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Abstract

Partially observable MDPs provide an elegant framework for
sequential decision making. Finite-state controllers (FSCs)
are often used to represent policies for infinite-horizon prob-
lems as they offer a compact representation, simple-to-
execute plans, and adjustable tradeoff between computational
complexity and policy size. We develop novel connections
between optimizing FSCs for POMDPs and the dual linear
program for MDPs. Building on that, we present a dual mixed
integer linear program (MIP) for optimizing FSCs. To assign
well-defined meaning to FSC nodes as well as aid in policy
search, we show how to associate history-based features with
each FSC node. Using this representation, we address an-
other challenging problem, that of iteratively deciding which
nodes to add to FSC to get a better policy. Using an efficient
off-the-shelf MIP solver, we show that this new approach can
find compact near-optimal FSCs for several large benchmark
domains, and is competitive with previous best approaches.

1 Introduction
Partially observable Markov decision processes (POMDPs)
provide an elegant framework for sequential decision mak-
ing in partially observable settings (Sondik 1971). The past
decade has seen significant improvement in the applicabil-
ity and scalability of POMDP solvers. In particular, point-
based methods that restrict value function computations to
a subset of the belief space have contributed to rapid im-
provement of value iteration techniques (Smith and Sim-
mons 2004; Spaan and Vlassis 2005; Pineau, Gordon, and
Thrun 2006; Shani, Brafman, and Shimony 2007; Poupart,
Kim, and Kim 2011; Shani, Pineau, and Kaplow 2013).
There has also been significant improvement in policy it-
eration techniques that use finite-state controller (FSC) to
represent solutions (Hansen 1998). Finite-state controllers
are particularly useful because executing a FSC-based pol-
icy requires a simple table lookup without any belief up-
dates. Such resource-effective execution is desirable in
many settings, such as battery-constrained mobile and wear-
able device applications (Grześ, Poupart, and Hoey 2013a;
2013b). In addition, controllers can provide significantly
more semantic information about the policy than alpha-
vectors used by value iteration approaches. This is partic-
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ularly important when human understanding of the policy is
required, for example in assistive healthcare applications of
POMDPs (Hoey et al. 2012).

Optimizing controllers for POMDPs is challenging (Vlas-
sis, Littman, and Barber 2012). Several approaches have
been developed to optimize stochastic controllers, such as
bounded policy iteration (Poupart and Boutilier 2003), for-
mulations based on nonlinear programming (Amato, Bern-
stein, and Zilberstein 2007; 2010; Charlin, Poupart, and Sh-
ioda 2007), stochastic local search (Braziunas and Boutilier
2004) and expectation-maximization (Toussaint, Harmeling,
and Storkey 2006; Pajarinen and Peltonen 2011). There has
been recent progress with branch-and-bound search methods
for finding optimal deterministic controllers (Meuleau et al.
1999; Grześ, Poupart, and Hoey 2013b).

In our work, we develop a mixed integer linear program-
ming (MIP) formulation for optimizing deterministic con-
trollers. This MIP formulation is heavily influenced by
the dual LP formulation of MDPs (Puterman 1994), under-
scoring that optimization techniques developed for MDPs
can be adapted to POMDPs. The MIP formulation is ad-
vantageous over nonlinear programming (NLP) based for-
mulations (Amato, Bernstein, and Zilberstein 2007; 2010;
Charlin, Poupart, and Shioda 2007) as most off-the-shelf
MIP solvers provide an upper bound that can be used to
check the optimality gap, in contrast to NLP solvers that typ-
ically do not provide quality bounds. Given enough time,
MIP solvers can provide an optimal fixed-size controller,
which may not be possible with non-convex programming
solvers, that could get stuck in local optima. Indeed, we
show empirically that our approach finds near-optimal fixed-
size controllers for commonly used benchmark instances.

The importance of MIP based formulations for obtaining
quality bounded solutions has been recognized by the plan-
ning under uncertainty and partial observability community.
For example, a MIP based approach to obtain optimal policy
for finite-horizon decentralized POMDPs (Dec-POMDPs)
has been developed in (Aras, Dutech, and Charpillet 2007;
Aras and Dutech 2010). This approach works by incorpo-
rating both the world state and all the possible observation
histories for every time step to form an extended state-space,
and then defining a MIP over this extended space. A simi-
lar idea of using all possible observation histories for finite-
horizon POMDPs has been discussed in (Witwicki 2011,



Chapter 5). The main disadvantage of such approaches is
that the size of the observation history increases exponen-
tially with the horizon, severely impacting the scalability of
the MIP. Furthermore, such observation-history based non-
stationary policy does not address the infinite-horizon case.
In contrast, our approach is based on optimizing a FSC-
based stationary policy for infinite-horizon POMDPs. Fur-
thermore, the size of the MIP in our case is polynomial in
the FSC size and is therefore far more scalable than previ-
ous MIP approaches.

In previous work on optimizing controllers (Meuleau et
al. 1999; Amato, Bernstein, and Zilberstein 2010; Grześ,
Poupart, and Hoey 2013b), it is often hard to determine the
“right” size of the controller in terms of the number of nodes.
Larger controllers are preferable as they better approximate
the optimal policy, but optimizing them is more challenging.
Hence, we develop techniques that are synergistic with our
dual MIP formulation to find a good quality controller via
an iterative process. We start with a fixed-size controller, for
example a reactive controller with one node per available ob-
servation. After optimizing this controller in iteration zero,
our approach uses the information-theoretic measure of en-
tropy, readily available from the dual MIP solution, to de-
termine how to add nodes to this controller, and again opti-
mizes the larger controller to improve the quality of the so-
lution in an iterative fashion. To further aid the optimization
engine in the policy search as well as provide useful seman-
tic interpretation for the resulting policy, we associate each
controller node with well-defined aspects of the observation
history. For example, such aspects can include associating
each node with the last observation received, or the last ac-
tion and observation. The node addition strategy is designed
to preserve the semantic structure of the controller while ex-
panding its size.

We test our approach on a number of large POMDP do-
mains. Using an efficient MIP solver (CPLEX), we show
that our approach can find compact optimal or near-optimal
FSCs for commonly-used large benchmarks, and is highly
competitive with the best existing controller optimization
approaches.

2 The POMDP Model
A POMDP is described using a tuple 〈S,A, T, Y,O,R, γ〉.
The set S is the set of states s, A is the set of actions a, Y is
the set of observations y. The transition function is defined
as T (s′, s, a) = Pr(s′|s, a) and the observation function
as O(y, a, s′) = Pr(y|a, s′), where s′ is the resulting state
when the last action taken was a. The function R(s, a) de-
fines the immediate reward received when action a is taken
in state s, and 0 < γ < 1 is the reward discounting factor.
We consider the infinite-horizon setting in which decision
making unfolds over an infinite sequence of stages. In each
stage, the agent selects an action, which yields an immedi-
ate reward, and receives an observation that depends on the
outcome. The agent must choose actions based on history
of observations it obtains. The objective of the agent is to
maximize the expected discounted sum of rewards received.

Finite-state controllers (FSC) provide an elegant way of
representing POMDP policies using finite memory. A FSC
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Figure 1: Dynamic Bayesian Networks (DBNs) for (PO)MDPs.

is parameterized as 〈N,φ, ψ〉, where N is a set of nodes
n with each node labeled with an action. Edges represent
controller transitions and are labeled with observations. The
action mapping φ : N → A assigns an action to each FSC
node. The node mapping ψ : N × Y → N maps the current
node and observation pair to a new node. Executing a pol-
icy represented by a given controller is straightforward. The
agent first executes the action φ(n) associated with the cur-
rent node n. It then receives an observation y and transitions
to the resulting node ψ(n, y). Such table-lookup based plan
execution is ideal for resource-constrained devices, such as
mobile phones, because no computationally expensive oper-
ations are required at execution time. The expected value of
executing a controller starting in node n and state s accord-
ing to policy π = 〈φ, ψ〉 is:

∀n, s : V (n, s;π) = R(s, φ(n))+

γ
∑
s′,y

T (s′, s, φ(n))O(y, a, s′)V (ψ(n, y), s′;π)

We assume without loss of generality that the controller
starts in node n1. So, the value of a controller given an initial
belief b0 is V (b0;π) =

∑
s b0(s)V (n1, s;π). Our goal is to

find an optimal policy π? such that V (b0;π
?) is maximized.

It has been shown that optimizing fixed-size deterministic
controllers is NP-Hard (Vlassis, Littman, and Barber 2012).
Even optimizing a reactive controller with one node per ob-
servation is NP-Hard (Littman 1994).

3 The Dual MIP for POMDPs
Our dual MIP formulation for optimizing controllers is
based on the dual LP formulation for optimizing MDP poli-
cies. Therefore, we first describe relevant aspects of dual LP
for MDPs.

The linear program for finding an optimal MDP policy is
often represented as follows (Puterman 1994):

max
{x(·,·)}

∑
s

∑
a

R(s, a)x(s, a) (1)∑
a

x(j, a)−
∑
s

∑
a

γ P (j|s, a)x(s, a) = b0(j) ∀j ∈ S

where the variable x(s, a) intuitively denotes the total dis-
counted amount of time the environment state is s and ac-
tion a is taken. Therefore, the total reward corresponding to
being in state s and taking action a is R(s, a)x(s, a). This
describes the objective function of the LP formulation. The
constraints represent the flow conservation principle.



Definition 1. The variable x(s, a) is defined as follows (Put-
erman 1994):

x(s, a) =
∑
j∈S

b0(j)

∞∑
t=1

γt−1P (st=s, at=a | s1=j) (2)

3.1 Cross-Product MDP for a POMDP
Our goal is to develop a mathematical programming formu-
lation analogous to the LP formulation of MDPs to opti-
mize FSCs. We can interpret the POMDP as an MDP de-
fined over states of the form (s, n), where s is a world state
and n is a state of the FSC, as also shown in (Meuleau et
al. 1999). The LP formulation for this cross-product MDP
will not necessarily result in policies that are executable in
a partially observable setting because action may depend in
part on the world state. To remedy this, our key contribu-
tion is to introduce constraints in the LP formulation of this
cross-product MDP such that the resulting policy depends
only on the information available to the agent at runtime.
This results in transforming the dual LP for MDPs to the
dual MIP for POMDPs. Our strategy is different from pre-
vious nonconvex and nonlinear programming formulations
of FSC optimization (Charlin, Poupart, and Shioda 2007;
Amato, Bernstein, and Zilberstein 2010), which are analo-
gous to the primal LP formulation of MDPs, directly op-
timizing V (n, s), the value of starting a controller in node
n and state s using NLP solvers. In contrast, our approach
works with occupancy distributions x(·), similar to the ones
introduced in Def.1.

We first define the cross-product MDP for a POMDP as
shown in Fig. 1(b), similar to (Meuleau et al. 1999). The
state of this MDP is the joint controller state and environ-
ment state (n, s)∈N×S. The action space has two compo-
nents. First, action a ∈ A of the agent is part of the action
space. In addition, the controller transition function ψ is also
part of the action space. This is required as we not only need
to find the action mapping φ, but also the node transition
function ψ. We achieve this by creating a new random vari-
able nyi for each observation yi of the agent. The domain of
each random variable nyi is N or the set of all possible next
nodes reachable upon receiving observation yi. In nyi , the
observation yi is not a variable, rather the variable is which
node the control transitions to given yi.

The joint action for the underlying cross-product MDP is
〈a, ny1 , . . . , nyk〉, assuming there are k= |Y | observations.
The middle layer of the POMDP DBN in Fig. 1(b) shows
the joint action variables. Each action variable has two par-
ents, one for each joint-state component. For clarity, we use
following notations:
〈ny1 , ..., nyk〉 ≡ 〈ny〉 and 〈..., nyi =n′, ...〉 ≡ 〈..., n′yi , ...〉

The transition function for this cross-product MDP is:

P (n′, s′ |n, s, a, 〈ny〉)=
∑
yr∈Y

P (n′ |n, 〈ny〉, yr)

O(yr, a, s
′)T (s′, s, a) (3)

where distribution P (n′ |n, 〈ny〉, yr) is defined as:

P (n′ |n, 〈ny〉, yr) =
{
1 if nyr = n′

0 otherwise
(4)

Intuitively, the above distributions encode the fact that a
complete assignment to variables 〈ny〉 defines a determin-
istic controller transition function ψ. Similar to the MDP
linear program, we create occupancy distribution variables
x(n, s, a, ny1 , . . . , nyk) by noting that the state in the cross-
product MDP is (n, s) and the action is 〈a, ny1 , . . . , nyk〉.
To simplify the notation, we denote this distribution com-
pactly as x(n, s, a, 〈ny〉). Notice that the total number of
these variables is exponential in the size of the observa-
tion space. Fortunately, we can exploit the independence
structure present in the DBN of Fig.1(b) to reason with the
marginalized version of these variables as shown next.

3.2 Mixed-Integer Linear Program for POMDPs
We are now ready to write the dual mathematical program
for the cross-product MDP shown in Fig.1 and develop ad-
ditional constraints that guarantee that the resulting policy
is valid in partially observable setting. This program is pre-
sented in table 1. The binary variables in (24) represent the
controller policy π = 〈φ, ψ〉. We next provide the justifica-
tion for constraints in table 1. First, we formulate the flow
conservation constraint analogous to Eq. (2). The incoming
flow into the state (n′, s′) is defined as:

b0(n
′, s′) + γ

∑
n,s,a,〈ny〉

P (n′, s′|n, s, a, 〈ny〉)x(n, s, a, 〈ny〉)

Using the transition function definition in Eq.(3), we repre-
sent the incoming flow as follows:

b0(n
′, s′) + γ

∑
n,s,a,〈ny〉

∑
yr∈Y

P (n′ |n, 〈ny〉, yr)

O(yr, a, s
′)T (s′, s, a)x(n, s, a, 〈ny〉)

From the definition of the transition distribution (Eq. (4)),
nyr must be equal to n′, otherwise the transition function is
zero. Using this, we simplify the incoming flow as follows:

b0(n
′, s′)+ γ

∑
n,s,a,yr,〈ny\yr 〉

O(yr, a, s
′)T (s′, s, a)x(n, s, a, n′yr , 〈ny\yr 〉)

We can marginalize x(n, s, a, n′yr , 〈ny\yr 〉) to get:

x(n, s, a, n′yr ) =
∑
〈ny\yr 〉

x(n, s, a, n′yr , 〈ny\yr 〉) (5)

Using this relation, we further simplify the incoming flow:

b0(n
′, s′)+γ

∑
n,s,a,yr

O(yr, a, s
′)T (s′, s, a)x(n, s, a, n′yr ) (6)

The above equation represents the total incoming flow as
shown on the RHS of constraint (15) of the POMDP MIP.
The LHS of (15) is simply the total discounted amount of
time the controller is in joint-state 〈n′, s′〉. Hence, con-
straint (15) is the analogue of the MDP flow constraint (2).
We define the variables x(·) for POMDPs as follows.
Definition 2. The variable x(n, s, a, 〈ny〉) is defined as:∑
j∈S,k∈N

b0(j, k)

∞∑
t=1

γt−1Pt(n, s, a, 〈ny〉 | s1= j, n1= k)



We use the convention that P (ut = u, vt = v|·) can be
concisely represented as Pt(u, v|·), where ut and vt de-
note random variables for the time slice t and u, v are par-
ticular assignments to these random variables; · represents
conditioning on the appropriate variables; subscripts denote
time. Analogously, we can define the marginalized variable
x(n, s, a, n′yi) as follows.

Definition 3. The variable x(n, s, a, n′yi) is defined as:∑
j∈S,k∈N

b0(j, k)

∞∑
t=1

γt−1Pt
(
n, s, a, nyi = n′ |s1=j, n1=k

)
Definition 3 is a simple consequence of marginalizing ev-

ery probability in Definition 2. We can solve the cross-
product MDP just with constraint (15). But this would not
lead to a valid policy as action selection depends on the un-
derlying world state, which is not observable. To remedy
this, we introduce additional constraints (16) to (24) that re-
sult in a proper policy for a POMDP. We explore these con-
straints below.
Theorem 1. The MIP constraint (20) along with the inte-
grality constraints of (24) guarantee a valid action mapping
in a partially observable setting. That is,

x(n, a?) = x(n) if x(a?|n)=1 ∀n ∈ N (7)
x(n, a) = 0 ∀a ∈ A\{a?} ∀n ∈ N (8)

Proof. We know from the MIP constraints that:

x(n) =
∑
a

x(n, a) ∀n (9)

x(n) ≥ x(n, a) ∀a (10)

As the variable x(a|n) is an integer, we consider a particular
action a? such that x(a?|n) = 1. The rest of the action
selection variables will be zero because

∑
a x(a|n) = 1.

Substituting x(a?|n) = 1 in constraint (20), we get:

x(n)− x(n, a?) ≤ 0 (11)
x(n) ≤ x(n, a?) (12)

From inequalities (10) and (12), we have x(n) = x(n, a?).
That is, whenever the controller is in state n, it executes the
action a? corresponding to the variable x(a?|n) = 1. This is
exactly how a policy in a partially observable environment
should look like. The action selection φ depends only on the
controller state and not on the world state.

From the constraint x(n) =
∑
a x(n, a) we can see

clearly that if x(n) = x(n, a?), then the rest of the x(n, a)
variables must be zero. Using this fact about x(n, a) vari-
ables for all actions a with x(a|n) = 0, we can simplify
constraint (20) for such actions a as:

x(n) ≤ 1

1− γ (25)

This inequality also holds because the maximum value the
variable x(n) can have is 1

1−γ . Thus, constraint (20) holds
for every action a ∈ A. Therefore, constraint (20) succinctly
encodes the partial observability constraint into the cross-
product MDP.

Variables: x(n, s, a), x(n, s, a, n′y), x(n, a), x(n), x(n, n
′
y),

x(a|n), x(n′|n, y) ∀ n, s, a, y, n′ (13)

Maximize:
∑
n,s

∑
a

R(s, a)x(n, s, a) (14)

Subject to:∑
a

x(n′, s′, a) = b0(n
′, s′) + γ

∑
n,s

∑
a,y

O(y, a, s′)

T (s′, s, a)x(n, s, a, ny = n′) ∀(n′, s′) (15)

x(n, s, a) =
∑
n′

x(n, s, a, n′y) ∀(n, s, a, y) (16)

x(n, a) =
∑
s

x(n, s, a) ∀(n, a) (17)

x(n) =
∑
a

x(n, a) ∀n (18)

x(n, n′y) =
∑
s,a

x(n, s, a, n′y) ∀(n, y, n′) (19)

x(n)− x(n, a) ≤ 1− x(a|n)
1− γ ∀(n, a) (20)

x(n)− x(n, n′y) ≤
1− x(n′|n, y)

1− γ ∀(n, y, n′) (21)∑
a

x(a|n) = 1 ∀n (22)∑
n′

x(n′|n, y) = 1 ∀(n, y) (23)

x(a|n) ∈ {0, 1}, x(n′|n, y) ∈ {0, 1} (24)

Table 1: Mixed-integer program for optimizing a single agent
POMDP policy. The 0-1 binary variables are shown in Eq. (24).
The rest are continuous, positive variables: x(·) ≥ 0. The policy is
denoted using binary variables x(a|n) and x(n′|n, y).

Theorem 2. The MIP constraint (21) along with the inte-
grality constraints of (24) guarantee a valid node mapping
in a partially observable setting. That is,

x(n, n?y) = x(n) if x(n?|n, y)=1, ∀y ∈ Y,∀n ∈ N (26)

x(n, n′y) = 0 ∀n′ ∈ N \n?, ∀y ∈ Y, ∀n ∈ N (27)

Proof. We proceed by interlinking constraints (16) to (19).
We know from constraint (19) that

x(n, n′y) =
∑
s,a

x(n, s, a, n′y) (28)

∑
n′

x(n, n′y) =
∑
n′,s,a

x(n, s, a, n′y) (29)

We know from constraint (16) that

x(n, s, a) =
∑
n′

x(n, s, a, n′y).

Substituting this result into equation (29), we get:∑
n′

x(n, n′y) =
∑
s,a

x(n, s, a) (30)



Using constraints (17) and (18) for the above equation:∑
n′

x(n, n′y) = x(n) ∀y, n (31)

Using the above relation, we have the inequality that:

x(n) ≥ x(n, n′y) ∀n′, y, n (32)

Setting the variable x(n?|n, y)=1 in constraint (21) we get:
x(n)− x(n, n?y) ≤ 0 (33)

Combining equations (32) and (33), we get x(n)=x(n, n?y).
Using equation (31), we deduce that x(n, n′y) = 0 ∀n′ ∈
N \n?. This completes the proof.

Complexity The total number of variables in the dual MIP
is O(|N |2|S||A||Y |). The total number of constraints is
O(|N ||S||A||Y |+|N |2|Y |). The number of binary variables
is O(|N ||A| + |N |2|Y |). The number of binary variables,
which greatly influences the complexity of solving MIPs,
corresponds only to the policy functions φ and ψ. No other
auxiliary variable is binary. Therefore, our MIP for POMDP
is an efficient encoding to optimize FSCs containing mini-
mal number of binary variables.

Practical Issues Despite the advantages of the MIP for-
mulation, a naive implementation that tries to optimize con-
trollers of increasing size using this MIP may not scale well.
Finding optimal fixed-size controllers remains a challeng-
ing NP-Hard problem. First, the complexity of solving MIP
is influenced by the number of continuous and integer vari-
ables, both increase quadratically with the controller size
|N |. Therefore, large controller sizes and the overall prob-
lem representation (state, action and observation space) will
affect the scalability of MIP solvers. The second barrier to
scalability is somewhat subtle. Semantically, each controller
node summarizes some relevant aspect of the observation
history. Therefore, while optimizing a fixed-size controller,
the underlying optimization engine must decide what infor-
mation should be memorized by each controller node as well
as what actions should be taken. Optimizing simultaneously
the variables that govern these two separate decisions is what
makes the optimization problem so hard. One way to miti-
gate this is by assigning some nodes of the controller fixed
actions (Amato, Bernstein, and Zilberstein 2010), but that
only pays off under certain conditions

We develop a more disciplined approach to address this
challenge, taking a cue from the concept of feature selection
in machine learning, which improves model interpretability
and enhances algorithmic performance (Guyon and Elisseeff
2003). In our case, the main intuition is to associate some
specific interpretation (or feature) with each controller node.
For example, one can associate each node with the last ob-
servation received or the last action and observation. Such
interpretations help keep the size of the MIP small and aid
the optimization engine. Earlier efforts to associate some
prescribed meaning with controller nodes have shown good
promise (Amato and Zilberstein 2008), but what space of
possible features should be considered? And how could we
explore it automatically in an efficient manner? In the next
section we propose a novel approach to these questions.
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Figure 2: Part (a) shows an example of a HBC with three obser-
vations. Part (b) shows the warm start strategy with dotted lines
corresponding to variables to be optimized.

4 History-Based Controller Design
We introduce the notion of history-based controllers
(HBCs), associating clear history-related properties with
each controller node. Such association offers a useful se-
mantic meaning to controller nodes, and it helps keep the
MIP size small. We also propose an efficient way to explore
the space of HBCs and determine the desired controller size,
striking a good balance between solution quality and com-
putational tractability. We start with defining a HBC.
Definition 4. A history-based controller (HBC) consists of a
set of nodes {ns}∪N , where ns denotes a unique start node.
The set N is partitioned according to observations: N =
∪y∈YNy, where Ny represents the set of nodes that encode
the information that the last observation received was y. The
action and node mappings are defined as:
φ : {ns}∪N → A, and ψy′ : ({ns} ∪ N )×{y′} → Ny′ ∀y′ ∈ Y

Intuitively, the node mapping ψy′ for a HBC needs to take
into account the last received observation y′ to determine the
target set Ny′ . Figure 2(a) shows an example of a HBC with
three observations. All the incoming edges to each node in
a set Nyi are labeled with the corresponding observation yi.
Proposition 1. Finding optimal fixed-size HBC is NP-Hard.

The proof of this proposition is straightforward by noting
that a reactive controller is a special case of a HBC with
|Ny| = 1 ∀y, and optimizing a reactive controller is NP-
Hard (Littman 1994). In addition to associating the last ob-
servation received with a node, other possible types of HBCs
may be based on remembering the last action and observa-
tion or remembering the last k observations. For ease of ex-
position and consistency, we focus primarily on HBCs based
on the last observation received.

A key advantage of a HBC is the immediate reduction
in the computational complexity of solving the dual MIP.
In an arbitrary FSC, the total number of binary variables
for node mapping is O(|N |2|Y |), whereas for a HBC, node
mapping requires only O(m|N ||Y |), where m denotes the
largest size of any set Ny . In fact, we show empirically that
even for large POMDP benchmarks, the maximum size of
any set |Ny| ≤ 2�|N| provides optimal or near-optimal so-
lutions. Thus, a HBC results in a simpler MIP with markedly
fewer binary variables due to its observation-based struc-
ture. Furthermore, a key issue in performing branch-and-
bound search over generic cyclic controllers is the need to



include additional checks for symmetry breaking (multiple
controllers encoding the same policy) (Grześ, Poupart, and
Hoey 2013b). For HBCs, the observation based underlying
structure reduces such symmetry in the search space, and
without the need for additional checks, our MIP based ap-
proach can provide good solutions.

As highlighted previously, optimizing large size con-
trollers in a single attempt may not be a scalable strategy
for any branch-and-bound solver. Thus, there is a need to
grow the controller in size by a deliberate addition of nodes.
Therefore, we employ an iterative strategy, where we first
optimize a default fixed-size controller, such as a reactive
controller. We then employ the following node addition
strategy that identifies, using a rigorous heuristic based on
the notion of entropy, how to best add nodes to the controller
that are likely to significantly increase solution quality.

Entropy-Based Node Splitting The importance of adding
nodes to a fixed-size controller to yield a better policy has
been recognized in the POMDP community (Hansen 1997;
Poupart and Boutilier 2003; Poupart, Lang, and Toussaint
2011). In Hansen (1997), the size of the controller may in-
crease exponentially after each node addition step. The BPI
approach of (Poupart and Boutilier 2003) can grow the con-
troller, but the node addition strategy is not focused on the
initial belief state. Furthermore, BPI optimizes a stochas-
tic controller whereas our MIP formulation is for determin-
istic controllers. Poupart, Lang, and Toussaint (2011) pro-
pose a number of techniques to add nodes to a controller
within the context of the EM algorithm (Toussaint, Harmel-
ing, and Storkey 2006). They propose a forward search
technique that is specific to the local optima of the EM
algorithm and EM’s particular update strategy. The node
splitting strategy proposed in (Poupart, Lang, and Toussaint
2011), based on the idea of state-splitting while using EM
for HMMs (Siddiqi, Gordon, and Moore 2007), seems to be
the most generic strategy that does not depend on the un-
derlying algorithm used to optimize the FSC. We propose a
similar node splitting strategy. The key novelty in our work
is the development of an entropy based heuristic that uses the
readily available information from the dual MIP of Table 1
to identify the controller node to split. Our entropy based ap-
proach is computationally much cheaper than the approach
of (Poupart, Lang, and Toussaint 2011) which evaluates ev-
ery node split to finally choose the node split that leads to
highest increase in quality. We show empirically that our
approach provides similar increase in quality as the bestSplit
approach of (Poupart, Lang, and Toussaint 2011), but signif-
icantly faster.

The key intuition in our approach is that we quantify the
uncertainty about the world state associated with every HBC
node, then split the node with the highest uncertainty. To
measure the uncertainty, we use the x(·) variables computed
by solving the dual MIP:

x(n, s) =
∑
a

x(n, s, a) , and x(s|n) = x(n, s)

x(n)
(34)

H(n) = −
∑
s

x(s|n) lnx(s|n) (35)

Algorithm 1: Dual MIP Based Controller Optimization

1 i← 0 // Initialize iteration number

2 Ci← optimizeReactiveController()
// Iteratively grow default controller

3 repeat
4 Terminate← true
5 WH [n]← computeWeighteEntropy(n) ∀n ∈ N i

6 sorted← descendingSort(WH [])
// Split nodes in dec. order of entropy

7 for k = 0 to |N |i do
8 Let ny ← sorted[k]
9 Split ny to create single node n′y

10 Ci+1 ← optimizeWithWarmStart(Ci, n′y)
11 if n′y = cloneOf(ny) then
12 Discard Ci+1; continue for loop

13 else
14 Terminate← false; break for loop

15 i← i+ 1
16 until Terminate = true

Note that x(s|n) is simply the fraction of time the world is in
state s given that the HBC’s state is n. Thus, x(s|n) can be
regarded as a probability distribution. We next calculate the
entropy,H(n), of this distribution in Eq. (35). The lower the
entropy, the more indicative the HBC node is of the world
state; when a node n corresponds to a unique world state s,
the entropy H(n) is zero. Intuitively, the higher the entropy,
the more likely we can benefit from splitting the node and
re-optimizing the more refined policy.

Incidentally, splitting nodes based exclusively on the
highest entropy H(n) did not work that well. However, a
closely related idea turned out to be quite effective. We ob-
served that nodes n in which the HBC spends the most time
should be given more weight. More precisely, we define the
notion of weighted entropy: WH (n) = x(n) ·H(n).

Empirically, we found that splitting the node with highest
weighted entropy provided excellent empirical performance.
Furthermore, the weighted entropies can be computed as a
byproduct of the dual MIP with minimal extra computation.
Thus, our node addition technique is highly efficient.

Re-optimizing the HBC after Node Splitting Once we
identify a node ny in HBC C, we split it to create another
node n′y with the same feature y. We can re-optimize the
larger controller C ′ with extra node n′y from scratch. How-
ever, this is computationally inefficient. Instead, we employ
a warm-start strategy to optimize C ′. Figure 2(a) and (b)
illustrate this warm start strategy.

In Figure 2(a), assume that the node ny2 is being split to
create a node n′y2 . Figure 2(b) shows the larger controller
C ′ with the added node n′y2 . The following variables in C ′
need to be re-optimized:
• The action mappings φ of both nodes ny2 and n′y2 as

variables to be re-optimized
• Consider a node ny1 in Figure 2(a) that had a transition

to the node ny2 in controller C. We make this particular



node mapping of the node ny1 as variable with two pos-
sible choices ny2 and n′y2 . This is shown using outgoing
dotted lines from the node ny1 in Figure 2(b). Such a
process is done for every node that had a transition to
the node ny2 being split

• The only remaining variables to be re-optimized are the
node mappings for nodes ny2 and n′y2 . We make all the
outgoing node mappings of nodes ny2 and n′y2 variables.
This is shown as outgoing dotted edges from both the
nodes ny2 and n′y2 in Figure 2(b).

Other than the above variables, all the rest of the policy vari-
ables are fixed in C ′ as in C. Thanks to the warm-start strat-
egy, the new dual-MIP has far fewer integer variables. Thus,
it can be optimized quickly even for large problems, using
little time per iteration. We note that such a warm-start strat-
egy may not provide the best controller after the addition of
the node n′y2 . Nonetheless, empirically we found that this
strategy was quite effective in increasing the solution qual-
ity. Re-optimizing the expanded controller from scratch led
to slightly better quality per iteration, but it was significantly
more time consuming, which limited its usability.

Algorithm 1 summarizes our strategy for optimizing a
POMDP controller. We start by optimizing a default con-
troller in iteration zero (e.g., a reactive controller, line 2). We
then attempt to increase the size of the default controller iter-
atively by adding one node at a time. Lines 7 to 14 show the
logic behind adding a node. We start by attempting to add a
node with the highest weighted entropy. The expanded con-
troller Ci+1 is re-optimized in line 10. We include a check
to see if node n′y is a clone with the same action mapping
and same node mapping of the original node ny after re-
optimization. If so, then we discard the controller Ci+1 as
adding n′y does not result in a better policy. We then pro-
ceed by trying to split the next node in descending order of
weighted entropy. When it is not longer possible to add any
node to the controller Ci, the algorithm terminates.

5 Experiments
We compare our dual MIP approach with the nonlinear
programming (NLP) approach (Amato, Bernstein, and Zil-
berstein 2010) and the optimal branch-and-bound search
IsoBNB (Grześ, Poupart, and Hoey 2013b) for optimizing
FSCs. To put the results in perspective, we also provide
the best solution quality achieved by HSVI (Smith and Sim-
mons 2005), the state-of-the-art point-based solver. We used
CPLEX 12.6 as the MIP solver on a 2.8GHz machine with
4GB RAM. We used a publicly available executable version
of IsoBnB; for the NLP approach, we took the best known
quality and timing results from (Amato, Bernstein, and Zil-
berstein 2010; Grześ, Poupart, and Hoey 2013b) that use the
SNOPT solver on the NEOS server.

Both NLP and IsoBnB have multiple parameters that af-
fect the final solution quality. This complicates the compari-
son. For example, for the NLP approach, controller size and
the number of random restarts are input parameters. For the
IsoBnB approach, controller size and the number of edges
in controller are input parameters. For the problems tested
in (Grześ, Poupart, and Hoey 2013b), we use the exact same

dualMIP (fixed-size) IsoBnB NLP
Problem Qual. Time Opt. Quality Time Quality Time

lacasa1
(
|S| = 16 293.1 0.14 Y 294.0 38.2 293.8 1.76

|A| = 2, |O| = 3
)

HSVI = 294.3
lacasa3

(
|S| = 640 292.5 895 Y 292 340 * *

|A| = 5, |O| = 12
)

HSVI = 294.9
lacasa3-ext

(
|S| = 1920 285.0 73.5 Y 291 1325 * *

|A| = 5, |O| = 3
)

HSVI = 295.6
underwaterNav

(
|S|=2653 747.7 56.2 Y ? ? * *

|A| = 6, |O| = 102
)

HSVI = 749
baseball

(
|S|=7681 0.64 17.2 Y 0.64 5224 * *

|A| = 6, |O| = 9
)

HSVI = 0.64

Table 2: Quality and runtime (in sec.) comparisons for different
controller optimization algorithms. The point-based solver HSVI
is used for reference. A ‘*’ denotes the algorithm was unable to
run due to a large number of constraints; ‘?’ denotes parsing error.

setting to reproduce the earlier results. For other problems,
we fixed the controller size to the number of actions for
IsoBnB. The performance of IsoBnB is sensitive to the num-
ber of edges in the controller, so we varied that number from
5 to 30 (total of three settings) and also experimented with
no edge restrictions. We used a time limit of 10,000 seconds
for each IsoBnB run and report the best quality achieved and
when over all four variants.

Our approach has relatively fewer parameters and ones
that are easier to set. Importantly, the initial controller size
is not a parameters in our approach. We use a default re-
active controller in iteration zero. The maximum time limit
for iteration zero is set to 900 seconds. Each subsequent it-
eration that grows the controller is limited to 350 seconds
for re-optimizing the larger controller using a warm start.
These time limits were derived from our initial experiments
with some large POMDP instances.

Optimizing Fixed-Size Controllers Table 2 shows results
for our approach ‘dualMIP’, the branch-and-bound solver
‘IsoBnB’ (Grześ, Poupart, and Hoey 2013b) and the NLP
approach (Amato, Bernstein, and Zilberstein 2010). We
compare the solution quality and runtime for fixed-size con-
trollers. For dualMIP, a reactive controller was sufficient
for all these instances. Notice that in Algorithm 1, the node
addition strategy is unable to add any nodes to the reac-
tive controller for these instance as all addition attempts lead
to clones, which is detected in Algorithm 1. For ‘IsoBnB’,
we used the same controller settings as in (Grześ, Poupart,
and Hoey 2013b). Table 2 clearly shows that dualMIP is
able to find provably optimal reactive controllers even for
large POMDP instances1 (‘baseball’ and ‘underwaterNav’).
The runtime of dualMIP also compares favorably with the
IsoBnB approach. The NLP solver was unable to run due
to the large size of these instances. Furthermore, the quality

1IsoBnB is not restricted to the class of reactive controllers,
therefore it can sometimes achieve slightly better quality



dualMIP IsoBnB NLP
Reactive MaxEnt

Problem Qual. Qual. Time Qual. Time Qual. Time

tiger.95
(
|S| = 2 -20(opt) 19.3 0.44 19.3 1.4 -0.63 3.79

|A| = 3, |O| = 2
)

HSVI = 19.3
hallway

(
|S| = 60 0.38(0.42) 0.46 3345 0.19 8170 0.47 362

|A| = 5, |O| = 21
)

HSVI = 0.52
hallway2

(
|S|=93 0.24(0.29) 0.28 5700 0.15 5616 0.28 420

|A| = 5, |O| = 17
)

HSVI = 0.35
machine

(
|S|=256 33.2(42.1) 62.54 950 62.6 41200 62.4 2640

|A| = 4, |O| = 16
)

HSVI = 63
tag
(
|S|=870 -17.2(-2.2) -7.81 6000 ? ? -13.94 5596

|A| = 5, |O| = 30
)

HSVI = -6.37

Table 3: Quality and runtime (in sec.) comparisons for different
controller optimization algorithms. ‘Time’ for ‘MaxEnt’ includes
the time for optimizing the reactive controller.

achieved by dualMIP is very close to that of HSVI. It sup-
ports the case for HBCs showing that optimizing compact
observation-based controllers can provide good quality even
for large instances. The underlying structure in HBC also
contributes to the faster runtime of the MIP solver.

In addition to reactive controllers, we also investigated
other types of HBCs, such as controllers that memorize last
k observations, and controllers that memorize last action
taken and the last observation received. These types of con-
trollers were highly effective for small and moderate sized
problems. For ‘4x5x2.95’ (|S|= 39, |A|= 4, |O|= 4), last
action-observation based controller optimized by dualMIP
achieved a quality of 2.01 in 0.64 sec. In contrast, IsoBnB
achieved a quality of 2.02 in 625 sec, and NLP achieved a
quality of 1.43 in 0.75 sec. These results again highlight that
optimizing controllers with history based structure can pro-
vide high quality policies significantly faster than previous
approaches.

Node Addition Using MaxEnt Table 3 highlights the
gain provided by the entropy-based node addition approach
(‘MaxEnt’). For instances in this table, we optimized the
reactive controller for a maximum of 900 seconds and then
started the iterative node addition process. The column ‘Re-
active’ shows the quality provided by the reactive controller,
the number in brackets denote the upper bound provided by
CPLEX. That is, for ‘hallway’, .38(0.42) denotes the qual-
ity of reactive controller being .38, the upper bound on the
optimal reactive controller being 0.42. As can be seen from
this table, the ‘MaxEnt’ approach’s deliberate addition of
nodes was quite successful in significantly increasing the so-
lution quality over a reactive controller. Furthermore, the
final quality by ‘MaxEnt’ was very close to the quality pro-
vided by HSVI. The dualMIP approach also compares fa-
vorably w.r.t.quality with the NLP approach.

The runtime of dualMIP also compares favorably with
the runtime of IsoBnB. For ‘tiger’ and ‘machine’, we use

Problem tiger hallway hallway2 machine tag
|Y |+1 3 22 18 17 31

Size 10 36 35 20 56

Table 4: Final controller size, including both the size of the initial
reactive controller (=|Y |+1) and the number of nodes added by
MaxEnt.

the same controller setting as in (Grześ, Poupart, and Hoey
2013b) without any time limit. For other instances, the best
setting for IsoBnB is not known. Therefore, we used multi-
ple settings for IsoBnB as highlighted earlier and report the
best one w.r.t. quality. For most of these instances, IsoBnB
was unable to provide a good solution quality within the time
limit of 10,000 seconds.

Table 4 shows the final controller size for dualMIP for dif-
ferent instances. Notice that the final size includes the size of
the reactive controller (= |Y |+1) and the subsequent nodes
added using the MaxEnt approach. Other than the smaller
problems such as ‘tiger’, the MaxEnt approach added less
than 2 nodes per observation for a given instance. For exam-
ple, for ‘machine’, the observation space is 16, and MaxEnt
only added three more nodes in order to obtain good quality.
This further supports that including the observation based
structure in the controller can result in compact high-quality
controllers.

6 Conclusion

Optimizing finite-state controllers for POMDPs is a chal-
lenging problem in probabilistic planning. We present a
number of advances in this area. By exploiting the con-
nection between an MDP and the cross-product MDP for
a POMDP, we introduce a mixed-integer linear program for
optimizing FSCs. Such dual MIP can be solved using effi-
cient off-the-shelf MIP solvers. We make several additional
contributions, namely, providing well defined semantics to
FSC nodes derived from observations, and automatically de-
termining the “right” controller size so as to obtain good so-
lution quality with tractable computational complexity. We
believe that such a feature-based planning approach holds
significant promise for efficiently solving POMDPs by help-
ing the optimization engine with the additional structure, as
well as providing semantically meaningful plans.

Empirically, our approach worked quite well, providing
solution quality on par with the best point-based solvers, yet
using highly compact controllers. Our approach also scaled
significantly better than previous FSC optimization methods
such as nonlinear programming and provided better solution
quality.

In future work, we plan to examine ways to extend this
approach to different types of controllers (Amato, Bonet,
and Zilberstein 2010) and to decentralized POMDPs (Am-
ato, Bernstein, and Zilberstein 2010). Solving decentralized
POMDPs is a fundamentally more complex problem and we
expect our controller design and optimization method to be
quite effective in that case as well.
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