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Abstract
Collective graphical models (CGMs) are a for-
malism for inference and learning about a popu-
lation of independent and identically distributed
individuals when only noisy aggregate data are
available. We highlight a close connection be-
tween approximate MAP inference in CGMs and
marginal inference in standard graphical models.
The connection leads us to derive a novel Belief
Propagation (BP) style algorithm for collective
graphical models. Mathematically, the algorithm
is a strict generalization of BP—it can be viewed
as an extension to minimize the Bethe free energy
plus additional energy terms that are non-linear
functions of the marginals. For CGMs, the al-
gorithm is much more efficient than previous ap-
proaches to inference. We demonstrate its perfor-
mance on two synthetic experiments concerning
bird migration and collective human mobility.

1. Introduction
In an influential paper, Yedidia, Freeman, and Weiss (2000)
showed that the loopy Belief Propagation (BP) algorithm
for marginal inference in graphical models can be under-
stood as a fixed-point iteration that attempts to satisfy the
first-order optimality conditions of the Bethe free energy,
which approximates the true variational free energy. The
result shed considerable light on the convergence proper-
ties of BP and led to many new ideas for approximate vari-
ational inference.

In this paper, we highlight a connection between the Bethe
free energy and the objective function for approximate
MAP inference in Collective Graphical Models (CGMs)
(Sheldon et al., 2013), which are models for inference and
learning about populations when only noisy aggregate data
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are available. We then follow reasoning similar to that of
Yedidia et al. to derive a novel message-passing algorithm
for CGMs. The algorithm, non-linear energy belief prop-
agation (NLBP), has the interesting property that message
updates are identical to BP, with the exception that edge
potentials change in each step based on the gradient of the
non-linear “evidence terms” that are present in the CGM
objective but not in the Bethe free energy. NLBP is a strict
generalization of BP to deal with the presence of these ad-
ditional non-linear terms.

The new algorithm has significant practical benefits. We
show experimentally that, by exploiting the graph structure,
NLBP solves the approximate MAP optimization problem
for CGMs much faster than a generic optimization solver,
and scales significantly better than previous approaches
for inference in CGMs. NLBP advances applications of
CGMs by significantly reducing the computational burden
of inference, which was previously a limiting factor. We
demonstrate this point through two synthetic applications.
First, we apply CGMs to the problem of modeling bird mi-
gration (Sheldon et al., 2007; 2013; Liu et al., 2014), where
inference is used to reconstruct bird migration routes, make
forecasts of migration, and learn parameters of migration
models. Our algorithm lets us scale from small problems
to realistic-sized problems. Second, we contribute a novel
application for modeling human mobility (Candia et al.,
2008; Isaacman et al., 2011; 2012). In this case, data
providers (e.g., cell phone companies) release aggregate
statistics about human movements for the purpose of model
fitting, but corrupt those statistics with noise to guarantee
differential privacy (Dwork & Roth, 2013; Mir et al., 2013).
CGM inference algorithms provide a way to reason about
the true sufficient statistics for the purpose of learning. We
show that a CGM-based learning algorithm that uses NLBP
is much more accurate than a baseline approach that uses
noisy statistics directly for parameter estimation.

2. Collective Graphical Models
CGMs compactly describe the distribution of the aggregate
statistics of a population sampled independently from a dis-
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crete graphical model. Let G = (V,E) be an undirected
graph, and consider the following pairwise graphical model
over the discrete random vectorX = (X1, . . . , X|V |):

p(x;θ) = Pr(X=x;θ)=
1

Z(θ)

∏
(i,j)∈E

φij(xi, xj ;θ). (1)

Here, φij(·, ·;θ) is a local potential defined on the setting
of variables (Xi, Xj). The local potentials are controlled
by a parameter vector θ, and Z(θ) is the partition function.
We assume for simplicity that each variableXi takes values
in the same finite set X . We also assume henceforth that G
is a tree. For graphical models that are not trees or have
higher-order potentials, our results can be generalized to
junction trees, with the usual blowup in space and running-
time depending on the clique-width of the junction tree.

Now, consider an ordered sample x(1), . . . ,x(M) of ran-
dom vectors drawn independently from the graphical
model. We also refer to this sample as a population. De-
fine the contingency tables ni = (ni(xi) : xi ∈ X ) over
nodes of the model and nij = (nij(xi, xj) : xi, xj ∈ X )
over edges of the model, whose entries count the number of
times particular variable settings occur in the population:

ni(xi) =
∑M
m=1 I

(
X

(m)
i = xi

)
,

nij(xi, xj) =
∑M
m=1 I

(
X

(m)
i = xi, X

(m)
j = xj

)
.

Here, I(·) is an indicator function. Define the vector n to be
the concatenation of all edge-based contingency tables nij
together with all node-based contingency tables ni. This is
a random vector that depends on the entire population and
comprises sufficient statistics of the population, which can
be seen by writing the joint probability:

p(x(1), . . . ,x(M);θ) = g(n,θ) =

=
1

Z(θ)M

∏
(i,j)∈E

∏
xi,xj

φij(xi, xj ;θ)
nij(xi,xj). (2)

In CGMs, one makes noisy observations y of some sub-
set of the sufficient statistics n and then seeks to answer
queries about the sufficient statistics given y (e.g., for the
purpose of learning the parameters θ) through the condi-
tional distribution p(n |y;θ) ∝ p(n;θ)p(y |n). The first
term in this product, p(n;θ), is the prior distribution over
the sufficient statistics or the CGM distribution. In Sec-
tion 2.2, we will describe how the CGM distribution is de-
rived from the individual model (1). We refer to the second
term, p(y |n), as the noise model or the CGM evidence
term. It is often assumed that p(y |n) is log-concave in
n, which makes the negative log-likelihood convex in n,
though most of the results of this paper do not rely on that
assumption.

Example. For modeling bird migration, assume that X =
(X1, . . . , XT ) is the sequence of discrete locations (e.g.
map grid cells) visited by an individual bird, and that the
graphical model p(x;θ) = 1

Z(θ)

∏T−1
t=1 φt(xt, xt+1;θ) is

a chain model governing the migration of an individual,
where the parameter vector θ controls how different rele-
vant factors (distance, direction, time of year, etc.) influ-
ence the affinity φt(xt, xt+1;θ) between two locations xt
and xt+1. In the CGM, M birds of a given species inde-
pendently migrate from location to location according to
the chain model. The node-table entries nt(xt) indicate
how many birds are in location xt at time t. The edge-table
entries nt,t+1(xt, xt+1) count how many birds move from
location xt to location xt+1 from time t to time t + 1. A
reasonable model for eBird data is that the number of birds
of the target species counted by a birdwatcher is a Poisson
random variable with mean proportional to the true num-
ber of birds nt(xt), or yt(xt) |nt(xt) ∼ Pois(αnt(xt)),
where α is the detection rate. Given only the noisy eBird
counts and the prior specification of the Markov chain, the
goal is to answer queries about the distribution p(n |y;θ)
to inform us about migratory transitions made by the popu-
lation. Because the vector n consists of sufficient statistics,
these queries also provide all the relevant information for
learning the parameters θ from this data.

2.1. CGM Distribution

We now describe the form of the CGM distribution p(n;θ)
and basic aspects of inference in this distribution. Sund-
berg (1975) originally described the form of this distribu-
tion for a graphical model that is decomposable (i.e., its
cliques are the nodes of some junction tree), in which case
its probabilities can be written in closed form in terms of
the marginal probabilities of the original model. Liu et al.
(2014) refined this result to be written in terms of the orig-
inal potentials instead of marginal probabilities. Applied
to our tree-structured model, this gives the following CGM
distribution:

p(n;θ) =M !

∏
i∈V

∏
xi∈X

(
ni(xi)!

)νi−1∏
(i,j)∈E

∏
xi,xj∈X nij(xi, xj)!

· g(n,θ) · I(n ∈ LZ
M ). (3)

The first term is a base measure (it does not depend on
the parameters) that counts the number of different ordered
samples that give rise to the sufficient statistics n; in this
term, νi is the degree of node i. The second term, g(n,θ),
is the joint probability of any ordered sample with suffi-
cient statistics n as defined in Eq. (2). The final term is a
hard constraint that restricts the support of the distribution
to vectors n that are valid sufficient statistics of some or-
dered sample. Sheldon & Dietterich (2011) showed that,
for trees or junction trees, this requirement is satisfied if
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and only if n belongs to the integer-valued scaled local
polytope LZ

M defined by the following constraints:

LZ
M =

{
n ∈ Z|n|+

∣∣∣M =
∑
xi

ni(xi) ∀i ∈ V, (4)

ni(xi) =
∑
xj

nij(xi, xj) ∀i ∈ V, xi ∈ X , j ∈ N(i)
}
,

whereN(i) is the set of neighbors of i. The reader will rec-
ognize that LZ

M is equivalent to the standard local polytope
of a graphical model (Wainwright & Jordan, 2008) except
for two differences: (1) the marginals, which in our case
represent counts instead of probabilities, are scaled to sum
to the population size M instead of summing to one, and
(2) these counts are constrained to be integers. The set LZ

M

is the true support of the CGM distribution. Let LM be the
relaxation of LZ

M obtained by removing the integrality con-
straint, i.e., the set of real-valued vectors with non-negative
entries that satisfy the same constraints.

2.2. Approximate MAP Inference

The MAP inference problem for CGMs is to find n ∈ LZ
M

to maximize p(n |y;θ). Henceforth, we will suppress the
dependence on θ to simplify notation when discussing in-
ference with respect to fixed parameters. Unfortunately, ex-
act MAP inference is intractable (Sheldon et al., 2013), but
by relaxing the feasible set from LZ

M to LM (i.e., remov-
ing the integrality requirement), taking the negative log of
the objective, and using Stirling’s approximation, Sheldon
et al. (2013) arrived at the following convex relaxation of
the MAP problem:

min
z∈LM

FCGM(z) := ECGM(z)−HB(z). (5)

ECGM(z) =−
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log φij(xi, xj)

− log p(y | z),

HB(z) =−
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log zij(xi, xj)

+
∑
i∈V

(νi−1)
∑
xi

zi(xi) log zi(xi).

We write z in place of n to emphasize that the contin-
gency tables are now real-valued. The quantity HB(z) is
the Bethe entropy. It is well known that the Bethe entropy
is concave over the local polytope of a tree (Heskes, 2006).
We have grouped the remaining terms into the CGM en-
ergy function ECGM(z) for comparison with the free ener-
gies we will discuss below. If the noise model p(y |n) is
log-concave then the overall problem is convex and can be
solved by off-the-shelf solvers (Sheldon et al., 2013). This
inference approach is extremely accurate and much faster
than the previous method of Gibbs sampling, but it is still
not efficient enough for large-scale problems.

3. Message Passing Algorithm
The goal of this paper is to derive an efficient special-
purpose algorithm to solve the MAP optimization problem.
We start by comparing the MAP objective to the Bethe free
energy for standard graphical models:

FB(z) = EB(z)−HB(z),

EB(z) = −
∑

(i,j)∈E

∑
xi,xj

zij(xi, xj) log φij(xi, xj).

The functions FCGM(z) and FB(z) differ only in the en-
ergy terms: while the standard energy EB(z) is linear in z,
the CGM energy ECGM(z) is non-linear (but typically con-
vex). In what follows, we will generalize the analysis by
Yedidia et al. (2000) of Pearl’s classical belief propagation
(BP) algorithm (1988) to derive a BP algorithm for arbi-
trary non-linear energies E(z) such as the one in the CGM
MAP objective.

Classical BP maintains a set of messages {mij(xj)} from
nodes to their neighbors, which are updated according to
the rule:

mij(xj) ∝
∑
xi

φij(xi, xj)
∏

k∈N(i)\j

mki(xi).

Upon convergence, the node marginals are zi(xi) ∝∏
k∈N(i)mki(xi) and the edge marginals are zij(xi, xj) ∝

φij(xi, xj)
∏
k∈N(i)\jmki(xi)

∏
l∈N(j)\imlj(xj), nor-

malized to sum to one. Yedidia et al. (2000) showed
that if BP converges, it reaches a zero-gradient point of
the Lagrangian of the Bethe free energy with respect
to the constraint z ∈ L1, which is the (standard) local
polytope. In practice, if BP converges on a loopy graph, it
usually converges to a minimum of the Bethe free energy
(Heskes, 2003). For trees, BP always converges to the
global minimum and the Bethe free energy is equal to
the true variational free energy, so BP is an exact method
for marginal inference. For graphs with cycles, the Bethe
free energy is non-convex and both the Bethe free energy
and the constraint set L1 are approximations of their
counterparts in the exact variational inference problem
(Wainwright & Jordan, 2008), so loopy BP is an approx-
imate marginal inference method. A key contribution
of Yedidia et al. (2000) was to reveal the nature of this
approximation by its connection to the Bethe free energy.

3.1. Non-Linear Energy Belief Propagation

We now present a generalized belief propagation algorithm
to solve problems in the form of (5):

min
z∈LM

F (z) := E(z)−HB(z), (9)

where the energy function E(z) need not to be linear with
respect to node and edge marginals. As with standard BP,
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Algorithm 1: Non-Linear Belief Propagation
Input: Graph G = (V,E), (non-linear) energy function

E(z), population size M

Init : mij(xj) = 1, φ̂ij(xi, xj) = φij(xi, xj),
zij(xi, xj) ∝ φij(xi, xj), ∀(i, j) ∈ E, xi, xj .

while ¬ converged do
Execute the following updates in any order:

φ̂ij(xi, xj) = exp
{
− ∂E(z)

∂zij(xi, xj)

}
(6)

mij(xj) ∝
∑
xi

φ̂ij(xi, xj)
∏

k∈N(i)\j

mki(xi) (7)

zij(xi, xj) ∝ φ̂ij(xi, xj)
∏

k∈N(i)\j

mki(xi)
∏

l∈N(j)\i

mlj(xj)

(8)
end
Extract node marginals: zi(xi) ∝

∏
k∈N(i)mki(xi)

we first present the algorithm and then show the connec-
tion to the Lagrangian. Algorithm 1 shows Non-Linear
Belief Propagation (NLBP). Note that the only difference
from standard BP is that we replace the edge potential
φij(xi, xj) by the exponentiated negative gradient ofE(z).
For the standard linear energy EB(z), this is always equal
to the original edge potential, and we recover standard BP.
For non-linear energies, the gradient is not constant with
respect to z, so, unlike in standard BP, we must track the
value of the marginals z (normalized to sum to M ) in each
iteration so we can use them to update the current edge
potentials. Note that the algorithm stores the current edge
potentials φ̂ij as separate variables, which is not necessary
but will add useful flexibility in ordering updates.

One subtle aspect of NLBP is that the vector z contains
redundant information (e.g., edge marginals determine the
node marginals) and therefore the gradient of E(z) may
depend on details of how that function is defined. For ex-
ample, consider the two different CGM noise models

yi(xi) | z ∼ Poisson(αzi(xi)),

yi(xi) | z ∼ Poisson
(
α
∑
xj

zij(xi, xj)
)
.

These give the same distribution over y but yield log-
likelihood functions log p(y | z) (and thus energy functions
ECGM(z)) that differ in their gradient with respect to z. To
resolve this ambiguity, we assume that the energy function
E(z) (and hence the CGM noise model p(y | z)) is always
written as a function of only the edge variables {zij}. This
can be considered a non-linear generalization of the stan-
dard practice of absorbing unary node potentials into bi-
nary edge potentials in a graphical model, and explains why
only the gradient with respect to edge variables appears in
the updates of the algorithm.

Theorem 1. Suppose the NLBP message passing updates
converge and the resulting vector z has strictly positive en-
tries. Then z is a constrained stationary point of F (z) in
Problem (9) with respect to the set LM . If G is a tree and
E(z) is convex, then z is a global minimum.

Proof. The proof follows Yedidia et al. (2000; 2005). We
will write the Lagrangian of (9) and set its gradients to
zero to derive the first-order optimality conditions, and then
show that these are satisfied by a certain set of Lagrange
multipliers if NLBP converges. The Lagrangian is

L(z, λ) = E(z)−HB(z) +
∑
i

λi

(∑
xi

zi(xi)−M
)

+
∑
i

∑
j∈N(i)

∑
xi

λji(xi)
(
zi(xi)−

∑
xj

zij(xi, xj)
)
.

Since we only consider vectors z that are strictly positive,
we can drop the inequality constraints z ≥ 0 when writing
the Lagrangian. The partial derivatives with respect to the
primal variables are:

∂L(z,λ)

∂zij(xi, xj)
=

∂E(z)

∂zij(xi, xj)
+ log zij(xi, xj) + 1

− λji(xi)− λij(xj),
∂L(z,λ)

∂zi(xi)
= (1−νi)(log zi(xi) + 1) + λi +

∑
j∈N(i)

λji(xi).

Here we have used the assumption that E(z) depends only
on edge variables, so ∂E(z)

∂zi(xi)
= 0. By setting these expres-

sions to zero and factoring out terms that are constant with
respect to the individual edge and node marginal tables, we
obtain the following first-order conditions:

zij(xi, xj) ∝ exp
{
λji(xi) + λij(xj)−

∂E(z)

∂zij(xi, xj)

}
,

zi(xi) ∝ exp
{ 1

νi − 1

∑
j∈N(i)

λji(xi)
}
. (10)

Assume NLBP has converged to a particular set of mes-
sages {mji(xi)} and marginals z that satisfy Equations (6),
(7) and (8). Construct Lagrange multipliers as λji(xi) =
log
(∏

k∈N(i)\jmki(xi)
)
. By substituting these values

into Equations (10) and simplifying the node marginal
expression, we obtain the fixed point equations for the
marginals from the NLBP algorithm, which are assumed
to be satisfied. Therefore, for this set of Lagrange multipli-
ers, the gradient with respect to the primal variables is zero.
Finally, it is a standard exercise to check that the normal-
ization and consistency constraints of z are satisfied when
message passing converges, so that the gradient of L(z,λ)
with respect to λ is zero.

This establishes that all partial derivatives of L(z,λ) are
zero, i.e., z is an (interior) constrained stationary point. If
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G is a tree and E(z) is convex, then the problem is convex
and therefore z must be a global minimum.

Note the proof of the theorem does not rely on convexity of
the noise term except to guarantee that a global minimum
is reached in the case of tree-structured models. Also note
that NLBP maintains positive marginals as long as the gra-
dient of E(z) is finite (which is analogous to the assump-
tion of positive potentials in the linear case), so the assump-
tion of positivity is not overly restrictive. Unlike standard
BP, which is guaranteed to converge in one pass for trees,
in NLBP the edge potentials change with each iteration so
it is an open question whether convergence is guaranteed
even for trees. In practice, we find it is necessary to damp
the updates to messages (Heskes, 2003) and marginals z,
and that sufficient damping always leads to convergence in
our experiments. See Algorithm 2 for details of damping.

3.2. Edge Evidence vs. Node Evidence

In our applications we consider two primary types of CGM
observations, one where noisy edge counts are observed
and one where noisy node counts are observed. In both
cases, we assume the table entries are corrupted indepen-
dently by a univariate noise model p(y | z):

pedge(y | z) =
∏

(i,j)∈E,xi,xj

p(yij(xi, xj) | zij(xi, xj)),

pnode(y | z) =
∏
i,xi

p(yi(xi) | zi(xi)).

The first model occurs in our human mobility application:
a data provider wishes to release sufficient statistics (edge
tables) but must add noise to those statistics to maintain
privacy. The second model occurs in our bird migration
application: birdwatchers submit counts that provide evi-
dence only about the locations of birds at a particular time,
and not about the migratory transitions they make.

With noisy edge counts, it is clear how to update the
edge potentials within NLBP. Let `(z | y) = − log p(y | z).
Eq (6) becomes

φ̂ij(xi, xj)=φij(xi, xj) exp
{
`′
(
zij(xi, xj) | yij(xi, xj)

)}
,

where `′ is the partial derivative with respect to the
marginal. With noisy node counts, we must rewrite p(y | z)
using only the edge tables. We choose to write zi(xi) =
1
νi

∑
j∈N(i)

∑
xj
zij(xi, xj) as the average of the marginal

counts obtained from all incident edge tables. This leads to
symmetric updates in Eq (6):

φ̂ij(xi, xj) = φij(xi, xj)

· exp
{

1

νi
`′
(
yi(xi) | zi(xi)

)
+

1

νj
`′
(
yj(xj) | zj(xj)

)}
,

where zi(xi) and zj(xj) are marginal counts of zij .

Algorithm 2: Feasibility Preserving NLBP
Input same as Algorithm 1, damping parameter α ≥ 0

Init : z← STANDARD-BP
(
{φij}

)
while ¬ converged do

φ̂ij(xi, xj)← exp
{
− ∂E(z)

∂zij(xi, xj)

}
,∀(i, j) ∈ E

znew ← STANDARD-BP
(
{φ̂ij}

)
z← (1− α)z+ αznew ; // damped updates

end

3.3. Update Schedules and Feasibility Preservation

The NLBP algorithm is a fixed-point iteration that allows
updating of edge potentials, messages, and the marginals
in any order. We first considered a naive schedule, where
message updates are sequenced as in standard BP (for trees,
in a pass from leaves to root and then back). When mes-
sage mij is scheduled for update, the operations are per-
formed in the order listed in Algorithm 1: first the edge
potential is updated, then the message is updated, and then
all marginals that depend on mij are updated. Unlike BP,
this algorithm does not achieve convergence in one round,
so the entire process is repeated until convergence. In our
initial experiments, we discovered that the naive schedule
can take many iterations to achieve a solution that satisfies
the consistency constraints among marginals (Eq. (4)).

We devised a second feasibility-preserving schedule (Al-
gorithm 2) that always maintains feasibility and has the
appealing property that it can be implemented as a sim-
ple wrapper around standard BP. This algorithm specializes
NLBP to alternate between two phases. In the first phase,
edge potentials are frozen while messages and marginals
are updated in a full pass through the tree. This is equiv-
alent to one call to the standard BP algorithm, which, for
trees, is guaranteed to converge in one pass and return fea-
sible marginals. In the second phase, only edge potentials
are updated. Algorithm 2 maintains the property that it’s
current iterate z is always a convex combination of feasible
marginals returned by standard BP, so z is also feasible.

4. Evaluation
We evaluate NLBP with two sets of experiments. First, we
evaluate the extent to which NLBP accelerates CGM infer-
ence and learning for a benchmark synthetic bird migration
problem (Sheldon et al., 2013; Liu et al., 2014). Then, we
demonstrate the benefits of a more scalable inference algo-
rithm by evaluating CGMs in a new application: learning
with noisy sufficient statistics. We simulate a task where a
data provider wishes to release data about human mobility,
but must corrupt the data with noise to guarantee privacy.
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Figure 1. Inference: Comparison of approximate MAP inference algorithms on 15× 15 grid: (a) convergence of objective function, (b)
convergence of constraint violation, (c) running time vs. number of grid cells (shaded error bars are 95% confidence intervals computed
from 15 repeated trials). Learning: (d–e) relative error vs. runtime (seconds) for 60 EM iterations and 3 instances; (d) grid size 6 × 6
andwtrue = [0.5, 1, 1, 1], (e) grid size 10× 10 andwtrue = [5, 10, 10, 10].

4.1. Speed of Inference: Synthetic Bird Migration

We compared the speed and accuracy of NLBP both as a
standalone inference method and as a subroutine for learn-
ing versus the baselines of using MATLAB’s interior-point
algorithm to solve the approximate MAP problem (Sheldon
et al., 2013) and inference in the Gaussian approximation
of CGMs (Liu et al., 2014).

Following (Sheldon et al., 2013; Liu et al., 2014), synthetic
data is generated from a chain-structured CGM to simu-
late migration of a population of M birds from the bottom-
left corner to the top-right corner of an ` × ` grid. Each
bird makes independent migration decisions. The transi-
tion probability between cells xt and xt+1 comes from a
logistic regression formula that employs several covariates:
the distance from xt to xt+1, the consistency of transition
direction with wind direction, the consistency of the tran-
sition direction with the intended destination, and the pref-
erence of the individual to move. The individual model
is a T -step Markov chain with variable Xt indicating the
cell location in the grid. The cardinality of variable Xt is
L= `2. Let w denote the parameters in the logistic regres-
sion. We report results for wtrue=(5, 10, 10, 10). The re-
sults for other parameter settings (e.g., those from Liu et al.
(2014)) were very similar. After generating node and edge
contingency tables n from this process, we added Poisson
noise y ∼ Pois(αn) to the nodes, with detection rate α=1.
In the following experiments, we setM=1000, T =20 and
vary grid size L from 5×5 to 19×19.

Inference. We compared MATLAB’s interior point
solver (GENERIC), NLBP with the naive message sched-
ule (NLBP-NAIVE), feasibility-preserving NLBP (NLBP-
FEAS), and the Gaussian approximation (GCGM) for per-
forming inference in CGMs.

Figures 1(a–b) show the convergence behavior of the first
three algorithms, which solve the same approximate MAP
problem, in terms of both objective function and constraint
violation for L = 15 × 15. The objective value of the

two NLBP algorithms converges to the optimum an or-
der of magnitude more quickly than the generic solver.
Both GENERIC and NLBP-FEAS maintain feasibility, but
NLBP-NAIVE takes a long time to achieve feasibility—
much longer than it does to converge to the optimal ob-
jective value. Since GCGM takes a different approach to
inference, we do not evaluate it directly in terms of the ob-
jective and constraints of the approximate MAP problem.
However, we note that when either the grid size or parame-
ter values are large, GCGM produces marginals that violate
the consistency constraints, which may explain why it has
difficulty in parameter learning in these cases (see below).

Figure 1(c) shows the total time to convergence as a func-
tion of problem size for all four algorithms. Both NLBP
variants are very efficient and their running times scale
much better than that of GENERIC. NLBP-FEAS is approxi-
mately twice as fast as NLBP-NAIVE, and is approximately
four times faster than GCGM.

Learning. Approximate MAP inference is an effective
subroutine within the E-step of an expectation maximiza-
tion (EM) algorithm for learning CGM parameters (Shel-
don et al., 2013). We compared the speed and accuracy of
EM using the four different approximate MAP algorithms
as subroutines. We generated data by fixing parameters
wtrue and generating three independent realizations of the
entire bird migration process (T = 20) to simulate observ-
ing the seasonal migration of the same species across three
different years. Each realization had different wind covari-
ates, and was treated within EM as an independent data
instance.

We used approximate MAP inference for the E-step and a
gradient-based solver to update the parametersw in the M-
step. For EM details, see (Sheldon et al., 2013; Liu et al.,
2014). We evaluated the performance in terms of the rel-
ative error, defined as ‖w(t) −wtrue‖1/‖wtrue‖1, where
w(t) are the parameters from the t-th EM iteration. Fig-
ures 1(d–e) show the reduction in error over 60 EM itera-
tions for each algorithm on 6×6 and 10×10 grids. The
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results confirm the speed advantages of NLBP over the
generic solver. All algorithms converge to a similar level of
error, except for GCGM in the larger grid size and parameter
setting, which is consistent with the results for inference.
Both NLBP variants converge much more quickly than
GENERIC. The speed advantage of NLBP-FEAS over NLBP-
NAIVE is even greater within the EM procedure. GCGM is
only competitive for the setting with small grid size and
parameter values.

4.2. Human Mobility

We now turn to a novel application of CGMs. We ad-
dress the problem of learning the parameters of a chain-
structured graphical model for human mobility, where, un-
like the bird migration model, we have access to transi-
tion counts (edge counts) instead of node counts. Transi-
tion counts are sufficient statistics for the model, so learn-
ing with exact transition counts would be straightforward.
However, we assume the available data are corrupted by
noise to maintain privacy of individuals. The problem be-
comes one of learning with noisy sufficient statistics.

In particular, our application simulates the following situa-
tion: a mobile phone carrier uses phone records to collect
information about the transitions of people among a dis-
crete set of regions, for example, the areas closest to each
mobile tower, which form a Voronoi tesselation of space
(Song et al., 2010; de Montjoye et al., 2013). Data is ag-
gregated into discrete time steps to provide hourly counts
of the number of people that move between each pair of
regions. The provider wishes to release this aggregate data
to inform public policy and scientific research about hu-
man mobility. However, to maintain the privacy of their
customers, they choose to release data in a way that main-
tains the privacy guarantees of differential privacy (Dwork
& Roth, 2013; Mir et al., 2013). In particular, they follow
the Laplace mechanism and add independent Laplace noise
to each aggregate count (Dwork & Roth, 2013).

Ground-Truth Model. We are interested in fitting mod-
els of daily commuting patterns from aggregate data of this
form. We formulate a synthetic version of this problem
where people migrate among the grid cells of a 15 × 14
rectangular map. We simulate movement from home desti-
nations to work destinations across a period of T = 10 time
steps (e.g., half-hour periods covering the period from 6:00
a.m. to 11:00 a.m.). We parameterize the joint probability
of the movement sequence for each individual as:

p(x1:10) =
1

Z
· φ1(x1) ·

( 9∏
t=1

ψ(xt, xt+1)

)
· φ10(x10).

The potentials φ1 and φ10 represent preferences for home
and work locations, respectively, while ψ is a pairwise po-
tential that scores transitions as more or less preferred. For

the ground truth model, we use compact parameterizations
for each potential: φ1 and φ10 are discretized Gaussian
potentials (that is, φ(xt) is the value of a Gaussian den-
sity over the map measured at the center of grid cell xt)
centered around a “residential area” (top right of the map)
and “commercial area” (bottom left). For the transition po-
tential, we set φ(xt, xt+1) proportional to exp

(
− ||vt −

vt+1||2/(2σ2)
)
, where vt and vt+1 are the centers of grid

cells xt and xt+1, to prefer short transitions over long ones.

Data Generation. To generate data, we simulated M = 1
million trajectories from the ground truth model, com-
puted the true transition counts, and then added indepen-
dent Laplace noise to each true count n to generate the
noisy count y. The Laplace noise is controlled by a scale
parameter b:

p(y |n) = Laplace(b;n) =
1

2b
exp

{
−|y − n|

b

}
.

To explore the relative power of edge counts versus node
counts for model fitting, we also performed a version of
the experiments where we marginalized the noisy tran-
sition counts to give only noisy node counts yt(xt) =∑
xt+1

yt,t+1(xt, xt+1) as evidence.

Parameters and Evaluation. We wish to compare the
abilities of CGM-based algorithms and a baseline algo-
rithm to recover the true mobility model. When fitting
models, it would be a severe oversimplification to assume
the simple parametric form used to generate data. In-
stead, we use a fully parameterized model with parameters
θ = (log φ1, log φ10, logψ). Here log φ1 and log φ10 are
arbitrary L× 1 vectors, and logψ is an arbitrary L× L ta-
ble. Note that this parameterization is over-complete, and
hence not identifiable. To evaluate fitted models, we will
compare their pairwise marginal distributions to those of
the ground truth model: unlike the potentials, the pairwise
marginals uniquely identify the joint distribution. The pair-
wise MAE is defined as the mean absolute error among all
L2 × (T − 1) entries of the pairwise marginals. We also
considered node MAE, which is the mean error among the
L × T entries of the node marginals. Note that these do
not uniquely identify the distribution, but node MAE is an
interesting metric for comparing the ability to learn with
node evidence vs. edge evidence.

Algorithms. Is it possible to estimate parameters of a
graphical model given only noisy sufficient statistics? An
“obvious” approach is to ignore the noise and perform
maximum-likelihood estimation using the noisy sufficient
statistics y in place of the true ones n. To the best of our
knowledge, this is the only previously available approach,
and we use it as a baseline. The approach has been crit-
icized in the context of general multidimensional contin-
gency tables (Yang et al., 2012). To maximize the like-
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Figure 2. Pairwise / Node MAE vs Laplace scale parameter b after
250 EM iterations. Shaded regions shows 95% confidence inter-
vals computed from 10 trials for each setting.
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Figure 3. Scatter plots of approximate vs. true edge counts for a
small problem (L = 4 × 7, T = 5,M = 10000, b = 50): (a)
original noisy edge counts, (b) shown only in the same range as
(c-d) for better comparison, (c) reconstructed counts after 1 EM
iteration, (d) reconstructed counts after EM convergence.

lihood with respect to our parameters, we use a gradient-
based optimizer with message passing as a subroutine to
compute the likelihood and its gradient (Koller & Fried-
man, 2009).

For the CGM-based approach, we treat the true sufficient
statistics as hidden variables and use EM to maximize the
likelihood. The overall EM approach is the same as in the
bird migration model. When the evidence is noisy edge
counts, we first run the baseline algorithm and use those
parameters to initialize EM. When the evidence is noisy
node counts, the baseline algorithm does not apply and we
initialize the parameters randomly.

Results. Figure 2(a) shows the quality of the fitted models
(measured by pairwise MAE) vs. the scale of the Laplace
noise. For the CGM-based algorithms, we ran 250 EM
iterations, which was enough for convergence in almost
all cases. Initializing EM with the baseline parameters

helped achieve faster convergence (not shown). The results
demonstrate that the CGM algorithm with edge evidence
improves significantly over the baseline for all values of
b. As expected, the node evidence version of the CGM
algorithm performs worse, since it has access to less infor-
mation. However, it is interesting that the CGM with only
node evidence outperforms the baseline (which has access
to more information) for larger values of b.

Figure 2(b) shows node MAE vs b for the same fitted mod-
els. In other words, it measures the ability of the methods to
find models that match the ground truth on single time-step
marginals. We see that both CGM algorithms are substan-
tially better than the baseline, and the CGM algorithm with
less information (node counts only) performs slightly bet-
ter. We interpret this as follows: node evidence alone pro-
vides enough information to match the ground truth model
on node marginals; the additional information of the noisy
edge counts helps narrow the model choices to one that
also matches the ground truth edge marginals. However,
this does not explain why the node evidence performs bet-
ter than edge evidence for node MAE. We leave a deeper
investigation of this for future work—it may be a form of
implicit regularization.

Figure 3 provides some insight into the EM algorithm and
it’s ability to reconstruct edge counts. The original, noisy
counts have considerable noise and sometimes take neg-
ative values (panels (a) and (b)). After one EM iteration
(panel (c)), the reconstructed counts are now feasible, so
they can no longer be negative, and they are closer to the
original counts. After EM converges, the reconstructed
counts are much more accurate (panel (d)).

5. Conclusion
This paper highlights a close connection between the prob-
lems of approximate MAP inference in collective graphical
models (CGMs) and marginal inference in standard graph-
ical models. Inspired by this connection, we derived the
non-linear belief propagation (NLBP) algorithm and pre-
sented a feasibility-preserving version of NLBP that can
be implemented as a simple wrapper around standard BP.
By applying NLBP to a synthetic benchmark problem for
bird migration modeling, we showed that NLBP runs sig-
nificantly faster than a generic solver and is significantly
more accurate than inference in the Gaussian approxima-
tion of CGMs when the grid size or parameter values are
large. The feasibility-preserving version of NLBP is twice
as fast as the naive NLBP. We then demonstrated the utility
of the NLBP algorithm by contributing a novel application
of CGMs for modeling human mobility. In this applica-
tion, CGMs provide a way to fit graphical models when the
available sufficient statistics have been corrupted by noise
to maintain the privacy of individuals.



Message Passing for Collective Graphical Models

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1125228, and
by the National Research Foundation Singapore under its
Corp Lab@University scheme.

References
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