
erties which guarantee that the BCD approach will converge
to the optimal. These conditions are a) ¢(-) is continuously
differentiable over its domain; b) ¢(+) is strictly concave w.r.t.
each dual variable \; and p,. due to the presence of log terms
in (15), resulting in a unique solution for each BCD itera-
tion [Bertsekas, 1999, Proposition 2.7.1].

We now detail optimization over a single \; variable, fix-
ing all other variables. This can be done by setting partial
derivative w.r.t. A; of ¢(-) to zero, resulting in:

pi(xi) - fi(x:)

ZA + 20 b - ua(r, )

—1=0 (16)

Roots of rational functions: Notice that (16) is a rational
function in )\;, and solving for A; will result in multiple val-
ues of \;. This complicates the BCD approach which requires
a unique value for \;. Fortunately, we show that despite mul-
tiple \;s satisfying (16), there is one and only one \; that is
applicable in our approach. Essentially, we show that there
is just one A; for which the dual function ¢(-) in (15) is de-
fined, for every other possible \;, ¢(-) becomes undefined as
it involves taking the log of a negative quantity. We start by
considering a rational function of the form as:

T
gwMt c (17)

where index T denotes total number of terms, a; > O,
by > 0 Vt, and ¢ > 0. Eq. (16) fits such a rational func-
tion categorization as numerator is positive and all variables
L are also positive. We now analyze the roots of g(z)=0. Let
us consider an ascending order over the terms b, such that b,
is smallest and by is the largest. For simplicity, assume that
each of b, is different and positive (> 0).

Theorem 4. The rational function g(x) of the form (17) has
exactly one root in each interval (—byy1, —by) Vt=110 T—1
and exactly one root in the interval (—by, 00

Proof sketch. Notice that discontinuity in the function g(x)
occurs only at points —b; V¢. Consider the interval [—b; 11+
€, —b; —e] for any € >0 such that —b; 1 +e < —b;. We have:

g(=brs1+e)="1

+... andg(—bt—e):% +... (18)

As ¢ — 0, then we have g(—b;41 +€¢) — +oo and
g(—bt —€) — —oo. We also know that g(x) is continuous
and monotonically decreasing (using the first derivative test)
in the interval [—b;41+¢€, —b; —¢€]. Therefore, we can deduce
that g(z) crosses the horizontal axis y =0 exactly once in this
interval. This proves the first part of the theorem.

Using similar argument as above, we can show that there
is no root in the interval (—oo, —br) (proof omitted). Given
that the total number of roots of g(x) is 7" and total number
of intervals (—bs41, —b;) are T — 1, it implies that there is
exactly one root in the remaining interval (—by, c0). O



Algorithm 1: solveRCDCOP(6, u)

Algorithm 2: solveBCD(p, ~, §)

1 Initialize: p} (z) + 157 Vz;€D;, Vi€ A
2 repeat
3 pi(xi) + i (2i) Va;€D;, VieA
4 send i ; (Qf]) <~ Zfz [)Z(wl)lggple VjENDb(7),Vie A
5 send 8; —yr(z;)<pi(xs) ZkENb(i)’yk—’i(wi) VreNr(i), Vi€ Ar
6 {A, u} < solveBCD(p, v, )
- i (i) Xpenn(i) Tk—i(Ti) .
7 pi(@i) < )‘i+27'ENr(f)N“(:>—>z"“_)il("«zi) Voi €Di, Vi€ AR
" Pi(23) T eNn(i) Th—i (T5) .
8 p;(xi) < e, P S keno() Thmri (F0) Ve; €D; Vie A_R

9 until p # p*
int

10 p™ < Primal_Extraction(p™)
11 return p™

We now relate the above theorem to our problem of deter-
mining a unique solution of (16). From analyzing log terms
in (15), we have:

/\iJrZ prtis (ry i) >0 Ve = A ZH;_aX 72 urus(ryx:) (19)
The term max,, —) . pi,u;(r, ;) is equivalent to the term
—by used in the theorem 4. Therefore, we require that a feasi-
ble A; must lie in the interval (—b1, 00). Using theorem 4 we
already know that there is just one root for any rational func-
tion g(z) in this range. And this unique root in the interval
(—b1, 00) is the valid solution of (16) used by BCD approach.
Maximizing (15) w.r.t. i1, requires finding the unique value
of i, from the following equation:

$ pi(xi) - filzs) - wilr,z3)
o wi (T, @) H X+ 30 e Mo - wi(17 )

=C(r)

1ENDb(T),z;

As noted before, dual variables p must be positive. Let r

denotes the largest root for the above rational function, we
can show that max(0, ) is the unique solution for the BCD
approach.
Message-passing implementation: All the steps of the EM
and the BCD approach can be implemented via message-
passing over the RACN for a RC-DCOP as shown in Alg. 1
and 2. Let A= Ar U A_g denote the set of all agents, Ag
denotes agents that are directly connected to at least one re-
source and A _ i denotes agents that do not participate in any
resource constraint. The EM algorithm for RC-DCOPs is a
double loop message-passing algorithm as shown in alg. 1.

In the outer loop (lines 2-9 of algo. 1), two types of
messages are passed among agents and resources, as shown
in fig. 1(b) and lines 4 and 5 in algo. 1. Message v;;
(size=|Dj|) is passed from agent i to its neighbor agent j,
di—r (size=|D;|) is passed from agent ¢ to connected resource
r. In the inner loop (lines 4 to 14 in algo. 2), the steps of
the BCD approach are implemented. In the inner loop, mes-
sage v;_,, (size =|D;|) is passed from agent ¢ to connected
resource r, (,.—; (size=1) is passed from resource r to agent
1. Both these message types are shown in fig. 1(c).

The core of the BCD approach is implemented in lines 5
to 12 in algo. 2. Line 6 updates the p, variable by finding
the largest root of the given rational function; similarly line
10 updates the \; variable. Notice that while root finding,

Initialize:
Set \; < 0;
Set p. < 0

1

2 Vr € Nr(i), Vi€ Agr
3

4 repeat

5

6

Vi € Nb(r),Vr € R

send v (x;) < X;
send [Ly—y; < [Lp

for each resource v € R do
Find largest root ju,- for g(p,) =0:

Siypr(wi)us;(r,zy)

7 g(pr) = Zing(r) 211 Hrug(rag )T S (@) =C(r)
8 send piy—y; < max(0, ) Vi € Nb(r)
9 for each agent i € Nb(r) do
10 Find largest root \; for g(A\;) =0:
o Pi(®§)-Epenb(i) Yh—i(Ti)
1 9 =20, XN T reNi(d) Fr—i i (reg) !
12 send vi () < Ni+
13 > reni(ing ot —iwi (', x5) V7 € Ni(4)

14 until convergence
15 return {X, p}

agents and resources use the latest i or v message they have
received. Main idea is that whenever a variable is updated,
its updated value must be communicated to all other relevant
entities that depend upon the updated variable. For example,
after the variable )\; is updated in line 11, an updated message
v is sent to all the resources r connected to 7 in line 12. Con-
vergence is detected in the inner loop if messages change by
a value smaller than a given threshold.

Primal Extraction: Upon convergence, we extract the inte-
gral solution from p* using a similar rounding technique as
proposed in [Ravikumar and Lafferty, 2006, Theorem 3.2] by
adding to it support for handling resources. This rounding
technique also has a message-passing structure.

Complexity: Let m denote the maximum number of agents
involved in any single resource; m’ denote the maximum
number of resources any single agent is connected to. If in-
ner loop (lines 4 to 14 in algo. 2) is run for [ iterations, then
total 1+ messages are O(mI|R|). Total number of v messages
is O(mm'I|R|). In each outer loop iteration (lines 2 to 9 in
algo. 1), the total number of messages exchanged (both v and
8) equals to the number of edges in the RACN. The maximum
size of any message (in inner or outer loop) is bounded by the
maximum domain | D |,y of any variable. Thus, our message-
passing approach is highly efficient and scales gracefully with
the number of edges or resources in the RACN.

5 Experiments

We compare our EM approach with the popular approximate
DCOP algorithm max-sum (MS). Resource constraints were
encoded as n-ary constraints for MS. As both the EM and
MS lack quality guarantees, we also show results against an
optimal efficient constraint solver ‘toulbar2’ [Allouche et al.,
2010]. We imposed a time limit of 1 hour for toulbar2. We
used the MS implementation provided by the Frodo 2.0 soft-
ware [Léauté et al., 2009]. Our approach was implemented in
Python and used Bisection method for root finding. We test
on two benchmarks, random graphs and graph coloring.

Random graphs: We tested with 30 and 40 node graphs with
domain size | D;|=5. We vary the edge density from 0.5 to 0.9
resulting in challenging problems. Each utility, 8;;(-,-), is a
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Figure 3: Failure frequency of EM and MS on random graphs and
graph coloring problems

random value between 1 and 10. Each resource constraint in-
volved three agents. Total number of resources created were
such that about 50% of all the agents were involved in at least
one resource constraint. A 30 node problem had 5 resource
constraints on an average, and a 40 node problem had about
7 resource constraints. The resource consumption of agents
for each resource was also generated randomly between 1
to 5. We controlled the resource capacity C(r) of each re-
source carefully. Let M., m,. denote the maximum and mini-
mum amount of resource r respectively that can be consumed
by all the involved agents. To control the tightness of ca-
pacity constraints, we use a parameter ¢, varied from 0.2 to
0.6. The capacity C(r) is set as m,+t,(M,—m,.). For each
setting (#Nodes, edge density, resource capacity), we gener-
ated 4 instances.

Failure rate: We first report on the failure rate of MS and
EM for random graphs and graph coloring for varying node
sizes in Figure 3. If a particular run of the algorithm fails to
find a resource feasible solution for a given feasible instance,
it is classified as a failed run. For MS, we ran it 3 times for
each instance. We set 1000 iterations for each run and used
the best solution over all the iterations. MS gave variable
results for each run. In contrast, we ran EM just once for
each instance, and EM’s final solution is deterministic for a
given initialization of parameters. We report two statistics for
MS, the best failure rate (MS™ in figure 3) denotes percentage
of instances for whom none of MS’s three runs produced a
feasible solution. The ‘MS-All’ in figure 3 denotes the total
percentage of runs where MS failed to find a feasible solution.
Figure 3 clearly shows the instability of the MS algorithm
in the presence of resource constraints. Even the best failure
rate of MS (‘MS™’) was as high as 32% for 40 node random
graphs. The overall failure rate of MS (‘MS-AIl’) was much
higher, more than 50% for random graphs and about 40% for
graph coloring problems. This shows that a significant frac-
tion of MS’s runs resulted in failure. In contrast, EM’s failure
rate is extremely low (less than 5%) across all the problems
despite EM being run just once for each instance. These re-
sults further show that by accounting for resources explicitly,
the EM algorithm is significantly more stable and better than
MS across different settings.
Quality: Figure 4(a) shows (average) quality comparisons
between EM and toulbar2 on common 40 node instances
where both EM and toulbar2 return a resource feasible solu-
tion. The x-axis shows resource tightness varied from ¢,, =0.2
to t, = 0.6, and edge density varied from 0.5 to 0.9. We
show normalized quality for EM by assigning 1 to the quality

achieved by toulbar2. As we can clearly see, EM was always
able to achieve a solution very close to toulbar2. Indeed,
for harder instance with higher edge density, such as ‘den-
sity=0.9’, EM provided better quality than toulbar2, which
did not find the optimal solution within 1 hour limit. The av-
erage time required by EM was 180 sec., showing that EM
was significantly faster than the toulbar2 solver.

Figure 4(b) shows (average) quality comparisons between
EM, MS and toulbar2 on common instances where each al-
gorithm found a resource feasible solution. These results also
show clearly that EM always provided similar or better qual-
ity than MS. Figure 4(c) and (d) show the same previous two
sets of comparisons for 30 node problems. For these prob-
lems, toulbar2 was able to achieve the optimal solution for
most instances. EM achieved very close to the optimal solu-
tion. From figure 4(d) we further observe that EM provided
better quality than MS.

Graph coloring: We also tested EM on graph coloring in-
stances generated in the same fashion as [Farinelli et al.,
2008]. Resource constraints are generated similarly as for
random graphs. Figure 4(e) shows the results for 20 to 50
nodes and varying resource tightness ¢, from 0.2 to 0.6 on the
x-axis. These results further show that EM is highly competi-
tive even with a centralized solver, while having a low failure
rate (less than 5%) when compared against the existing MS
algorithm.

Timing results: Figure 4(f) shows the (average) runtime (in
log scale) for toulbar2, EM and MS for the most challeng-
ing 40 node random graphs. The toulbar2 had a time limit
of 1 hour. While MS is the fastest of all, as shown before,
its solution quality is worst and failure rate high. In contrast,
EM almost always converged within 3 min for all the settings
and also provided comparable quality solutions to toulbar2
for higher density graphs. Therefore, EM proved very effec-
tive for these challenging problems.

6 Conclusion

We presented a promising new class of algorithms based
on probabilistic inference for RC-DCOPs. We showed a
close connection between likelihood maximization and RC-
DCOPs, and using this connection developed the EM algo-
rithm for RC-DCOPs. By using tools from convex optimiza-
tion, we showed that EM algorithm takes a message-passing
structure over the constraint network. Unlike previous ap-
proaches, such as MS, EM is guaranteed to converge. Empir-
ically, EM had significantly lower failure rate than MS even in
the presence of tight resource constraints, and proved highly
competitive to a centralized constraint solver.
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